Cascading-Failure Tolerance for Language Service Networks

  • Kemas M. Lhaksmana
  • Toru Ishida
  • Yohei Murakami
Part of the Cognitive Technologies book series (COGTECH)


One of the main features of The Language Grid is its support for service composition, i.e. creating new language services that meet user requirements by combining the existing ones. Despite the potential of service composition, such a service-oriented computing (SOC) application may experience cascading failure when a disruption on one or more component services is propagated to the composite services that combine them. As the number of language services grows, composite language services will become more common, and thus understanding cascading failure among language services becomes more important. This chapter investigates how failure may propagate among language services and how to improve language service tolerance to cascading failure. To this end, the dependency between language services is modeled as service network on which cascading failure is simulated and analyzed. We also generated service networks in scale-free, exponential, and random topology to analyze how cascading failure occurs in different topology. The simulation reveals that service networks with scale-free topology have better cascading-failure tolerance compares to that of other topology.


Cascading failure Service network Scale-free network 



This research was supported by the Grant-in-Aid for Scientific Research (S) (24220002, 2012–2016) from Japan Society for the Promotion of Science (JSPS).


  1. 1.
    Armbrust, M., Fox, O., Griffith, R., Joseph, A.D., Katz, Y., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of Cloud Computing. Technical Report, University of California at Berkeley (2009)Google Scholar
  2. 2.
    Ash, J., Newth, D.: Optimizing complex networks for resilience against cascading failure. Phys. A Stat. Mech. Appl. 380, 673–683 (2007)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A Stat. Mech. Appl. 272(1), 173–187 (1999)CrossRefGoogle Scholar
  4. 4.
    Chen, Q., Shi, D.: The modeling of scale-free networks. Phys. A Stat. Mech. Appl. 335(1), 240–248 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69(4), 045104 (2004)CrossRefGoogle Scholar
  6. 6.
    Dorogovtsev, S.N., Mendes, J.F.: Evolution of networks. Adv. Phys. 51(4), 1079–1187 (2002)CrossRefGoogle Scholar
  7. 7.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5, 17–61 (1960)Google Scholar
  8. 8.
    Feng, Z., Lan, B., Zhang, Z., Chen, S.: A study of semantic web services network. Comput. J. 58, 1293–1305 (2014)CrossRefGoogle Scholar
  9. 9.
    Huang, K., Fan, Y., Tan, W.: An empirical study of programmable web: a network analysis on a service-mashup system. In: 2012 IEEE 19th International Conference on Web Services (ICWS), pp. 552–559 (2012)Google Scholar
  10. 10.
    Ishida, T. (ed.): The Language Grid: Service-Oriented Collective Intelligence for Language Resource Interoperability. Springer Science & Business Media (2011)Google Scholar
  11. 11.
    Ishida, T., Murakami, Y., Lin, D., Nakaguchi, T., Otani, M.: Open Language Grid: towards a global language service infrastructure. In: The Third ASE International Conference on Social Informatics (SocialInformatics 2014), Cambridge, Massachusetts, USA (2014)Google Scholar
  12. 12.
    Kil, H., Oh, S.C., Elmacioglu, E., Nam, W., Lee, D.: Graph theoretic topological analysis of web service networks. World Wide Web 12(3), 321–343 (2009)CrossRefGoogle Scholar
  13. 13.
    Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the North American power grid. Eur. Phys. J. B Condens. Matter Complex Syst. 46(1), 101–107 (2005)CrossRefGoogle Scholar
  14. 14.
    Lhaksmana, K.M., Murakami, Y., Ishida, T.: Cascading failure tolerance in large-scale service networks. In: 2015 IEEE International Conference on Services Computing (SCC), pp. 1–8 (2015)Google Scholar
  15. 15.
    Lhaksmana, K.M., Murakami, Y., Ishida, T.: Analysis of large-scale service network tolerance to cascading failure. IEEE Internet Things J. 3(6), 1159–1170 (2016)CrossRefGoogle Scholar
  16. 16.
    Little, R.G.: Controlling cascading failure: understanding the vulnerabilities of interconnected infrastructures. J. Urban Technol. 9(1), 109–123 (2002)CrossRefGoogle Scholar
  17. 17.
    Murakami, Y., Tanaka, M., Lin, D., Ishida, T.: Service grid federation architecture for heterogeneous domains. In: 2012 IEEE Ninth International Conference on Services Computing (SCC), pp. 539–546 (2012)Google Scholar
  18. 18.
    Oh, S.C., Lee, D., Kumara, S.R.: Effective web service composition in diverse and large-scale service networks. IEEE Trans. Serv. Comput. 1(1), 15–32 (2008)CrossRefGoogle Scholar
  19. 19.
    Rinaldi, S., Peerenboom, J., Kelly, T.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. 21(6), 11–25 (2001)CrossRefGoogle Scholar
  20. 20.
    Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1), 63–79 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kemas M. Lhaksmana
    • 1
  • Toru Ishida
    • 2
  • Yohei Murakami
    • 3
  1. 1.School of ComputingTelkom UniversityBandungIndonesia
  2. 2.Department of Social InformaticsKyoto UniversityKyotoJapan
  3. 3.Unit of DesignKyoto UniversityKyotoJapan

Personalised recommendations