Mass Scale Culture and Preparation of Microalgal Paste

  • A. Begum
  • S. U. Ahmed
  • S. Dinesh Kumar
  • M. Divya
  • P. Santhanam
  • P. Pachiappan


For the past two decades, microalgae are cultured commercially for secondary wastewater treatment and production of human food, animal feed, fertilizer, biofuel, fine chemicals and secondary metabolites. But, success of mass culture of microalgae depends on bacteria and other contaminated cells. If it is efficient method to culture of microalgae in mass scale means, it should be contains higher biomass productivity, can grow in low light conditions and maximum utilization of carbon dioxide. In recent years, most of the world researchers focused on to develop sustainable outdoor mass scale culture techniques in low cost. Most outdoor culture techniques result in low algal density, high contamination, problem in harvesting and lipid separation from the algal cells. The low algal cell productivity of mass scale techniques has prompted the development of enriched outdoor mass culture methods like raceway, photobioreactors and attached algal culture system (Fig. 1). This chapter reveals the various techniques involving culture, havest and preparation of microalgae paste.



The authors thank the authorities of Tihu College, Tihu, Assam and Bharathidasan University, Tiruhcirappalli, Tamil Nadu for providing the necessary facilities. Thanks are due to the Department of Biotechnology, Govt. of India, New Delhi, for providing the microalgae culture facility through extramural project (BT/PR 5856/AAQ/3/598/2012). The authors (SDK) thank the DBT for JRF and UGC for PDF (Ref.No.F./31-1/2017/PDFSS-2017-18-TAM-13681 dated 19.06.2017), (MD) thank the UGC, Govt. of India, New Delhi, for fellowship provided.


  1. Becker, E.W. 1994. Microalgae: Biotechnology and microbiology. Cambridge: Cambridge University Press.Google Scholar
  2. Brennan, L., and P. Owende. 2010. Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 14: 557–577.CrossRefGoogle Scholar
  3. Chatsungnoen, T., and Y. Chisti. 2016. Harvesting microalgae by flocculation-sedimentation. Algal Research 13: 271–283.CrossRefGoogle Scholar
  4. Cheng, J., Z. Yang, Q. Ye, J. Zhou, and K. Cen. 2015. Improving CO2 fixation with microalgae by bubble breakage in raceway ponds with up-down chute baffles. Bioresource Technology 201: 174–181.CrossRefGoogle Scholar
  5. Chisti, Y. 2012. Raceways-based production of algal crude oil. In Microalgal Biotechnology: Potential and Production, ed. C. Posten and C. Walter, 113–146. Berlin: de Gruyter.Google Scholar
  6. ———. 2016. Large-scale production of algal biomass: Raceway ponds. In Algae Biotechnology, 21–40. New York: Springer.CrossRefGoogle Scholar
  7. Dębowski, M., M. Zieliński, M. Krzemieniewski, M. Dudek, and A. Grala. 2012. Microalgae cultivation methods. Polish Journal of Natural Science 27 (2): 151–164.Google Scholar
  8. Dodd, J.C. 1986. In Handbook of Microalgal Mass Culture, ed. A. Richmond, 265–283. Boca Raton: CRC Press.Google Scholar
  9. Dogaris, I., M. Welch, A. Meiser, L. Walmsley, and G. Philippidis. 2015. A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresource Technology 198: 316–324.CrossRefGoogle Scholar
  10. Grima, E. M., Fernández Sevilla, J. M. and Acién Fernández, F. G. 2010. Microalgae, mass culture methods. Encyclopedia of Industrial Biotechnology, 1–24.Google Scholar
  11. Hattab, H., A. Ghaly, and A. Hammoud. 2015. Microalgae harvesting methods for industrial production of biodiesel: Critical review and comparative analysis. Journal of Fundamentals of Renewable Energy and Applications 5 (1000154).Google Scholar
  12. Heasman, M., J. Diemar, O. Connor, T. Shushames, L. Foulkes, and J.A. Nell. 2000. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – A summary. Aquaculture Research 31: 637–659.CrossRefGoogle Scholar
  13. Kaartinen, J., and H. Koivo. 2014. Machine vision based measurement and control of zinc flotation circuit. Helsiniki: Helsinki University of Technology.Google Scholar
  14. Knuckey, R.M., M.R. Brown, R. Robert, and D.M. Frampton. 2006. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacultural Engineering 35: 300–313.CrossRefGoogle Scholar
  15. Lee, Y.-K. 1997. Commercial production of microalgae in the Asia-Pacific rim. Journal of Applied Phycology 9: 403–411.CrossRefGoogle Scholar
  16. Mhatre, A., M. Navale, N. Trivedi, R. Pandit, and A.M. Lali. 2017. Pilot scale flat panel photobioreactor system for mass production of Ulva lactuca (Chlorophyta). Bioresource Technology 249: 582–591.CrossRefGoogle Scholar
  17. Nunes, M., A. Pereira, J.F. Ferreira, and F. Yasumaru. 2009. Evaluation of the microalgae paste viability produced in a mollusk hatchery in Southern Brazil. Journal of the World Aquaculture Society 40 (1): 87–94.CrossRefGoogle Scholar
  18. Oswald, W.J. 1988. In Micro-Algal Biotechnology, ed. M.A. Borowitzka and L.J. Borowitzka, 305–328. Cambridge: Cambridge University Press.Google Scholar
  19. Perumal, P., B. Balaji Prasath, P. Santhanam, A. Shenbaga Devi, S. Dineshkumar, and S. Jeyanthi. 2015. Isolation and intensive culture of marine microalgae. In Advances in Marine and Brackishwater Aquaculture, ed. P. Santhanam, A.R. Thirunavukkarasu, and P. Perumal, 1–15. New Delhi. (ISBN: 978-81-3222270-5: Springer.Google Scholar
  20. Richmond, A., and Z. Cheng-Wu. 2001. Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. Journal of Biotechnology 85 (3): 259–269.CrossRefGoogle Scholar
  21. Salim, S., R. Bosma, M.H. Vermuë, and R.H. Wijffels. 2011. Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology 23 (5): 849–855.CrossRefGoogle Scholar
  22. Shelef, G., Sukenik, A. and Green, M. 1984. Microalgae Harvesting and Processing: A Literature Review. Report, Solar Energy Research Institute, Golden, CO, SERI Report No. 231-2396.Google Scholar
  23. Yang, Z., J. Cheng, W. Yang, J. Zhou, and K. Cen. 2016. Developing a water-circulating column photobioreactor for microalgal growth with low energy consumption. Bioresource Technology 221: 492–497.CrossRefGoogle Scholar
  24. Yue, J., L.G. Luo, Y. Gonthier, G.W. Chen, and Q. Yuan. 2008. An experimental investigation of gas-liquid two-phase flow in single microchannel contactors. Chemical Engineering Science 63: 4189–4202.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. Begum
    • 1
  • S. U. Ahmed
    • 2
  • S. Dinesh Kumar
    • 3
  • M. Divya
    • 3
  • P. Santhanam
    • 3
  • P. Pachiappan
    • 4
  1. 1.Department of BotanyTihu CollegeTihuIndia
  2. 2.Department of BiotechnologyMinistry of Science and Technology, Government of IndiaNew DelhiIndia
  3. 3.Marine Planktonology & Aquaculture Laboratory, Department of Marine Science, School of Marine SciencesBharathidasan UniversityTiruchirappalliIndia
  4. 4.Department of Biotechnology, School of BiosciencesPeriyar UniversitySalemIndia

Personalised recommendations