Advertisement

Ryanodine Receptor Structure and Function in Health and Disease

  • Gaetano Santulli
  • Daniel Lewis
  • Amedee des Georges
  • Andrew R. Marks
  • Joachim Frank
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 87)

Abstract

Ryanodine receptors (RyRs) are ubiquitous intracellular calcium (Ca2+) release channels required for the function of many organs including heart and skeletal muscle, synaptic transmission in the brain, pancreatic beta cell function, and vascular tone. In disease, defective function of RyRs due either to stress (hyperadrenergic and/or oxidative overload) or genetic mutations can render the channels leaky to Ca2+ and promote defective disease-causing signals as observed in heat failure, muscular dystrophy, diabetes mellitus, and neurodegerative disease. RyRs are massive structures comprising the largest known ion channel-bearing macromolecular complex and exceeding 3 million Daltons in molecular weight. RyRs mediate the rapid release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) to stimulate cellular functions through Ca2+-dependent processes. Recent advances in single-particle cryogenic electron microscopy (cryo-EM) have enabled the determination of atomic-level structures for RyR for the first time. These structures have illuminated the mechanisms by which these critical ion channels function and interact with regulatory ligands. In the present chapter we discuss the structure, functional elements, gating and activation mechanisms of RyRs in normal and disease states.

Keywords

Ryanodine receptor (RyR) Calcium release channel Cryo-EM Endoplasmic reticulum Sarcoplasmic reticulum 

Notes

Acknowledgements

This work was supported by HHMI (to J.F.) and grants from the National Institutes of Health (R01AR060037 and R01HL061503 to A.R.M., R01GM29169 to J.F., R00DK107895 to G.S.).

Disclosure

ARM is a consultant and board member and owns shares in ARMGO Pharma, Inc. a biotech startup targeting RyR channels for therapeutic purposes.

References

  1. Amador FJ, Liu S, Ishiyama N, Plevin MJ, Wilson A, MacLennan DH, Ikura M (2009) Crystal structure of type I ryanodine receptor amino-terminal beta-trefoil domain reveals a disease-associated mutation “hot spot” loop. Proc Natl Acad Sci U S A 106(27):11040–11044.  https://doi.org/10.1073/pnas.0905186106 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR (2011) Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14(2):196–207.  https://doi.org/10.1016/j.cmet.2011.05.014 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andersson DC, Meli AC, Reiken S, Betzenhauser MJ, Umanskaya A, Shiomi T, D’Armiento J, Marks AR (2012) Leaky ryanodine receptors in beta-sarcoglycan deficient mice: a potential common defect in muscular dystrophy. Skelet Muscle 2(1):9.  https://doi.org/10.1186/2044-5040-2-9 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bai X-C, Yan Z, Wu J, Li Z, Yan N (2016) The central domain of RyR1 is the transducer for long-range allosteric gating of channel opening. Cell Res.  https://doi.org/10.1038/cr.2016.89
  5. Baker MR, Fan G, Serysheva II (2015) Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 25(1):35–48PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baker RP, Young K, Feng L, Shi Y, Urban S (2007 May 15) Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc Natl Acad Sci U S A 104(20):8257–8262PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bellinger AM, Mongillo M, Marks AR (2008a) Stressed out: the skeletal muscle ryanodine receptor as a target of stress. J Clin Invest 118(2):445–453.  https://doi.org/10.1172/JCI34006 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bellinger AM, Reiken S, Dura M, Murphy PW, Deng SX, Landry DW, Nieman D, Lehnart SE, Samaru M, LaCampagne A, Marks AR (2008b) Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A 105(6):2198–2202.  https://doi.org/10.1073/pnas.0711074105 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR (2009) Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 15(3):325–330.  https://doi.org/10.1038/nm.1916 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351(6329):751–754.  https://doi.org/10.1038/351751a0 PubMedCrossRefGoogle Scholar
  11. Brillantes AM, Allen P, Takahashi T, Izumo S, Marks AR (1992) Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res 71(1):18–26PubMedCrossRefGoogle Scholar
  12. Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, Moschella MC, Jayaraman T, Landers M, Ehrlich BE, Marks AR (1994a) Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77(4):513–523PubMedCrossRefGoogle Scholar
  13. Brillantes AM, Bezprozvannaya S, Marks AR (1994b) Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling. Circ Res 75(3):503–510PubMedCrossRefGoogle Scholar
  14. Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012, March) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177(3):630–637.  https://doi.org/10.1016/j.jsb.2012.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cabra V, Murayama T, Samsò M (2016) Ultrastructural analysis of self-associated RyR2s. Biophys J 110(12):2651–2662.  https://doi.org/10.1016/j.bpj.2016.05.013
  16. Chan WM, Welch W, Sitsapesan R (2000) Structural factors that determine the ability of adenosine and related compounds to activate the cardiac ryanodine receptor. Br J Pharm 130(7):1618–1626.  https://doi.org/10.1038/sj.bjp.0703459 CrossRefGoogle Scholar
  17. Choi RH, Koenig X, Launikonis BS (2017) Dantrolene requires Mg2+ to arrest malignant hyperthermia. Proc Natl Acad Sci U S A.  https://doi.org/10.1073/pnas.1619835114
  18. Clarke OB, Hendrickson WA (2016, August) Structures of the colossal RyR1 calcium release channel. Curr Opin Struct Biol 39:144–152. https://doi.org/10.1016/j.sbi.2016.09.002
  19. Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao HY, Pallesen J, Sharma G, Stupina VA, Simon AE, Dinman JD, Frank J, Ourmazd A (2014, December 9) Trajectories of the ribosome as a Brownian nanomachine. Proc Natl Acad Sci U S A 111(49):17492–17497.  https://doi.org/10.1073/pnas.1419276111 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dashti A, Hail DB, Mashayekhi G, Schwander P, des Georges A, Frank J, Ourmazd A (2017) Conformational Dynamics and Energy Landscapes of Ligand Binding in RyR1. bioRxiv:167080Google Scholar
  21. des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA, Hendrickson WA, Marks AR, Frank J (2016, September 22) Structural basis for gating and activation of RyR1. Cell 167(1):145–157.e17.  https://doi.org/10.1016/j.cell.2016.08.075 PubMedPubMedCentralCrossRefGoogle Scholar
  22. De Crescenzo V, Fogarty KE, Lefkowitz JJ, Bellve KD, Zvaritch E, MacLennan DH, Walsh JV Jr (2012) Type 1 ryanodine receptor knock-in mutation causing central core disease of skeletal muscle also displays a neuronal phenotype. Proc Natl Acad Sci U S A 109(2):610–615.  https://doi.org/10.1073/pnas.1115111108 PubMedCrossRefGoogle Scholar
  23. Dubochet J, Booy FP, Freeman R, Jones AV, Walter CA (1981) Low temperature electron microscopy. Annu Rev Biophys Bioeng 10:133–149Google Scholar
  24. Dubochet J, Adrian M, Schultz P, Oudet P (1986, March) Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model. EMBO J 5(3):519–528Google Scholar
  25. Efremov RG, Leitner A, Aebersold R, Raunser S (2015, January 1) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517(7532):39–43PubMedCrossRefGoogle Scholar
  26. Endo M (2009) Calcium-induced calcium release in skeletal muscle. Physiol Rev 89(4):1153–1176.  https://doi.org/10.1152/physrev.00040.2008 PubMedCrossRefGoogle Scholar
  27. Endo M, Tanaka M, Ogawa Y (1970) Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228(5266):34–36PubMedCrossRefGoogle Scholar
  28. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys 245(1):C1–14CrossRefGoogle Scholar
  29. Fabiato A, Fabiato F (1975) Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 249(3):469–495PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, Ludtke SJ, Serysheva II (2015) Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 527(7578):336–341.  https://doi.org/10.1038/nature15249 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fauconnier J, Thireau J, Reiken S, Cassan C, Richard S, Matecki S, Marks AR, Lacampagne A (2010) Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 107(4):1559–1564.  https://doi.org/10.1073/pnas.0908540107 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Frank J (2016) Generalized single-particle cryo-EM--a historical perspective. Microscopy (Oxf) 65(1):3–8.  https://doi.org/10.1093/jmicro/dfv358 CrossRefGoogle Scholar
  33. Frank J, Ourmazd A (2016, May 1) Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM. Methods 100:61–67.  https://doi.org/10.1016/j.ymeth.2016.02.007 PubMedCrossRefGoogle Scholar
  34. Frank J, Wagenknecht T, McEwen BF, Marko M, Hsieh CE, Mannella CA (2002, April–May) Three-dimensional imaging of biological complexity. J Struct Biol 138(1-2):85–91PubMedCrossRefGoogle Scholar
  35. Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys J 77(3):1528–1539PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gambardella J, Trimarco B, Iaccarino G, Santulli G (2017) (in press) New insights in cardiac calcium handling and excitation-contraction coupling. Adv Exp Med Biol. https://doi.org/10.1007/5584_2017_106
  37. Gomez AC, Yamaguchi N (2014) Two regions of ryanodine receptor calcium channel are involved in Ca(2+)-dependent inactivation. Biochemistry 53(8):1373–1379.  https://doi.org/10.1021/bi401586h PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gomez AC, Holford TW, Yamaguchi N (2016) Malignant hyperthermia-associated mutations in the S2-S3 cytoplasmic loop of type 1 ryanodine receptor calcium channel impair calcium-dependent inactivation. Am J Physiol Cell Physiol 311(5):C749–C757.  https://doi.org/10.1152/ajpcell.00134.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. Elife 4:e06980PubMedPubMedCentralCrossRefGoogle Scholar
  40. Guo W et al (2016) The EF-hand Ca2+ binding domain is not required for cytosolic Ca2+ activation of the cardiac ryanodine receptor. J Biol Chem.  https://doi.org/10.1074/jbc.M115.693325
  41. Hakamata Y, Nakai J, Takeshima H, Imoto K (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312(2–3):229–235PubMedCrossRefGoogle Scholar
  42. Hamilton SL, Serysheva II (2009, February 13) Ryanodine receptor structure: progress and challenges. J Biol Chem 284(7):4047–4051.  https://doi.org/10.1074/jbc.R800054200. Epub 2008 Oct 16
  43. Harnick DJ, Jayaraman T, Ma Y, Mulieri P, Go LO, Marks AR (1995) The human type 1 inositol 1,4,5-trisphosphate receptor from T lymphocytes. Structure, localization, and tyrosine phosphorylation. J Biol Chem 270(6):2833–2840PubMedCrossRefGoogle Scholar
  44. Hille B (2001) Ion channels of excitable membranes, vol 507. Sinauer, SunderlandGoogle Scholar
  45. Huang F, Shan J, Reiken S, Wehrens XH, Marks AR (2006) Analysis of calstabin2 (FKBP12.6)-ryanodine receptor interactions: rescue of heart failure by calstabin2 in mice. Proc Natl Acad Sci U S A 103(9):3456–3461.  https://doi.org/10.1073/pnas.0511282103 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hwang JH, Zorzato F, Clarke NF, Treves S (2012) Mapping domains and mutations on the skeletal muscle ryanodine receptor channel. Trends Mol Med 18(11):644–657.  https://doi.org/10.1016/j.molmed.2012.09.006 PubMedCrossRefGoogle Scholar
  47. Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262(4):1740–1747PubMedGoogle Scholar
  48. Jiang D, Chen W, Wang R, Zhang L, Chen SR (2007, November 13) Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death. Proc Natl Acad Sci U S A 104(46):18309–18314Google Scholar
  49. Kimlicka L, Lau K, Tung CC, Van Petegem F (2013) Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface. Nat Commun 4:1506.  https://doi.org/10.1038/ncomms2501 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kushmerick MJ, Moerland TS, Wiseman RW (1992, August 15) Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc Natl Acad Sci U S A 89(16):7521–7525Google Scholar
  51. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2(11):a003996.  https://doi.org/10.1101/cshperspect.a003996 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Larach MG, Brandom BW, Allen GC, Gronert GA, Lehman EB (2014) Malignant hyperthermia deaths related to inadequate temperature monitoring, 2007–2012: a report from the North American malignant hyperthermia registry of the malignant hyperthermia association of the United States. Anesth Analg 119(6):1359–1366.  https://doi.org/10.1213/ane.0000000000000421 PubMedCrossRefGoogle Scholar
  53. Lau K, Van Petegem F (2014) Crystal structures of wild type and disease mutant forms of the ryanodine receptor SPRY2 domain. Nat Commun 5:5397.  https://doi.org/10.1038/ncomms6397 PubMedCrossRefGoogle Scholar
  54. Laver DR, Lenz GK, Lamb GD (2001) Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine. J Physiol 537(Pt 3):763–778PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lehnart SE, Huang F, Marx SO, Marks AR (2003) Immunophilins and coupled gating of ryanodine receptors. Cur Top Med Chem 3(12):1383–1391CrossRefGoogle Scholar
  56. Lehnart SE, Wehrens XH, Laitinen PJ, Reiken SR, Deng SX, Cheng Z, Landry DW, Kontula K, Swan H, Marks AR (2004) Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak. Circulation 109(25):3208–3214.  https://doi.org/10.1161/01.CIR.0000132472.98675.EC PubMedCrossRefGoogle Scholar
  57. Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123(1):25–35.  https://doi.org/10.1016/j.cell.2005.07.030 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118(6):2230–2245.  https://doi.org/10.1172/JCI35346 PubMedPubMedCentralGoogle Scholar
  59. Li X et al (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590PubMedPubMedCentralCrossRefGoogle Scholar
  60. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu Z, Zhang J, Wang R, Chen SRW, Wagenknecht T (2004) Location of divergent region 2 on the three-dimensional structure of cardiac muscle ryanodine receptor/calcium release channel. J Mol Biol 338:533–545PubMedCrossRefGoogle Scholar
  62. Liu X, Betzenhauser MJ, Reiken S, Meli AC, Xie W, Chen BX, Arancio O, Marks AR (2012) Role of leaky neuronal ryanodine receptors in stress-induced cognitive dysfunction. Cell 150(5):1055–1067.  https://doi.org/10.1016/j.cell.2012.06.052 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lobo PA, Van Petegem F (2009, November 11) Crystal structures of the N-terminal domains of cardiac and skeletal muscle ryanodine receptors: insights into disease mutations. Structure 17(11):1505–1514.  https://doi.org/10.1016/j.str.2009.08.016 PubMedCrossRefGoogle Scholar
  64. Lombardi A, Gambardella J, XL D, Sorriento D, Mauro M, Iaccarino G, Trimarco B, Santulli G (2017a, November 20) Sirolimus induces depletion of intracellular calcium stores and mitochondrial dysfunction in pancreatic beta cells. Sci Rep 7(1):15823. https://doi.org/10.1038/s41598-017-15283-y
  65. Lombardi A, Trimarco B, Iaccarino G, Santulli G (2017b, November 13) Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta-cell failure. Cell Commun Signal 15(1):47. https://doi.org/10.1186/s12964-017-0203-0
  66. Ludtke SJ, Serysheva II, Hamilton SL, Chiu W (2005, August) The pore structure of the closed RyR1 channel. Structure 13(8):1203–1211PubMedPubMedCentralCrossRefGoogle Scholar
  67. Maki T, Gruver EJ, Davidoff AJ, Izzo N, Toupin D, Colucci W, Marks AR, Marsh JD (1996) Regulation of calcium channel expression in neonatal myocytes by catecholamines. J Clin Invest 97(3):656–663.  https://doi.org/10.1172/JCI118462 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Marks AR (2003) Sirolimus for the prevention of in-stent restenosis in a coronary artery. New Engl J Med 349(14):1307–1309.  https://doi.org/10.1056/NEJMp038141 PubMedCrossRefGoogle Scholar
  69. Marks AR, Tempst P, Hwang KS, Taubman MB, Inui M, Chadwick C, Fleischer S, Nadal-Ginard B (1989) Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci U S A 86(22):8683–8687PubMedPubMedCentralCrossRefGoogle Scholar
  70. Marks AR, Priori S, Memmi M, Kontula K, Laitinen PJ (2002) Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J Cell Physiol 190(1):1–6.  https://doi.org/10.1002/jcp.10031 PubMedCrossRefGoogle Scholar
  71. Marx SO, Ondrias K, Marks AR (1998) Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 281(5378):818–821PubMedCrossRefGoogle Scholar
  72. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376PubMedCrossRefGoogle Scholar
  73. Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR (2001a) Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 88(11):1151–1158PubMedCrossRefGoogle Scholar
  74. Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N, Marks AR (2001b) Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol 153(4):699–708PubMedPubMedCentralCrossRefGoogle Scholar
  75. Matecki S, Dridi H, Jung B, Saint N, Reiken SR, Scheuermann V, Mrozek S, Santulli G, Umanskaya A, Petrof BJ, Jaber S, Marks AR, Lacampagne A (2016) Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation. Proc Natl Acad Sci U S A 113(32):9069–9074.  https://doi.org/10.1073/pnas.1609707113 PubMedPubMedCentralCrossRefGoogle Scholar
  76. McMullan G, Chen S, Henderson R, Faruqi AR (2009) Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109:1126–1143PubMedPubMedCentralCrossRefGoogle Scholar
  77. McMullan G, Faruqi AR, Clare D, Henderson R (2014) Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–163PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nakai J, Imagawa T, Hakamat Y, Shigekawa M, Takeshima H, Numa S (1990) Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBS Lett 271(1–2):169–177PubMedCrossRefGoogle Scholar
  79. Nakashima Y, Nishimura S, Maeda A, Barsoumian EL, Hakamata Y, Nakai J, Allen PD, Imoto K, Kita T (1997) Molecular cloning and characterization of a human brain ryanodine receptor. FEBS Lett 417(1):157–162PubMedCrossRefGoogle Scholar
  80. Nelson BR, Wu F, Liu Y, Anderson DM, McAnally J, Lin W, Cannon SC, Bassel-Duby R, Olson EN (2013) Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Proc Natl Acad Sci U S A 110(29):11881–11886.  https://doi.org/10.1073/pnas.1310571110 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nogales E (2016, January) The development of cryo-EM into a mainstream structural biology technique. Nat Methods 13(1):24–27PubMedPubMedCentralCrossRefGoogle Scholar
  82. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH (1990) Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265(23):13472–13483PubMedGoogle Scholar
  83. Paul-Pletzer K, Yamamoto T, Bhat MB, Ma J, Ikemoto N, Jimenez LS, Morimoto H, Williams PG, Parness J (2002) Identification of a dantrolene-binding sequence on the skeletal muscle ryanodine receptor. J Biol Chem 277(38):34918–34923.  https://doi.org/10.1074/jbc.M205487200 PubMedCrossRefGoogle Scholar
  84. Peng W et al (2016) Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 354:6310.  https://doi.org/10.1126/science.aah5324 Google Scholar
  85. Porta M, Zima AV, Nani A, Diaz-Sylvester PL, Copello JA, Ramos-Franco J, Blatter LA, Fill M (2011) Single ryanodine receptor channel basis of caffeine’s action on Ca2+ sparks. Biophys J 100(4):931–938.  https://doi.org/10.1016/j.bpj.2011.01.017 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Quane KA, Healy JM, Keating KE, Manning BM, Couch FJ, Palmucci LM, Doriguzzi C, Fagerlund TH, Berg K, Ording H et al (1993) Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Gen 5(1):51–55.  https://doi.org/10.1038/ng0993-51 CrossRefGoogle Scholar
  87. Radermacher M, Wagenknecht T, Grassucci R, Frank J, Inui M, Chadwick C, Fleischer S (1992, April) Cryo-EM of the native structure of the calcium release channel/ryanodine receptor from sarcoplasmic reticulum. Biophys J 61(4):936–940PubMedPubMedCentralCrossRefGoogle Scholar
  88. Radermacher M, Rao V, Grassucci R, Frank J, Timerman AP, Fleischer S, Wagenknecht T (1994a, October) Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle. J Cell Biol 127(2):411–423PubMedCrossRefGoogle Scholar
  89. Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325(6106):717–720.  https://doi.org/10.1038/325717a0 PubMedCrossRefGoogle Scholar
  90. Rosemblit N, Moschella MC, Ondriasova E, Gutstein DE, Ondrias K, Marks AR (1999) Intracellular calcium release channel expression during embryogenesis. Dev Biol 206(2):163–177PubMedCrossRefGoogle Scholar
  91. Rosenberg H, Davis M, James D, Pollock N, Stowell K (2007) Malignant hyperthermia. Orphanet J Rare Dis 2:21–21.  https://doi.org/10.1186/1750-1172-2-21 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rullman E, Andersson DC, Melin M, Reiken S, Mancini DM, Marks AR, Lund LH, Gustafsson T (2013) Modifications of skeletal muscle ryanodine receptor type 1 and exercise intolerance in heart failure. J Heart Lung Transplant 32(9):925–929.  https://doi.org/10.1016/j.healun.2013.06.026 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Saito A, Inui M, Radermacher M, Frank J, Fleischer SJ (1988, July) Ultrastructure of the calcium release channel of sarcoplasmic reticulum. Cell Biol 107(1):211–219CrossRefGoogle Scholar
  94. Samsò M, Wagenknecht T, Allen PD (2005, June) Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat Struct Mol Biol 12(6):539–544Google Scholar
  95. Samsó M, Feng W, Pessah IN, Allen PD (2009, April 14) Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol 7(4):e85. https://doi. org/10.1371/journal.pbio.1000085Google Scholar
  96. Santulli G (2015) microRNAs distinctively regulate vascular smooth muscle and endothelial cells: functional implications in angiogenesis, atherosclerosis, and in-stent restenosis. Adv Exp Med Biol 887:53–77.  https://doi.org/10.1007/978-3-319-22380-3_4 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Santulli G, Marks AR (2015) Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr Mol Pharmacol 8(2):206–222PubMedCrossRefGoogle Scholar
  98. Santulli G, Totary-Jain H (2013) Tailoring mTOR-based therapy: molecular evidence and clinical challenges. Pharmacogenomics 14(12):1517–1526.  https://doi.org/10.2217/pgs.13.143 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Santulli G, Wronska A, Uryu K, Diacovo TG, Gao M, Marx SO, Kitajewski J, Chilton JM, Akat KM, Tuschl T, Marks AR, Totary-Jain H (2014) A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J Clin Invest 124(9):4102–4114.  https://doi.org/10.1172/JCI76069 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Santulli G, Pagano G, Sardu C, Xie W, Reiken S, D’Ascia SL, Cannone M, Marziliano N, Trimarco B, Guise TA, Lacampagne A, Marks AR (2015a) Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J Clin Invest 125(5):1968–1978.  https://doi.org/10.1172/JCI79273 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Santulli G, Xie W, Reiken SR, Marks AR (2015b) Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A 112(36):11389–11394.  https://doi.org/10.1073/pnas.1513047112 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Santulli G, Lewis D, Marks AR (2017a) Physiology and pathophysiology of excitation–contraction coupling in skeletal muscle: the functional role of ryanodine receptor. J Muscle Res Cell Motil.  https://doi.org/10.1007/s10974-017-9470-z
  103. Santulli G, Nakashima R, Yuan Q, Marks AR (2017b) Intracellular calcium release channels: an update. J Physiol.  https://doi.org/10.1113/JP272781
  104. Scheres SH (2012, December) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180(3):519–530.  https://doi.org/10.1016/j.jsb.2012.09.006 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sewry CA, Muller C, Davis M, Dwyer JS, Dove J, Evans G, Schroder R, Furst D, Helliwell T, Laing N, Quinlivan RC (2002) The spectrum of pathology in central core disease. Neuromusc Disord NMD 12(10):930–938PubMedCrossRefGoogle Scholar
  106. Shan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, Wronska A, Dura M, Chen BX, Marks AR (2010a) Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest 120(12):4375–4387.  https://doi.org/10.1172/JCI37649 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shan J, Kushnir A, Betzenhauser MJ, Reiken S, Li J, Lehnart SE, Lindegger N, Mongillo M, Mohler PJ, Marks AR (2010b) Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice. J Clin Invest 120(12):4388–4398.  https://doi.org/10.1172/JCI32726 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sharma MR, Penczek P, Grassucci R, Xin HB, Fleischer S, Wagenknecht T (1998, July 17) Cryoelectron microscopy and image analysis of the cardiac ryanodine receptor. J Biol Chem 273(29):18429–18434PubMedCrossRefGoogle Scholar
  109. Sharma P, Ishiyama N, Nair U, Li W, Dong A, Miyake T, Wilson A, Ryan T, MacLennan DH, Kislinger T, Ikura M, Dhe-Paganon S, Gramolini AO (2012) Structural determination of the phosphorylation domain of the ryanodine receptor. FEBS J 279(20):3952–3964.  https://doi.org/10.1111/j.1742-4658.2012.08755.x PubMedPubMedCentralCrossRefGoogle Scholar
  110. Suetomi T, Yano M, Uchinoumi H, Fukuda M, Hino A, Ono M, Xu X, Tateishi H, Okuda S, Doi M, Kobayashi S, Ikeda Y, Yamamoto T, Ikemoto N, Matsuzaki M (2011) Mutation-linked defective interdomain interactions within ryanodine receptor cause aberrant Ca(2)(+)release leading to catecholaminergic polymorphic ventricular tachycardia. Circulation 124(6):682–694.  https://doi.org/10.1161/circulationaha.111.023259 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T et al (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339(6224):439–445.  https://doi.org/10.1038/339439a0 PubMedCrossRefGoogle Scholar
  112. Tateishi H, Yano M, Mochizuki M, Suetomi T, Ono M, Xu X, Uchinoumi H, Okuda S, Oda T, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2009) Defective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca2+ leak in failing hearts. Cardiovasc Res 81(3):536–545.  https://doi.org/10.1093/cvr/cvn303 PubMedCrossRefGoogle Scholar
  113. Timerman AP, Ogunbumni E, Freund E, Wiederrecht G, Marks AR, Fleischer S (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268(31):22992–22999PubMedGoogle Scholar
  114. Tung CC, Lobo PA, Kimlicka L, Van Petegem F (2010) The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468(7323):585–588.  https://doi.org/10.1038/nature09471 PubMedCrossRefGoogle Scholar
  115. Umanskaya A, Santulli G, Xie W, Andersson DC, Reiken SR, Marks AR (2014) Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci U S A 11(42):15250–15255.  https://doi.org/10.1073/pnas.1412754111 CrossRefGoogle Scholar
  116. Van Petegem F (2015) Ryanodine receptors: allosteric Ion channel giants. J Mol Biol 427(1):31–53. htpps://doi.org/10.1016/j.jmb.2014.08.004Google Scholar
  117. Van Petegem F (2016, October) How to open a ryanodine receptor. Cell Res 26(10):1073–1074PubMedPubMedCentralCrossRefGoogle Scholar
  118. Vest JA, Wehrens XH, Reiken SR, Lehnart SE, Dobrev D, Chandra P, Danilo P, Ravens U, Rosen MR, Marks AR (2005) Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111(16):2025–2032.  https://doi.org/10.1161/01.CIR.0000162461.67140.4C PubMedCrossRefGoogle Scholar
  119. Wagenknecht T, Grassucci R, Frank J, Saito A, Inui M, Fleischer S (1989, March 9) Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338(6211):167–170PubMedCrossRefGoogle Scholar
  120. Wagenknecht T, Radermacher M (1995, August 1) Three-dimensional architecture of the skeletal muscle ryanodine receptor. FEBS Lett 369(1):43–46, ReviewGoogle Scholar
  121. Wei R et al (2016) Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1. Cell Res 26:977–994PubMedPubMedCentralCrossRefGoogle Scholar
  122. Xie W, Santulli G, Guo X, Gao M, Chen BX, Marks AR (2013) Imaging atrial arrhythmic intracellular calcium in intact heart. J Mol Cell Cardiol 64:120–123.  https://doi.org/10.1016/j.yjmcc.2013.09.003 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW, Chen BX, Marks AR (2015) Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep 5:11427.  https://doi.org/10.1038/srep11427 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Xin HB, Timerman AP, Onoue H, Wiederrecht GJ, Fleischer S (1995) Affinity purification of the ryanodine receptor/calcium release channel from fast twitch skeletal muscle based on its tight association with FKBP12. Biochem Biophys Res Commun 214(1):263–270.  https://doi.org/10.1006/bbrc.1995.2283 PubMedCrossRefGoogle Scholar
  125. Xiong L, Zhang JZ, He R, Hamilton SL (2006) A Ca2+−binding domain in RyR1 that interacts with the calmodulin binding site and modulates channel activity. Biophys J 90(1):173–182.  https://doi.org/10.1529/biophysj.105.066092 PubMedCrossRefGoogle Scholar
  126. Yan Z, Bai X-C, Yan C, Wu J, Li Z, Xie T, Peng W, Yin C-C, Li X, Scheres SHW, Shi Y, Yan N (2015) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517(7532):50–55.  https://doi.org/10.1038/nature14063 PubMedCrossRefGoogle Scholar
  127. Yuan Q, Chen Z, Santulli G, Gu L, Yang ZG, Yuan ZQ, Zhao YT, Xin HB, Deng KY, Wang SQ, Ji G (2014) Functional role of Calstabin2 in age-related cardiac alterations. Sci Rep 4:7425.  https://doi.org/10.1038/srep07425 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Yuan Q, Yang J, Santulli G, Reiken SR, Wronska A, Kim MM, Osborne BW, Lacampagne A, Yin Y, Marks AR (2016) Maintenance of normal blood pressure is dependent on IP3R1-mediated regulation of eNOS. Proc Natl Acad Sci U S A 113(30):8532–8537.  https://doi.org/10.1073/pnas.1608859113 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yuchi Z, Lau K, Van Petegem F (2012) Disease mutations in the ryanodine receptor central region: crystal structures of a phosphorylation hot spot domain. Structure 20(7):1201–1211PubMedCrossRefGoogle Scholar
  130. Yuchi Z, Yuen SM, Lau K, Underhill AQ, Cornea RL, Fessenden JD, Van Petegem F (2015) Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant. Nat Commun 6:7947.  https://doi.org/10.1038/ncomms8947 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Zalk R, Clarke OB, des Georges A, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, Marks AR (2015, January 1) Structure of a mammalian ryanodine receptor. Nature 517(7532):44–49Google Scholar
  132. Zhang Y, Chen HS, Khanna VK, De Leon S, Phillips MS, Schappert K, Britt BA, Browell AK, MacLennan DH (1993) A mutation in the human ryanodine receptor gene associated with central core disease. Nat Gen 5(1):46–50.  https://doi.org/10.1038/ng0993-46 CrossRefGoogle Scholar
  133. Zhang L, Liu Y, Song F, Zheng H, Hu L, Lu H, Liu P, Hao X, Zhang W, Chen K (2011) Functional SNP in the microRNA-367 binding site in the 3’UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc Natl Acad Sci U S A 108(33):13653–13658.  https://doi.org/10.1073/pnas.1103360108 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhao F, Li P, Chen SR, Louis CF, Fruen BR (2001) Dantrolene inhibition of ryanodine receptor Ca2+ release channels molecular mechanism and isoform selectivity. J Pys Chem 276(17):13810–13816.  https://doi.org/10.1074/jbc.M006104200 Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Gaetano Santulli
    • 1
    • 2
  • Daniel Lewis
    • 3
  • Amedee des Georges
    • 4
    • 5
    • 6
  • Andrew R. Marks
    • 3
    • 7
  • Joachim Frank
    • 8
    • 9
  1. 1.The Wu Center for Molecular Cardiology, Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkUSA
  2. 2.The Wilf Family Cardiovascular Research Institute and the Einstein-Mount Sinai Diabetes Research Center, Department of MedicineAlbert Einstein College of Medicine – Montefiore University HospitalNew YorkUSA
  3. 3.Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUSA
  4. 4.Advanced Science Research Center at the Graduate Center of the City University of New YorkNew YorkUSA
  5. 5.Department of Chemistry & BiochemistryCity College of New YorkNew YorkUSA
  6. 6.Ph.D. Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUSA
  7. 7.Department of MedicineColumbia UniversityNew YorkUSA
  8. 8.Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA
  9. 9.Department of Biological SciencesColumbia UniversityNew YorkUSA

Personalised recommendations