Advertisement

The Relationship Between Bioreactor Design and Feedstock for Optimal Biogas Production

  • Christiane HerrmannEmail author
  • Patrice Ramm
  • Jerry D. Murphy
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter presents an overview of bioreactor configurations for the production of biogas with an investigation of different enhancement strategies for the conversion of organic biomass to methane. Initially anaerobic digestion (AD) microbial processes are introduced. Subsequently, optimal bioreactor design is examined. The AD process is capable of converting a large variety of feedstocks to carbon dioxide and methane. The performance of microbial conversion is closely linked to feedstock characteristics. As such bioreactor concepts are explored with reference to these feedstock characteristics, and are categorized as either: liquid and low solid content AD; or high-solid AD. Enhancement strategies include the enrichment of active biomass within the reactor through immobilization of microbes, separation of process stages, solid-liquid phase separation, improvement of mass transfer, and conversion of hydrogen and carbon dioxide to methane. Recent reactor developments are considered in each section.

Keywords

Biogas Methane Liquid anaerobic digestion High-solid anaerobic digestion Solid-state Power-to-Gas Bioreactor design Biomass immobilization 

Nomenclature

ABR

Anaerobic baffled reactor

ACR

Anaerobic contact reactor

AD

Anaerobic digestion

AFBR

Anaerobic fluidized bed reactor

AFR

Anaerobic filter reactor

AHR

Anaerobic hybrid reactor

AMBR

Anaerobic membrane bioreactor

APFR

Anaerobic plug-flow reactor

ASBR

Anaerobic sequencing batch reactor

COD

Chemical oxygen demand

CSTR

Continuously stirred tank reactor

EGSB

Expanded granular sludge blanket

FBDR

Fixed bed disc reactor

FBR

Floating bed reactor

HIT

Half-submerged two-phase reactor

HRT

Hydraulic retention time

ICR

Internal circulation reactor

LBR

Leach bed reactor

ME-ADR

Microbial electrolysis anaerobic digestion reactor

OFMSW

Organic fraction of municipal solid waste

OLR

Organic loading rate

Q

Daily added volume of feedstock

SRT

Solid retention time

SSSAR

Spiral symmetry stream anaerobic reactor

TBR

Trickle-bed reactor

TPAD

Temperature phased anaerobic digestion

TS

Total solids

UASB

Up-flow anaerobic sludge blanket

UASS

Up-flow anaerobic solid state reactor

VFA

Volatile fatty acid

VR

Working volume of the reactor

VS

Volatile solids

VSS

Volatile suspended solids

References

  1. 1.
    Gallert C, Winter J, Svardal K (2015) Grundlagen anaerober Prozesse. In: Rosenwinkel KH, Kroiss H, Dichtl N, Seyfried CF, Weiland P (eds) Anaerobtechnik, 3rd edn. Springer Vieweg, Berlin Heidelberg, Germany, pp 19–79CrossRefGoogle Scholar
  2. 2.
    Karthikeyan OP, Visvanathan C (2013) Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Biotechnol 12(3):257–284CrossRefGoogle Scholar
  3. 3.
    Weiland P (2001) Grundlagen der Methangärung - Biologie and Substrate. VDI-Tagung “Biogas als regenerative Energie—Stand and Perspektiven”. VDI-Berichte Nr. 1620, Hannover, Germany, 19–20 June 2001, pp 19–32Google Scholar
  4. 4.
    Yu Z, Morrison M, Schanbacher FL (2010) Production and utilization of methane biogas as renewable fuel. In: Vertés AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, Chichester, United Kingdom, pp 403–433Google Scholar
  5. 5.
    Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860CrossRefGoogle Scholar
  6. 6.
    Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3(6):700–714CrossRefGoogle Scholar
  7. 7.
    Theuerl S, Kohrs F, Benndorf D, Maus I, Wibberg D, Schlüter A, Kausmann R, Heiermann M, Rapp E, Reichl U, Pühler A, Klocke M (2015) Community shifts in a well-operating agricultural biogas plant: how process variations are handled by the microbiome. Appl Microbiol Biotechnol 99(18):7791–7803CrossRefGoogle Scholar
  8. 8.
    Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111CrossRefGoogle Scholar
  9. 9.
    Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555CrossRefGoogle Scholar
  10. 10.
    Ge X, Xu F, Li Y (2016) Solid-state anaerobic digestion of lignocellulosic biomass: recent progress and perspectives. Bioresour Technol 205:239–249CrossRefGoogle Scholar
  11. 11.
    Lv W, Schanbacher FL, Yu Z (2010) Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes. Bioresour Technol 101(24):9409–9414CrossRefGoogle Scholar
  12. 12.
    Angelidaki I, Ahring BK (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res 28(3):727–731CrossRefGoogle Scholar
  13. 13.
    Dhaked RK, Singh P, Singh L (2010) Biomethanation under psychrophilic conditions. Waste Manage 30(12):2490–2496CrossRefGoogle Scholar
  14. 14.
    Lee M, Hidaka T, Tsuno H (2009) Two-phased hyperthermophilic anaerobic co-digestion of waste activated sludge with kitchen garbage. J Biosci Bioeng 108(5):408–413CrossRefGoogle Scholar
  15. 15.
    Nges IA, Wang B, Cui Z, Liu J (2015) Digestate liquor recycle in minimal nutrients-supplemented anaerobic digestion of wheat straw. Biochem Eng J 94:106–114CrossRefGoogle Scholar
  16. 16.
    Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res 33(7):1559–1578CrossRefGoogle Scholar
  17. 17.
    Jacob Guneratnam A, Ahern E, Fitzgerald J, Jackson S, Xia A, Dobson A, Murphy JD (2017) Study of the performance of a thermophilic biological methanation system. Bioresour Technol 225:308–315CrossRefGoogle Scholar
  18. 18.
    Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186CrossRefGoogle Scholar
  19. 19.
    Brown D, Shi J, Li Y (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386CrossRefGoogle Scholar
  20. 20.
    Fagbohungbe MO, Dodd IC, Herbert BMJ, Li H, Ricketts L, Semple KT (2015) High solid anaerobic digestion: operational challenges and possibilities. Environ Technol Innov 4:268–284CrossRefGoogle Scholar
  21. 21.
    Hinken L, Austermann-Haun U, Meyer H, Urban I (2015) Anaerobe Abwasserbehandlung zur Kohlenstoffelimination. In: Rosenwinkel KH, Kroiss H, Dichtl N, Seyfried CF, Weiland P (eds) Anaerobtechnik, 3rd edn. Springer Vieweg, Berlin Heidelberg, Germany, pp 283–356CrossRefGoogle Scholar
  22. 22.
    Cavinato C, Bolzonella D, Pavan P, Fatone F, Cecchi F (2013) Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew Energy 55:260–265CrossRefGoogle Scholar
  23. 23.
    Gemmeke B, Rieger C, Weiland P (2009) Biogas-Messprogramm II. 61 Biogasanlagen im Vergleich. Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Gülzow, GermanyGoogle Scholar
  24. 24.
    Hamdi M, Garcia JL (1991) Comparison between anaerobic filter and anaerobic contact process for fermented olive mill wastewaters. Bioresour Technol 38(1):23–29CrossRefGoogle Scholar
  25. 25.
    Şentürk E, İnce M, Onkal Engin G (2010) Kinetic evaluation and performance of a mesophilic anaerobic contact reactor treating medium-strength food-processing wastewater. Bioresour Technol 101(11):3970–3977CrossRefGoogle Scholar
  26. 26.
    Shao X, Peng D, Teng Z, Ju X (2008) Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresour Technol 99(8):3182–3186CrossRefGoogle Scholar
  27. 27.
    Timur H, Özturk I (1999) Anaerobic sequencing batch reactor treatment of landfill leachate. Water Res 33(15):3225–3230CrossRefGoogle Scholar
  28. 28.
    España-Gamboa EI, Mijangos-Cortés JO, Hernández-Zárate G, Maldonado JAD, Alzate-Gaviria LM (2012) Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor. Biotechnol Biofuels 5(1):82–91CrossRefGoogle Scholar
  29. 29.
    Tartakovsky B, Lebrun FM, Guiot SR (2015) High-rate biomethane production from microalgal biomass in a UASB reactor. Algal Res 7:86–91CrossRefGoogle Scholar
  30. 30.
    Liu J, Zhong J, Wang Y, Liu Q, Qian G, Zhong L, Guo R, Zhang P, Xu ZP (2010) Effective bio-treatment of fresh leachate from pretreated municipal solid waste in an expanded granular sludge bed bioreactor. Bioresour Technol 101(5):1447–1452CrossRefGoogle Scholar
  31. 31.
    Luo G, Li J, Li Y, Wang Z, Li WT, Li AM (2016) Performance, kinetics behaviors and microbial community of internal circulation anaerobic reactor treating wastewater with high organic loading rate: role of external hydraulic circulation. Bioresour Technol 222:470–477CrossRefGoogle Scholar
  32. 32.
    Wang J, Xu W, Yan J, Yu J (2014) Study on the flow characteristics and the wastewater treatment performance in modified internal circulation reactor. Chemosphere 117:631–637CrossRefGoogle Scholar
  33. 33.
    Pirsaheb M, Rostamifar M, Mansouri AM, Zinatizadeh AAL, Sharafi K (2015) Performance of an anaerobic baffled reactor (ABR) treating high strength baker’s yeast manufacturing wastewater. J Taiwan Inst Chem Eng 47:137–148CrossRefGoogle Scholar
  34. 34.
    Bodkhe SY (2009) A modified anaerobic baffled reactor for municipal wastewater treatment. J Environ Manage 90(8):2488–2493CrossRefGoogle Scholar
  35. 35.
    Sanchez E, Montalvo S, Travieso L, Rodriguez X (1995) Anaerobic digestion of sewage sludge in an anaerobic fixed bed digester. Biomass Bioenergy 9(6):493–495CrossRefGoogle Scholar
  36. 36.
    Omil F, Garrido JM, Arrojo B, Méndez R (2003) Anaerobic filter reactor performance for the treatment of complex dairy wastewater at industrial scale. Water Res 37(17):4099–4108CrossRefGoogle Scholar
  37. 37.
    Fernández N, Montalvo S, Borja R, Guerrero L, Sánchez E, Cortés I, Colmenarejo MF, Travieso L, Raposo F (2008) Performance evaluation of an anaerobic fluidized bed reactor with natural zeolite as support material when treating high-strength distillery wastewater. Renew Energy 33(11):2458–2466CrossRefGoogle Scholar
  38. 38.
    Wang Z, Kim M, Nakhla G, Zhu J (2016) Anaerobic fluidized bed digestion of primary and thickened waste activated sludges. Chem Eng J 284:620–629CrossRefGoogle Scholar
  39. 39.
    Demirer GN, Chen S (2005) Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem 40(11):3542–3549CrossRefGoogle Scholar
  40. 40.
    Aslanzadeh S, Rajendran K, Taherzadeh MJ (2014) A comparative study between single- and two-stage anaerobic digestion processes: effects of organic loading rate and hydraulic retention time. Int Biodeterior Biodegrad 95:181–188CrossRefGoogle Scholar
  41. 41.
    Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour Technol 102(9):5353–5360CrossRefGoogle Scholar
  42. 42.
    Mei X, Wang Z, Miao Y, Wu Z (2017) A pilot-scale anaerobic membrane bioreactor under short hydraulic retention time for municipal wastewater treatment: performance and microbial community identification. J Water Reuse Desalin (in press)CrossRefGoogle Scholar
  43. 43.
    Sunil Kumar G, Gupta SK, Singh G (2007) Biodegradation of distillery spent wash in anaerobic hybrid reactor. Water Res 41(4):721–730CrossRefGoogle Scholar
  44. 44.
    Azbar N, Tutuk F, Keskin T (2009) Biodegradation performance of an anaerobic hybrid reactor treating olive mill effluent under various organic loading rates. Int Biodeterior Biodegrad 63(6):690–698CrossRefGoogle Scholar
  45. 45.
    Chen X, Dai R, Ni S, Luo Y, Ma P, Xiang X, Li G (2016) Super-high-rate performance and its mechanisms of a spiral symmetry stream anaerobic bioreactor. Chem Eng J 295:237–244CrossRefGoogle Scholar
  46. 46.
    Terboven C, Ramm P, Herrmann C (2017) Demand-driven biogas production from sugar beet silage in a novel fixed bed disc reactor under mesophilic and thermophilic conditions. Bioresour Technol 241:582–592CrossRefGoogle Scholar
  47. 47.
    Liu W, Cai W, Guo Z, Wang L, Yang C, Varrone C, Wang A (2016) Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production. Renew Energy 91:334–339CrossRefGoogle Scholar
  48. 48.
    Tartakovsky B, Mehta P, Bourque JS, Guiot SR (2011) Electrolysis-enhanced anaerobic digestion of wastewater. Bioresour Technol 102(10):5685–5691CrossRefGoogle Scholar
  49. 49.
    Murphy JD, Thamsiriroj T (2013) Fundamental science and engineering of the anaerobic digestion process for biogas production. In: Wellinger A, Murphy J, Baxter D (eds) The biogas handbook. Woodhead Publishing, pp 104–130CrossRefGoogle Scholar
  50. 50.
    Ramm P, Jost C, Neitmann E, Sohling U, Menhorn O, Weinberger K, Mumme J, Linke B (2014) Magnetic biofilm carriers: the use of novel magnetic foam glass particles in anaerobic digestion of sugar beet silage. J Renew Energy 10:68–78Google Scholar
  51. 51.
    Morgenroth E, Wilderer PA (1998) Sequencing batch reactor technology: concepts, design and experiences (Abridged). Water Environ J 12(5):314–320CrossRefGoogle Scholar
  52. 52.
    Shizas I, Bagley DM (2002) Improving anaerobic sequencing batch reactor performance by modifying operational parameters. Water Res 36(1):363–367CrossRefGoogle Scholar
  53. 53.
    Zaiat M, Rodrigues JAD, Ratusznei SM, de Camargo EFM, Borzani W (2001) Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. Appl Microbiol Biotechnol 55(1):29–35CrossRefGoogle Scholar
  54. 54.
    Tiwari MK, Guha S, Harendranath CS, Tripathi S (2006) Influence of extrinsic factors on granulation in UASB reactor. Appl Microbiol Biotechnol 71(2):145–154CrossRefGoogle Scholar
  55. 55.
    Rajeshwari KV, Balakrishnan M, Kansal A, Lata K, Kishore VVN (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew Sustain Energy Rev 4(2):135–156CrossRefGoogle Scholar
  56. 56.
    Langer S, Schropp D, Bengelsdorf FR, Othman M, Kazda M (2014) Dynamics of biofilm formation during anaerobic digestion of organic waste. Anaerobe 29:44–51CrossRefGoogle Scholar
  57. 57.
    Budzianowski WM (2016) A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renew Sustain Energy Rev 54:1148–1171CrossRefGoogle Scholar
  58. 58.
    Demirel B, Yenigün O (2002) Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol 77(7):743–755CrossRefGoogle Scholar
  59. 59.
    Lindner J, Zielonka S, Oechsner H, Lemmer A (2016) Is the continuous two-stage anaerobic digestion process well suited for all substrates? Bioresour Technol 200:470–476CrossRefGoogle Scholar
  60. 60.
    Lin H, Peng W, Zhang M, Chen J, Hong H, Zhang Y (2013) A review on anaerobic membrane bioreactors: applications, membrane fouling and future perspectives. Desalination 314:169–188CrossRefGoogle Scholar
  61. 61.
    Ramakrishnan A, Surampalli RY (2013) Performance of anaerobic hybrid reactors for the treatment of complex phenolic wastewaters with biogas recirculation. Bioresour Technol 129:26–32CrossRefGoogle Scholar
  62. 62.
    Buyukkamaci N, Filibeli A (2004) Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochem 39(11):1491–1494CrossRefGoogle Scholar
  63. 63.
    O’Shea R, Kilgallon I, Wall D, Murphy JD (2016) Quantification and location of a renewable gas industry based on digestion of wastes in Ireland. Appl Energy 175:229–239CrossRefGoogle Scholar
  64. 64.
    Geppert F, Liu D, van Eerten-Jansen M, Weidner E, Buisman C, ter Heijne A (2016) Bioelectrochemical power-to-gas: state of the art and future perspectives. Trends Biotechnol 34(11):879–894CrossRefGoogle Scholar
  65. 65.
    Bo T, Zhu X, Zhang L, Tao Y, He X, Li D, Yan Z (2014) A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem Commun 45:67–70CrossRefGoogle Scholar
  66. 66.
    De Vrieze J, Gildemyn S, Arends JBA, Vanwonterghem I, Verbeken K, Boon N, Verstraete W, Tyson GW, Hennebel T, Rabaey K (2014) Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res 54:211–221CrossRefGoogle Scholar
  67. 67.
    Cai W, Han T, Guo Z, Varrone C, Wang A, Liu W (2016) Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis. Bioresour Technol 208:13–18CrossRefGoogle Scholar
  68. 68.
    Abbassi-Guendouz A, Brockmann D, Trably E, Dumas C, Delgenès JP, Steyer JP, Escudié R (2012) Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 111:55–61CrossRefGoogle Scholar
  69. 69.
    Fernández J, Pérez M, Romero LI (2010) Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: influence of initial total solid concentration. Bioresour Technol 101(16):6322–6328CrossRefGoogle Scholar
  70. 70.
    Le Hyaric R, Benbelkacem H, Bollon J, Bayard R, Escudié R, Buffière P (2012) Influence of moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate. J Chem Technol Biot 87(7):1032–1035CrossRefGoogle Scholar
  71. 71.
    Bollon J, Benbelkacem H, Gourdon R, Buffière P (2013) Measurement of diffusion coefficients in dry anaerobic digestion media. Chem Eng Sci 89:115–119CrossRefGoogle Scholar
  72. 72.
    Motte JC, Escudié R, Bernet N, Delgenes JP, Steyer JP, Dumas C (2013) Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion. Bioresour Technol 144:141–148CrossRefGoogle Scholar
  73. 73.
    Kusch S, Oechsner H, Jungbluth T (2008) Biogas production with horse dung in solid-phase digestion systems. Bioresour Technol 99(5):1280–1292CrossRefGoogle Scholar
  74. 74.
    Patinvoh RJ, Kalantar Mehrjerdi A, Sárvári Horváth I, Taherzadeh MJ (2017) Dry fermentation of manure with straw in continuous plug flow reactor: reactor development and process stability at different loading rates. Bioresour Technol 224:197–205CrossRefGoogle Scholar
  75. 75.
    Lehtomäki A, Huttunen S, Lehtinen TM, Rintala JA (2008) Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour Technol 99(8):3267–3278CrossRefGoogle Scholar
  76. 76.
    Xing W, Chen X, Zuo J, Wang C, Lin J, Wang K (2014) A half-submerged integrated two-phase anaerobic reactor for agricultural solid waste codigestion. Biochem Eng J 88:19–25CrossRefGoogle Scholar
  77. 77.
    Mumme J, Linke B, Tölle R (2010) Novel upflow anaerobic solid-state (UASS) reactor. Bioresour Technol 101(2):592–599CrossRefGoogle Scholar
  78. 78.
    Pohl M, Mumme J, Heeg K, Nettmann E (2012) Thermo- and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresour Technol 124:321–327CrossRefGoogle Scholar
  79. 79.
    Linke B, Rodríguez-Abalde Á, Jost C, Krieg A (2015) Performance of a novel two-phase continuously fed leach bed reactor for demand-based biogas production from maize silage. Bioresour Technol 177:34–40CrossRefGoogle Scholar
  80. 80.
    Chen Y, Rößler B, Zielonka S, Lemmer A, Wonneberger AM, Jungbluth T (2014) The pressure effects on two-phase anaerobic digestion. Appl Energy 116:409–415CrossRefGoogle Scholar
  81. 81.
    Merkle W, Baer K, Lindner J, Zielonka S, Ortloff F, Graf F, Kolb T, Jungbluth T, Lemmer A (2017) Influence of pressures up to 50 bar on two-stage anaerobic digestion. Bioresour Technol 232:72–78CrossRefGoogle Scholar
  82. 82.
    Weiland P, Fricke K, Heußner C, Hüttner A, Turk T (2015) Anlagen zur Erzeugung von Bioenergie. In: Rosenwinkel KH, Kroiss H, Dichtl N, Seyfried CF, Weiland P (eds) Anaerobtechnik, 3rd edn. Springer Vieweg, Berlin Heidelberg, Germany, pp 603–740CrossRefGoogle Scholar
  83. 83.
    Wall D, Allen E, O’Shea R, O’Kiely P, Murphy JD (2016) Investigating two-phase digestion of grass silage for demand-driven biogas applications: effect of particle size and rumen fluid addition. Renew Energy 86:1215–1223CrossRefGoogle Scholar
  84. 84.
    Browne JD, Allen E, Murphy JD (2013) Improving hydrolysis of food waste in a leach bed reactor. Waste Manage 33(11):2470–2477CrossRefGoogle Scholar
  85. 85.
    Meng Y, Jost C, Mumme J, Wang K, Linke B (2016) An analysis of single and two stage, mesophilic and thermophilic high rate systems for anaerobic digestion of corn stalk. Chem Eng J 288:79–86CrossRefGoogle Scholar
  86. 86.
    Nizami AS, Murphy JD (2011) Optimizing the operation of a two-phase anaerobic digestion system digesting grass silage. Environ Sci Technol 45(17):7561–7569CrossRefGoogle Scholar
  87. 87.
    Hahn H, Krautkremer B, Hartmann K, Wachendorf M (2014) Review of concepts for a demand-driven biogas supply for flexible power generation. Renew Sustain Energy Rev 29:383–393CrossRefGoogle Scholar
  88. 88.
    Zielonka S, Lemmer A, Oechsner H, Jungbluth T (2009) Vergärung von Grassilage in einer zwei-phasigen prozessführung. Bornimer Agrartechnische Ber 68:140–152Google Scholar
  89. 89.
    Terboven C, Herrmann C, Lehmann M, Weckenmann J (2017) Biogasgewinnung aus Herbstlaub – Methanpotenziale und verfahrenstechnische Ansätze zur Prozessoptimierung. In: Biogas in der Landwirtschaft - Stand und Perspektiven, FNR/KTBL congress, Bayreuth, Germany, 26–27 September 2017Google Scholar
  90. 90.
    Lemmer A, Chen Y, Wonneberger AM, Graf F, Reimert R (2015) Integration of a water scrubbing technique and two-stage pressurized anaerobic digestion in one process. Energies 8(3):2048–2065CrossRefGoogle Scholar
  91. 91.
    Persson T, Murphy J, Jannasch AK, Ahern E, Liebetrau J, Trommler M, Toyama J (2014) A perspective on the potential role of biogas in smart energy grids. IEA Bioenergy, Technical brochure, 27 pGoogle Scholar
  92. 92.
    Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390CrossRefGoogle Scholar
  93. 93.
    Lecker B, Illi L, Lemmer A, Oechsner H (2017) Biological hydrogen methanation—a review. Bioresour Technol 245:1220–1228CrossRefGoogle Scholar
  94. 94.
    Martin MR, Fornero JJ, Stark R, Mets L, Angenen LT (2013) A Single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2. Archaea 2013:11 p, Article ID 157529Google Scholar
  95. 95.
    Nishimura N, Kitaura S, Mimura A, Takahara Y (1992) Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions. J Ferment Bioeng 73(6):477–480CrossRefGoogle Scholar
  96. 96.
    Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with methanothermobacter marburgensis. Appl Energy 132:155–162CrossRefGoogle Scholar
  97. 97.
    Alitalo A, Niskanen M, Aura E (2015) Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor. Bioresour Technol 196:600–605CrossRefGoogle Scholar
  98. 98.
    Burkhardt M, Koschack T, Busch G (2015) Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system. Bioresour Technol 178:330–333CrossRefGoogle Scholar
  99. 99.
    Strübing D, Huber B, Lebuhn M, Drewes JE, Koch K (2017) High performance biological methanation in a thermophilic anaerobic trickle bed reactor. Bioresour Technol 245:1176–1183CrossRefGoogle Scholar
  100. 100.
    Savvas S, Donnelly J, Patterson T, Chong ZS, Esteves SR (2017) Biological methanation of CO2 in a novel biofilm plug-flow reactor: a high rate and low parasitic energy process. Appl Energy 202:238–247CrossRefGoogle Scholar
  101. 101.
    Luo G, Angelidaki I (2013) Hollow fiber membrane based H2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor. Appl Microbiol Biotechnol 97(8):3739–3744CrossRefGoogle Scholar
  102. 102.
    Luo G, Johansson S, Boe K, Xie L, Zhou Q, Angelidaki I (2012) Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol Bioeng 109(4):1088–1094CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Christiane Herrmann
    • 1
    Email author
  • Patrice Ramm
    • 1
  • Jerry D. Murphy
    • 2
  1. 1.Department of BioengineeringLeibniz Institute for Agricultural Engineering and Bioeconomy (ATB)PotsdamGermany
  2. 2.MaREI Centre, Environmental Research Institute, School of EngineeringUniversity College CorkCorkIreland

Personalised recommendations