Skip to main content

Regulating Ecosystem Services Delivered in Agroforestry Systems

  • Chapter
  • First Online:
Agroforestry

Abstract

Regulating ecosystem services are the benefits obtained from the regulation of ecosystem processes. The multifunctional role of trees makes agroforestry interventions ideal management practices to supply a variety of regulating ecosystem services. This chapter reviews seven regulating ecosystem services (carbon sequestration, soil fertility enhancement, prevention of soil erosion, water regulation, wind regulation, pest regulation, and pollination) for which research in tropical and/or temperate regions have shown evidence that introduction of agroforestry practices on crop or pasture land can provide significant benefits. In each case, we provide a general description of the ecosystem service and evidence of whether this service increases or not by agroforestry practices and discuss the factors that affect the provision of the ecosystem service in agroforestry. We also discuss the multifunctionality with synergies and trade-offs among regulating ecosystem services and provide suggestions on how modifications of tree-based systems may increase ecosystem service provision. Generally, agroforestry increases delivery of regulating ecosystem services within the landscape, leading to increased growth and yields from crops and animals. However, there are situations where agroforestry may lead to a reduction in certain ecosystem services, leading to trade-offs. Trade-offs among regulating services and between regulating services and other ecosystem services are, for example, brought about by competition for water and other resources and increases in certain pests. We discuss how agroforestry practices can be designed in a way that reduces ecosystem service trade-offs while increasing the productivity of crops and livestock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinnifesi FK, Makumba W, Kwesiga F (2006) Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Exp Agric 42:441–457

    Article  Google Scholar 

  • Anderson SH, Udawatta RP, Seobi T, Garrett HE (2009) Soil water content and infiltration in agroforestry buffer strips. Agrofor Syst 75:5–16

    Article  Google Scholar 

  • Angima SD, Stott DE, O’Neill MK, Ong CK, Weesies GA (2002) Use of calliandra-Napier grass contour hedges to control erosion in Central Kenya. Agric Ecosyst Environ 91:15–23

    Article  Google Scholar 

  • Avelino J, Romero-GuardiĂ¡ A, Cruz-Cuellar HF, DeClerck FAJ (2012) Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol Appl 22:584–596

    Article  PubMed  Google Scholar 

  • Aweto AO, Iyanda AO (2003) Effects of Newbouldia laevis on soil subjected to shifting cultivation in the Ibadan area, Southwestern Nigeria. L Degrad Dev 14:51–56

    Article  Google Scholar 

  • Barrios E, Buresh RJ, Kwesiga F, Sprent JI (1997) Light fraction soil organic matter and available nitrogen following trees and maize. Soil Sci Soc Am J 61:826–831

    Article  CAS  Google Scholar 

  • Bayala J, Teklehaimanot Z, Ouedraogo SJ (2002) Millet production under pruned tree crowns in a parkland system in Burkina Faso. Agrofor Syst 54:203–214

    Article  Google Scholar 

  • Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    Article  Google Scholar 

  • Benegas L, Ilstedt U, Roupsard O, Jones J, Malmer A (2014) Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in Central America. Agric Ecosyst Environ 183:185–196

    Article  Google Scholar 

  • Benzarti J (1998) Temperature and water-use efficiency by lucerne (Medicago sativa) sheltered by a tree windbreak in Tunisia. Agrofor Syst 43:95–108

    Article  Google Scholar 

  • Boffa JM, Taonda SJB, Dickey JB, Knudson DM (2000) Field-scale influence of karite (Vitellaria paradoxa) on sorghum production in the Sudan zone of Burkina Faso. Agrofor Syst 49:153–175

    Article  Google Scholar 

  • Boreux V, Kushalappa CG, Vaast P, Ghazoul J (2013) Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems. PNAS 110:8387–8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandle JR, Hodges L, Zhou XH (2004) Windbreaks in North American agricultural systems. Agrofor Syst 61:65–78

    Google Scholar 

  • Cannavo P, Sansoulet J, Harmand J-M, Siles P, Dreyer E, Vaast P (2011) Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agric Ecosyst Environ 140:1–13

    Article  Google Scholar 

  • Cannell MGR, Van Noordwijk M, Ong CK (1996) The central agroforestry hypothesis: the trees must acquire resources that the crop would not otherwise acquire. Agrofor Syst 34:27–31

    Article  Google Scholar 

  • Chirwa TS, Mafongoya PL, Mbewe DNM, Chishala BH (2004) Changes in soil properties and their effects on maize productivity following Sesbania sesban and Cajanus cajan improved fallow systems in Eastern Zambia. Biol Fertil Soils 40:20–27

    Article  Google Scholar 

  • Daghela Bisseleua H, Fotio D, Yede MAD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in west Africa. PLoS One 8(3):e56115

    Article  PubMed  PubMed Central  Google Scholar 

  • Desaeger J, Rao MR (2000) Parasitic nematode populations in natural fallows and improved cover crops and their effects on subsequent crops in Kenya. Field Crop Res 65:41–56

    Article  Google Scholar 

  • DiakhatĂ© S, Villenave C, Diallo NH, Ba AO, Djigal D, Masse D, Sembene PM, Chapuis-Lardy L (2013) The influence of a shrub-based intercropping system on the soil nematofauna when growing millet in Senegal. Eur J Soil Biol 57:35–41

    Article  Google Scholar 

  • El Tahir BA, Ahmed DM, Ardö J, Graafar AM, Salih AA (2009) Changes in soil properties following conversion of Acacia senegal plantation to other land management systems in North Kordofan State Sudan. J Arid Environ 73:499–505

    Google Scholar 

  • Gacheru E, Rao MR (2001) Managing Striga infestation on maize using organic and inorganic nutrient sources in Western Kenya. Int J Pest Manag 47:233–239

    Article  Google Scholar 

  • Gacheru E, Rao MR (2005) The potential of planted shrub fallows to combat Striga infestation on maize. Int J Pest Manag 51:91–100

    Article  Google Scholar 

  • Gras P, Tscharntke T, Maas B, Tjoa A, Hafsah A, Clough Y (2016) How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry. J Appl Ecol 53:953–963

    Article  Google Scholar 

  • Gupta N, Kukal SS, Bawa SS, Dhaliwal GS (2009) Soil organic carbon and aggregation under poplar based agroforestry system in relation to tree age and soil type. Agrofor Syst 76:27–35

    Article  Google Scholar 

  • Harrison PA, Berry PM, Simpson G, Haslett JR, Bicharska M, Bucur M, Dunford R, Egoh B, Garcia-Llorente M, Geamănă N, Geertsema W, Lommelen E, Meiresonne L, Turkelboom F (2014) Linkages between biodiversity attributes and ecosystem services: a systematic review. Ecosyst Serv 9:191–203

    Article  Google Scholar 

  • Hoehn P, Steffan-Dewenter I, Tscharntke T (2010) Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodivers Conserv 19:2189–2200

    Article  Google Scholar 

  • Ilstedt U, Malmer A, Verbeeten E, Murdiyarso D (2007) The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. For Ecol Manag 251:45–51

    Article  Google Scholar 

  • IPCC (2006) Volume 4: agriculture, forestry and other land use. In: 2006 IPCC guidelines for national greenhouse gas inventories

    Google Scholar 

  • Jackson NA, Wallace JS (1999) Soil evaporation measurements in an agroforestry system in Kenya. Agric For Meteorol 94:203–215

    Article  Google Scholar 

  • Jackson NA, Wallace JS, Ong CK (2000) Tree pruning as a means of controlling water use in an agroforestry system in Kenya. For Ecol Manag 126:133–148

    Article  Google Scholar 

  • Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling H-M, Borgemeister C (2009) Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS One 4(8):e6487

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaramillo J, Setamou M, Muchugu E, Chabi-Olaye A, Jaramillo A, Mukabana J, Maina J, Gatharan S, Borgemeister C (2013) Climate change or urbanization? Impacts on a traditional coffee production system in East Africa over the last 80 years. PLoS One 8:e51815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MD, Levy NJ, Kellermann JL, Robinson DE (2009) Effects of shade and bird exclusion on arthropods and leaf damage on coffee farms in Jamaica’s Blue Mountains. Agrofor Syst 76:139–148

    Article  Google Scholar 

  • Jonsson K, Ong CK, Odongo JCW (1999) Influence of scattered NĂ©rĂ© and KaritĂ© trees on microclimate, soil fertility and millet yield in Burkina Faso 1999. Exp Agric 35:39–53

    Article  Google Scholar 

  • Jonsson M, Raphael IA, Ekbom B, Kyamanywa S, Karungi-Tumutegyereize J (2015) Contrasting effects of shade level and altitude on two important coffee pests. J Pest Sci 88:281–287

    Article  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10

    Article  Google Scholar 

  • Kagezi GH, Kucel P, Kobusingye J, Nakibuule L, Wekhaso R, Ahumuza G, Musoli P, Kangire A (2013) Influence of shade systems on spatial distribution and infestation of the Black Coffee Twig Borer on coffee in Uganda. Uganda J Agric Sci 14:1–12

    Google Scholar 

  • Kandji ST, Ogol CKPO, Albrecht A (2003) Crop damage by nematodes in improved-fallow fields in Western Kenya. Agrofor Syst 57:51–57

    Article  Google Scholar 

  • Kang BT, Caveness FE, Tian G, Kolawole GO (1999) Longterm alley cropping with four hedgerow species on an Alfisol in southwestern Nigeria – effect on crop performance, soil chemical properties and nematode population. Nutr Cycl Agroecosyst 54:145–155

    Article  Google Scholar 

  • Karp DS, Mendenhall CD, Sandi RF, Chaumont N, Ehrlich PR, Hadly EA, Daily GC (2013) Forest bolsters bird abundance, pest control and coffee yield. Ecol Lett 16:1339–1347

    Article  PubMed  Google Scholar 

  • Kasina M, Kraemer M, Wittmann D, Martius C (2009) Farmers’ knowledge of bees and their natural history in Kakamega district, Kenya. J Apic Res 48:126–133

    Article  Google Scholar 

  • Kho RM, Yacouba B, YayĂ© M, KatkorĂ© B, Moussa A, Iktam A, Mayaki A (2001) Separating the effects of trees on crops: the case of Faidherbia Albida and millet in Niger. Agrofor Syst 52:219–238

    Article  Google Scholar 

  • Kinama JM, Stigter CJ, Ong CK, Ng’ang’anga JK, Gichuki FN (2007) Contour hedgerows and grass strips in erosion and runoff control on sloping land in semi-arid Kenya. Arid L Res Manag 21:1–19

    Article  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Buchori D, Tscharntke T (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conserv Biol 16:1003–1014

    Article  Google Scholar 

  • Koech EK, Whitebread R (2000) Disease incidence and severity on beans in alleys between Leucaena hedgerows in Kenya. Agrofor Syst 49:85–101

    Article  Google Scholar 

  • Kumar P, Verma M, Wood MD, Negandhi D (2010) Guidance manual for the valuation of regulating services. Publishing Services Section, UNON, Nairobi

    Google Scholar 

  • Kuyah S, Ă–born I, Jonsson M, Dahlin AS, Barrios E, Muthuri C, Malmer A, Nyaga J, Magaju C, Namirembe S, Nyberg Y, Sinclair FL (2016) Trees in agricultural landscapes enhance provision of ecosystem services in sub-Saharan Africa. Int J Biodiv Sci Ecosyst Serv Manage 12:255–273

    Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zhu C, Wu J, Chen C (2016) Are rubber-based agroforestry systems effective in controlling rain splash erosion? Catena 147:16–24

    Article  Google Scholar 

  • LĂ³pez-Bravo DF, Virginio-Filho E d M, Avelino J (2012) Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop Prot 38:21–29

    Article  Google Scholar 

  • Makumba W, Akinnifesi FK, Janssen B, Oenema O (2007) Long-term impact of a gliricidia-maize intercropping system on carbon sequestration in Southern Malawi. Agric Ecosyst Environ 118:237–243

    Article  CAS  Google Scholar 

  • Makumba W, Akinnifesi F, Janssen B (2009) Spatial rooting patterns of gliricidia, pigeon pea and maize intercrops and effect on profile soil N and P distribution in Southern Malawi. Afr J Agric Res 4:278–288

    Google Scholar 

  • Mathuva MN, Rao MR, Smithson PC, Coe R (1998) Improving maize (Zea mays) yields in semiarid highlands of Kenya: agroforestry or inorganic fertilizers? Field Crop Res 55:57–72

    Article  Google Scholar 

  • McIntyre BD, Riha SJ, Ong CK (1997) Competition for water in a hedge-intercrop system. Field Crop Res 52:151–160

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mouen Bedimo JA, Bieysse D, Njiayouom I, Deumeni JP, Cilas C, NottĂ©ghem JL (2007) Effect of cultural practices on the development of arabica coffee berry disease, caused by Colletotrichum kahawae. Eur J Plant Pathol 119:391–400

    Article  Google Scholar 

  • Mutegi JK, Mugendi DN, Verchot LV, Kung’u JB (2008) Combining napier grass with leguminous shrubs in contour hedgerows controls soil erosion without competing with crops. Agrofor Syst 74:37–49

    Article  Google Scholar 

  • Mwangi D, Kasina M, Nderitu J, Hagen M, Gikungu M, Kraemer M (2012) Diversity and abundance of native bees foraging on hedgerow plants in the Kakamega farmlands, Western Kenya. J Apic Res 51:298–305

    Article  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Ong C, Black C, Muthuri C (2006) Modifying forestry and agroforestry to increase water productivity in the semi-arid tropics. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 1:1–19

    CAS  Google Scholar 

  • Pardee GL, Philpott SM (2011) Cascading indirect effects in a coffee agroecosystem: effects of parasitic phorid flies on ants and the coffee berry borer in a high-shade and low-shade habitat. Environ Entomol 40:581–588

    Article  PubMed  Google Scholar 

  • Perfecto I, Rice RA, Greenberg R, Van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Pouliot M, Bayala J, Ræbild A (2012) Testing the shade tolerance of selected crops under Parkia biglobosa (Jacq.) Benth. in an agroforestry parkland in Burkina Faso. West Africa Agrofor Syst 85:477–488

    Article  Google Scholar 

  • Pumariño L, Sileshi GW, Gripenberg S, Kaartinen R, Barrios E, Muchane MN, Midega C, Jonsson M (2015) Effects of agroforestry on pest, disease and weed control: a meta-analysis. Basic Appl Ecol 16:573–582

    Article  Google Scholar 

  • Rao MR, Mathuva MN (2000) Legumes for improving maize yields and income in semi-arid Kenya. Agric Ecosyst Environ 78:123–137

    Article  Google Scholar 

  • Rao MR, Nair PKR, Ong CK (1998) Biophysical interactions in tropical agroforestry systems. Agric Syst 38:3–50

    Article  Google Scholar 

  • Rao MR, Singh MP, Day R (2000) Insect pest problems in tropical agroforestry systems: contributory factors and strategies for management. Agrofor Syst 50:243–277

    Article  Google Scholar 

  • Ricketts TH, Daily GC, Ehrlich PR, Michener CD (2004) Economic value of tropical forest to coffee production. PNAS 101:12579–12582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Saha SK, Nair PKR, Nair VD, Kumar BM (2009) Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor Syst 76:53–65

    Article  Google Scholar 

  • Sanou J, ZougmorĂ© R, Bayala J, Teklehaimanot Z (2010) Soil infiltrability and water content as affected by Baobab (Adansonia digitata L.) and NĂ©rĂ© (Parkia biglobosa (Jacq.) Benth.) trees in farmed parklands of West Africa. Soil Use Manage 26:75–81

    Article  Google Scholar 

  • Sanou J, Bayala J, Teklehaimanot Z, BaziĂ© P (2012) Effect of shading by baobab (Adansonia digitata) and nĂ©rĂ© (Parkia biglobosa) on yields of millet (Pennisetum glaucum) and taro (Colocasia esculenta) in parkland systems in Burkina Faso, West Africa. Agrofor Syst 85:431–441

    Article  Google Scholar 

  • Schroth G, Sinclair FL (2003) Trees, crops and soil fertility: concepts and research methods. CAB International, Wallingford

    Google Scholar 

  • Schroth G, Krauss U, Gasparotto L, Duarte JA (2000) Pests and diseases in agroforestry systems of the humid tropics. Agrofor Syst 50:199–241

    Article  Google Scholar 

  • Sileshi G, Mafongoya PL (2003) Effect of rotational fallows on abundance of soil insects and weeds in maize crops in Eastern Zambia. Appl Soil Ecol 23:211–222

    Article  Google Scholar 

  • Sileshi G, Mafongoya PL (2006) Variation in macrofaunal communities under contrasting land use systems in Eastern Zambia. Appl Soil Ecol 33:49–60

    Article  Google Scholar 

  • Sileshi G, Schroth G, Rao M, Girma H (2007) Weeds, diseases, insect pests, and tri-trophic interactions in tropical agroforestry. In: Batish DR, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC Press/Taylor & Francis Group, Boca Raton, pp 73–94

    Chapter  Google Scholar 

  • Silva-Pando FJ, GonzĂ¡lez-HernĂ¡ndez MP, Rozados-Lorenzo MJ (2002) Pasture production in a silvopastoral system in relation with microclimate variables in the Atlantic Coast of Spain. Agrofor Syst 56:203–211

    Article  Google Scholar 

  • Sinclair FL (1999) A general classification of agroforestry practice. Agrofor Syst 46:161–180

    Article  Google Scholar 

  • Takimoto A, Nair PKR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ 125:159–166

    Article  CAS  Google Scholar 

  • Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? a meta-analysis. Agric Ecosyst Environ 230:150–161

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Varah A, Jones H, Smith J, Potts SG (2013) Enhanced biodiversity and pollination in UK agroforestry systems. J Sci Food Agric 93:2073–2075

    Article  CAS  PubMed  Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry, ICRAF working paper no. 89. World Agroforestry Centre, Nairobi

    Google Scholar 

Download references

Acknowledgments

We are grateful to the research program AgriFoSe2030 and Centre for Biological Control, SLU, for providing funds to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jonsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuyah, S., Ă–born, I., Jonsson, M. (2017). Regulating Ecosystem Services Delivered in Agroforestry Systems. In: Dagar, J., Tewari, V. (eds) Agroforestry. Springer, Singapore. https://doi.org/10.1007/978-981-10-7650-3_33

Download citation

Publish with us

Policies and ethics