Denoising of Volumetric MR Image Using Low-Rank Approximation on Tensor SVD Framework

  • Hawazin S. Khaleel
  • Sameera V. Mohd Sagheer
  • M. Baburaj
  • Sudhish N. George
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 703)

Abstract

In this paper, we focus on denoising of additively corrupted volumetric magnetic resonance (MR) images for improved clinical diagnosis and further processing. We have considered three dimensional MR images as third-order tensors. MR image denoising is solved as a low-rank tensor approximation problem, where the non-local similarity and correlation existing in volumetric MR images are exploited. The corrupted images are divided into 3D patches and similar patches form a group matrix. The group matrices exhibit low-rank property and is decomposed with tensor singular value decomposition (t-SVD) technique, and reweighted iterative thresholding is performed on core coefficients for removing the noise. The proposed method is compared with the state-of-the-art methods and has shown improved performance.

Keywords

MR image Denoising Tensor singular value decomposition Low-rank approximation 

References

  1. 1.
    Zhu, H.: Medical image processing overview. University of Calgary (2003)Google Scholar
  2. 2.
    Aja-Fernández, S., Tristán-Vega, A.: A review on statistical noise models for Magnetic Resonance Imaging. LPI, ETSI Telecomunicacion, Universidad de Valladolid, Spain, Tech. Rep (2013)Google Scholar
  3. 3.
    Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magnetic resonance in medicine 34(6), 910–914 (1995)CrossRefGoogle Scholar
  4. 4.
    Mohan, J., Krishnaveni, V., Guo, Y.: A survey on the magnetic resonance image denoising methods. Biomedical Signal Processing and Control 9, 56–69 (2014)CrossRefGoogle Scholar
  5. 5.
    McVeigh, E., Henkelman, R., Bronskill, M.: Noise and filtration in magnetic resonance imaging. Medical Physics 12(5), 586–591 (1985)CrossRefGoogle Scholar
  6. 6.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  7. 7.
    Krissian, K., Aja-Fernández, S.: Noise-driven anisotropic diffusion filtering of MRI. IEEE transactions on image processing 18(10), 2265–2274 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Golshan, H.M., Hasanzadeh, R.P.: An optimized LMMSE based method for 3D MRI denoising. IEEE/ACM Transactions on Computational Biology and Bioinformatics 12(4), 861–870 (2015)CrossRefGoogle Scholar
  9. 9.
    Sudeep, P., Palanisamy, P., Kesavadas, C., Rajan, J.: Nonlocal linear minimum mean square error methods for denoising MRI. Biomedical Signal Processing and Control 20, 125–134 (2015)CrossRefGoogle Scholar
  10. 10.
    Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. vol. 2, pp. 60–65. IEEE (2005)Google Scholar
  11. 11.
    Manjón, J.V., Coupé, P., Martí-Bonmatí, L., Collins, D.L., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging 31(1), 192–203 (2010)CrossRefGoogle Scholar
  12. 12.
    Manjón, J.V., Coupé, P., Buades, A., Collins, D.L., Robles, M.: New methods for MRI denoising based on sparseness and self-similarity. Medical image analysis 16(1), 18–27 (2012)CrossRefGoogle Scholar
  13. 13.
    Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Medical image analysis 12(4), 514–523 (2008)CrossRefGoogle Scholar
  14. 14.
    Coupé, P., Manjón, J.V., Robles, M., Collins, D.L.: Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising. IET Image Processing 6(5), 558–568 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Manjón, J.V., Coupé, P., Buades, A.: MRI noise estimation and denoising using non-local pca. Medical image analysis 22(1), 35–47 (2015)CrossRefGoogle Scholar
  16. 16.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on image processing 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE transactions on image processing 22(1), 119–133 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Foi, A.: Noise estimation and removal in MR imaging: the variance-stabilization approach. In: Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on. pp. 1809–1814. IEEE (2011)Google Scholar
  19. 19.
    Fu, Y., Dong, W.: 3D magnetic resonance image denoising using low-rank tensor approximation. Neurocomputing 195, 30–39 (2016)CrossRefGoogle Scholar
  20. 20.
    Xu, L., Wang, C., Chen, W., Liu, X.: Denoising multi-channel images in parallel MRI by low rank matrix decomposition. IEEE transactions on applied superconductivity 24(5), 1–5 (2014)Google Scholar
  21. 21.
    Nguyen, H.M., Peng, X., Do, M.N., Liang, Z.P.: Denoising MR spectroscopic imaging data with low-rank approximations. IEEE Transactions on Biomedical Engineering 60(1), 78–89 (2013)CrossRefGoogle Scholar
  22. 22.
    Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2862–2869 (2014)Google Scholar
  23. 23.
    Vannier, M.W., Pilgram, T.K., Speidel, C.M., Neumann, L.R., Rickman, D.L., Schertz, L.D.: Validation of magnetic resonance imaging (MRI) multispectral tissue classification. Computerized Medical Imaging and Graphics 15(4), 217–223 (1991)CrossRefGoogle Scholar
  24. 24.
    Dong, W., Li, G., Shi, G., Li, X., Ma, Y.: Low-rank tensor approximation with laplacian scale mixture modeling for multiframe image denoising. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 442–449 (2015)Google Scholar
  25. 25.
    Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(4), 849–862 (2013)CrossRefGoogle Scholar
  26. 26.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review 51(3), 455–500 (2009)CrossRefGoogle Scholar
  27. 27.
    Zhang, X., Xu, Z., Jia, N., Yang, W., Feng, Q., Chen, W., Feng, Y.: Denoising of 3D magnetic resonance images by using higher-order singular value decomposition. Medical image analysis 19(1), 75–86 (2015)CrossRefGoogle Scholar
  28. 28.
    Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-svd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3842–3849 (2014)Google Scholar
  29. 29.
    Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging. SIAM Journal on Matrix Analysis and Applications 34(1), 148–172 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    BrainWeb: Simulated Brain Database. http://www.bic.mni.mcgill.ca/brainweb/
  31. 31.
    The Auckland Cardiac MRI Atlas. https://atlas.scmr.org/download.html

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hawazin S. Khaleel
    • 1
  • Sameera V. Mohd Sagheer
    • 1
  • M. Baburaj
    • 1
  • Sudhish N. George
    • 1
  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology CalicutKeralaIndia

Personalised recommendations