Agroforestry pp 739-752 | Cite as

Profiling Carbon Storage/Stocks of Cocoa Agroforests in the Forest Landscape of Southern Cameroon

  • Denis J. Sonwa
  • Stephan F. Weise
  • Bernard A. Nkongmeneck
  • Mathurin Tchatat
  • Marc J. J. Janssens
Chapter

Abstract

Despite evidence that cocoa agroforests are composed of different types of associated plants leading to varieties of structures, few studies have been done to assess the implications of these variations on carbon stocks. The current studies profile the carbon storage of cocoa agroforests in Southern Cameroon by: (1) evaluating the carbon stocks of cocoa agroforests in different ecological zones (Yaoundé, Mbalmayo, and Ebolowa), (2) evaluating the carbon stocks of cocoa agroforests under different management methods, (3) evaluating the contribution of some plant species to carbon sequestration inside cocoa agroforests, and (4) identifying the carbon stocks of some important species. Inside the cocoa agroforests of Southern Cameroon, associated plants store around 70% of the carbon. Cocoa agroforests with timber and NWFP (Non-Wood Forest Products) store more than twice what is found in systems rich with Musa and oil palm. In these systems, timber and NWFP store more than 2.5 times what is found in cocoa systems with high densities of cocoa, and such systems with timber and NWFP store more than 3.3 times the carbon of unshaded cocoa orchards.

Among the companion plants, high value timber and edible NWFP contribute, respectively, to 30% and 10% of carbon storage by plants associated with cocoa. While the top ten plant species generally store more than half of what is found in associated plants, none of the species (except Terminalia superba in the Yaoundé Region) store more than 10% of what is found in associated plants. The proximity to market or remoteness and closeness to forest impact on this percentage. Using cocoa agroforests for climate change mitigation needs to take in consideration the utility and management of associated plants. In this perspective of climate change mitigation, beside biodiversity conservation, other co-benefits mainly related to the livelihood provided by cocoa agroforests need to be taken into consideration.

Keywords

Cocoa agroforest Carbon stock NWFP Timber Cacao Climate change mitigation REDD+ Forest landscape 

Notes

Acknowledgement

This research was funded by the International Institute of Tropical Agriculture, Sustainable Tree Crops Program (STCP) and Deutscher Akademischer Austauschdienst (DAAD). This research was part of the CGIAR research program on Forests, Trees, and Agroforestry (FTA). Louis Zapfack and Bonaventure Sonke of the University of Yaoundé I, and Paul Mezili and Anacletus Koufani of the National Herbarium in Yaoundé helped in tree species identification.

References

  1. ASB (2000) Alternatives to slash-and-burn: summary report and synthesis of phase II in Cameroon. ASB Coordination Office, ICRAF-Nairobi, p 72Google Scholar
  2. Bastin J-F, Barbier N, Réjou-Méchain M, Fayolle A, Gourlet-Fleury S, Maniatis D, de Haulleville T, Baya F, Beeckman H, Beina D (2015) Seeing central African forests through their largest trees. Sci Rep 5:13156.  https://doi.org/10.1038/srep13156 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer, FAO Forestry Paper – 134. For the Food and Agriculture Organization of the United Nations, Rome. ISBN 92-5-103955-0Google Scholar
  4. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1CrossRefPubMedGoogle Scholar
  5. Gockowski JJ, Dury S (1999) The economics of cocoa-fruit agroforests in Southern Cameroon. In: Jiménez F, Beer J (eds) Multi-strata agroforestry systems with perennial crops. CATIE, Turrialba, pp 239–241Google Scholar
  6. Gockowski J, Sonwa D (2011) Cocoa intensification scenarios and their predicted impact on CO emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environ Manag 48:307–321CrossRefGoogle Scholar
  7. Gockowski J, Tonye J, Baker D, Legg C, Weise S, Ndoumbé M, Tiki-Manga T, Fouaguégué A (2004a) Characterization and diagnosis of farming systems in the forest margins benchmark of outhern Cameroon. IITA Social Sciences Working Paper No 1. Ibadan, 69 ppGoogle Scholar
  8. Gockowski J, Weise SF, Sonwa DJ, Tchatat M, Ngobo M (2004b) Conservation because it pays: shaded cocoa agroforests in West Africa. IITA-HFC, Yaoundé, 29 ppGoogle Scholar
  9. Harvey CA, González J, Somarriba E (2006) Dung beetle and mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodivers Conserv 15:555–585CrossRefGoogle Scholar
  10. Ingram V, Waarts Y, Ge L, van Vugt S, Wegner L, Puister-Jansen L, Ruf F, Tanoh R (2014) Impact of UTZ certification of cocoa in Ivory Coast: assessment framework and baseline. LEI Wageningen UR (University & Research centre), LEI Report 2014–2010, Wageningen, p 196. 80 fig.; 16 tab.; 68 refGoogle Scholar
  11. Kotto-Same J, Wooner PL, Moukam A, Zapfack L (1997) Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agric Ecosyst Environ 65:245–256CrossRefGoogle Scholar
  12. Letouzey R (1982) Manuel de botanique tropicale—Afrique tropicale. Nogent sur Marne, Centre Technique Forestier Tropical, tomes 1, 2A, 2B. 461 ppGoogle Scholar
  13. Nolte C, Kotto-Same J, Moukam A, Thenkabail PS, Weise SF, Woomer PL, Zafack L (2001) Land use characterization and estimation of carbon stocks in the alternatives to slash and burn benchmark area in Cameroon, vol 28. The International Institute of Tropical Agriculture, IbadanGoogle Scholar
  14. Norgrove L, Hauser S (2013) Carbon stocks in shaded Theobroma Cacao farms and adjacent secondary forests of similar age in Cameroon. Trop Ecol 54(1):15–22Google Scholar
  15. Obeng EA, Aguilar FX (2015) Marginal effects on biodiversity, carbon sequestration and nutrient cycling of transitions from tropical forests to cacao farming systems. Agrofor Syst 89(1):19–35CrossRefGoogle Scholar
  16. Oke D, Olatiilu A (2011) Carbon storage in agroecosystems: a case study of the cocoa based agroforestry in Ogbese Forest Reserve, Ekiti State, Nigeria. J Environ Prot 02:1069–1075CrossRefGoogle Scholar
  17. Palm C, Vosti S, Sanchez P, Ericksen P (2004) Slash and burn: the search for alternatives. Alternatives to Slash and Burn Consortium, World Agroforestry Centre, The Earth Institute at Columbia University and The Center for Natural Resources Policy Analysis at the University of CaliforniaGoogle Scholar
  18. Rice R, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29:167–173CrossRefGoogle Scholar
  19. Robiglio V, Guillaume L, Paolo C (2013) From farmers to loggers: the role of shifting cultivation landscapes in timber production in Cameroon. Small Scale For 12(1):67–68CrossRefGoogle Scholar
  20. Saj S, Jagoret P, Ngogue HT (2013) Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agroforest Sys 87(6):1309–1320CrossRefGoogle Scholar
  21. Schroth G, da Fonseca GAB, Harvey CA, Gaston C, Vasconcelos HL, Izac AM (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC. 523 ppGoogle Scholar
  22. Sonwa DJ (2004) Biomass management and diversification within cocoa agroforest in the humid forest zone of Southern Cameroon. PhD thesis. Faculty of Agriculture. University of Bonn, Germany. Cuvillier Verlag, Goettingen. 112 ppGoogle Scholar
  23. Sonwa DJ, Weise SF, Tchatat M, Nkongmeneck AB, Adesina A, Ndoye O, et Gockowski J (2000) Les agroforêts cacao: espace intégrant développement de la cacaoculture, gestion et conservation des ressources forestières au Sud-Cameroun. Paper presented at the second Pan African symposium on the sustainable use of natural resources in Africa. Ouagadougou, Burkina Fasso, 24–27 July 2000Google Scholar
  24. Sonwa DJ, Weise SF, Tchatat M, Nkongmeneck BA, Adesina AA, Ndoye O, Gockowski J (2001) The role of cocoa agroforests in rural and community forestry in Southern Cameroon, Rural Develop For Netw Paper 25g:1–10. Overseas Development Institute, LondonGoogle Scholar
  25. Sonwa DJ, Weise SF, Janssens M (2002) Etude de cas d’aménagement forestier exemplaire en Afrique centrale: les systèmes agroforestiers cacaoyers Cameroun. Document de travail en aménagement forestier FM/12F. http://www.fao.org/docrep/008/ae732f/ae732f00.htm
  26. Sonwa DJ, Weise SF, Ndoye O, Janssens MJJ (2003) Promotion des agroforêts cacao en Afrique de l’ouest et centrale (AOC). Contribution 12ieme congres forestier mondial organisee par la FAO. Sous le theme, La forêt, source de Vie. Du 21 au 28 Septembre 2003, Quebec. http://www.fao.org/docrep/ARTICLE/WFC/XII/0478-B5.HTM
  27. Sonwa DJ, Nkongmeneck BA, Weise SF, Tchatat M, Adesina AA, Janssens MJJ (2007) Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodivers Conserv 16(8):2385–2400CrossRefGoogle Scholar
  28. Sonwa DJ, Nkongmeneck AB, Weise SF, Tchatat M, Janssens MJJ (2010) Tree diversity of the cocoa agroforest around Yaoundé (Southern Cameroon). In: van der Burgt X, van der Maesen J, Onana JM (eds) Systematics and conservation of African plants: proceedings of the 18th AETFAT congress. Kew Publishing, Royal Botanic Garden, pp 691–699Google Scholar
  29. Sonwa DJ, Weise SF, Schroth G, Janssens MJJ, Shapiro HY (2014) Plant diversity management in cocoa agroforestry systems in West and Central Africa—effects of markets and household needs. Agrofor Syst 88(6):1021–1034CrossRefGoogle Scholar
  30. Sonwa DJ, Weise SF, Nkongmeneck BA, Maturin T, Janssens MJJ (2016) Structure and composition of cocoa agroforests in the humid forest zone of Southern Cameroon. Agrofor Syst 91(3):451–470CrossRefGoogle Scholar
  31. Thenkabail PS (1999) Characterisation of the alternative to slash-and-burn benchmark research area representing the Congolese rainforests of Africa using near-real-time SPOT HRV data. Int J Remote Sens 20(5):839–877CrossRefGoogle Scholar
  32. Vivien J, Faure JJ (1985) Arbres des forêts denses d’Afrique centrale. Ministère des relations extérieures, coopération et développement et Agence de Coopération Culturelle et Technique, Paris, France. 565 ppGoogle Scholar
  33. Vivien J, Faure JJ (1996) Fruitiers sauvages d’Afrique: espèces du Cameroun. Paris: Ministère de la Coopération, Wageningen: Centre technique de coopération agricole et rurale. Ed. Nguila-Kerou. Clohars Carnoet France. 416 ppGoogle Scholar
  34. Waarts YR, Ingram VJ, van der Valk OMC ( 2013) Implementation of certification. Evidence from literature and websites. LEI Wageningen UR, 3 ppGoogle Scholar
  35. Zapfack L, Engwald S, Sonké B, Achoundong G, Madong BA (2002) The impact of land use conversion on plant biodiversity in the forest zone of Cameroon. Biodivers Conserv 11:2047–2061CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Denis J. Sonwa
    • 1
    • 2
  • Stephan F. Weise
    • 3
  • Bernard A. Nkongmeneck
    • 4
  • Mathurin Tchatat
    • 5
  • Marc J. J. Janssens
    • 6
  1. 1.CIFOR (Center for International Forestry Research)YaoundéCameroon
  2. 2.International Institute of Tropical Agriculture, Humid Forest Ecoregional Center (IITA-HFC)YaoundéCameroon
  3. 3.Bioversity InternationalRomeItaly
  4. 4.Department of Plant BiologyUniversity of Yaoundé IYaoundéCameroon
  5. 5.Institut de recherche Agricole pour le Développement (IRAD)YaoundéCameroon
  6. 6.Unit of Tropical Crops, Institute of Crop Science and Resource Conservation (INRES: Institut fu¨r Nutzpflanzenwissenschaften und Ressourcenschutz)University of BonnBonnGermany

Personalised recommendations