Agroforestry pp 669-689 | Cite as

Soil Microarthropods: Biodiversity and Role in Grassland and Agroforestry Ecosystems

  • Sharmila Roy
  • M. M. Roy
  • Ruquaeya Bano
  • Pradeep Saxena
Chapter

Abstract

A variety of organisms inhabit soil; many of them are still unknown. Each organism has a specific role in the complex web of life in the soil. They are mainly responsible for soil organic matter turnover and nutrient cycling through a diversity of processes. The microarthropods are mostly soil or litter dwellers and transform plant litter physically and chemically into substances amenable to further degradation by microflora and vice versa. Grassland and agroforestry systems on account of their perennial nature harbour a wider diversity of soil biota in comparison with agricultural systems. The interactive effects of soil biota and grassland/agroforestry systems are not understood to the desired levels. Also, there is little research on the role of soil biota in various other land use systems. Now, soil degradation has emerged as a global problem that leads to desertification, erosion and depletion of fertile lands. This has led to an in-depth look into reliable scientific information on soils, especially the biodiversity and many services they provide. It has created a demand for agricultural practices that are less dependent on external inputs, tighten nutrient cycles and are productive without degrading soil. The available work on soil organisms, especially the grassland and agroforestry systems from tropical areas, is reviewed, and some future thrust areas are suggested.

Keywords

Acari Collembola Diversity and dynamics Land use management Vegetation diversity Soil properties Microarthropods 

References

  1. Arroyo J, Iturrondobeitia JC, Caballero AI, Gonzalez CS (2003) Ecological study of the micro and meso arthropod communities in different experimental plots of a rainfed crop. Boletin de la Asociacion Espanola de Entomologia 27(1/4):41–51Google Scholar
  2. Badejo MA, de Aquimo AM, de Palli H, Correia MEP (2004) Response of soil mites to organic cultivation in an ultisol in southeastern Brazil. Exp Appl Acarol 34:345–364CrossRefPubMedGoogle Scholar
  3. Bano R (2006) Soil fauna of rainfed forage farming systems in relation to microclimate and soil fertility. PhD thesis, Bundelkhand University, Jhansi, IndiaGoogle Scholar
  4. Bardgett RD, Cook R (1998) Functional aspects of soil animal diversity in agricultural grasslands. Appl Soil Ecol 10:263–276CrossRefGoogle Scholar
  5. Bardgett RD, Usher MB, Hopkins DW (2005) Biological diversity and function in soils. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Barrios E, Sileshi GW, Shepherd K, Sinclair F (2012) Agroforestry and soil health: linking trees, soil biota and ecosystem services. In: Wall DH, Bradgett RD, Pelletier VB, Herrick JE, Jones HF, Ritz K, Six J, Strong DR, van der Putten WH (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 315–330CrossRefGoogle Scholar
  7. Battigelli JP, Mclntyre GS, Broersma K, Krzic M (2003) Impact of cattle grazing on prostigmatid mite density in grassland soils of southern interior British Columbia. Can J Soil Sci 83:533–535CrossRefGoogle Scholar
  8. Berg MP (2012) Patterns of biodiversity at fine and small spatial scales. In: Wall DH, Bradgett RD, Pelletier VB, Herrick JE, Jones HF, Ritz K, Six J, Strong DR, van der Putten WH (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 136–152CrossRefGoogle Scholar
  9. Bhatt RK, Baig MJ, Tiwari HS, Roy S (2010) Growth yield and photosynthesis of Panicum maximum and Stylosanthes hamata under elevated CO2. J Environ Biol 31:549–552PubMedGoogle Scholar
  10. Booth RG, Usher MB (1986) Arthropod communities in a maritime Antarctic moss –turf habitat: life history strategies of the prostigmatid mites. Pedobiologia 32:77–80Google Scholar
  11. Brussard L (1998) Soil fauna, guild, functional groups and ecosystem processes. Appl Soil Ecol 9:123–135CrossRefGoogle Scholar
  12. Choi W, Ryoo M, Choi WI, Ryoo MI (2003) A matrix model for predicting seasonal fluctuations in field populations of Paronychiurus kimi (Collembola: Onychiuridae). Ecol Model 162(3):259–265CrossRefGoogle Scholar
  13. Clapperton JM, Kanashiro DA, Behan-Pelletier VM (2002) Changes in diversity and abundance of microarthropods associated with Fescue Prairie grazing regimes. Pedobiologia 46:496–511CrossRefGoogle Scholar
  14. Cole L, Buckland SM, Bardgett RD (2005) Relating microarthropod community structure and diversity to soil fertility manipulations in temperate grassland. Soil Biol Biochem 37:1707–1717CrossRefGoogle Scholar
  15. Davidson J (1933) The distribution of Sminthurus viridis L. (Collembola) in South Australia, based on rainfall, evaporation and temperature. Aust J Exp Biol Med Sci 11:59–66CrossRefGoogle Scholar
  16. de Aquino AM, da Silva RF, Mercante FM, Correia MEF, de Guimaraes MF, Lavelle P (2008) Invertebrate soil macrofauna under different ground cover plants in the no-till system in the Cerrado. Eur J Soil Biol 44:191–197CrossRefGoogle Scholar
  17. De Deyn GB, Quirk H, Yi Z, Oakley S, Ostle NJ, Bardgett RD (2009) Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility. J Ecol 7:864–875CrossRefGoogle Scholar
  18. Donghui W, Bai Z, Zhaoyi B, Peng C (2006) The community characteristics of soil mites under different land uses in Changchun metropolitan area, China. Acta Ecol Sin 26(1):16−25Google Scholar
  19. Eschen R, Brook AJ, Maczey N, Bradbury A, Mayo A, Watts P, Buckingham D, Wheeler K, Peach WJ (2012) Effects of reduced grazing intensity on pasture vegetation and invertebrates. Agric Ecosyst Environ 151:53–60CrossRefGoogle Scholar
  20. Fenner N, Freeman C, Lock MA, Harmens H, Reynolds B, Sparks T (2007) Interaction between elevated CO2 and warming could amplify DOC exports from peat land catchments. Environ Sci Technol 41:3146–3152CrossRefPubMedGoogle Scholar
  21. Gagnarli E, Goggioli D, Tarchi F, Guidi S, Nannelli R, Vignozzi N, Valboa G, Lottero MR, Corino L, Simoni S (2015) Case study of microarthropod communities to assess soil quality in different managed vineyards. Soil 1:527–536.  https://doi.org/10.5194/soil-1-527-2015 CrossRefGoogle Scholar
  22. Geissen V, Gehrmann J, Genssler L (2007) Relationships between soil properties and feeding activity of soil fauna in acid forest soils. J Plant Nutr Soil Sci 170:632–639CrossRefGoogle Scholar
  23. Harwood JD, Sunderland KD, Symondson WOC (2003) Web location by Lyniphiid spiders: prey specific aggregation and foraging strategies. J Anim Ecol 72:745–756CrossRefGoogle Scholar
  24. Helden AJ, Anderson A, Sheridan H, Purvis G (2010) The role of grassland sward islets in the distribution of arthropods in cattle pastures. Insect Conserv Divers 3:291–301CrossRefGoogle Scholar
  25. Hooper DU, Bignell DE, Brown VK, Brussard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten WH, De Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms and feed backs. Bioscience 50(12):1049–1061CrossRefGoogle Scholar
  26. Hopkin SP (1997) The biology of the springtails. Oxford University Press, OxfordGoogle Scholar
  27. Hunt HW, Wall DH (2002) Modelling the effects of loss of soil biodiversity on the ecosystem function. Glob Change Biol 8(1):33–50CrossRefGoogle Scholar
  28. IPCC (2007) Climate change: fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  29. Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10.  https://doi.org/10.1007/s10457-009-9229-7). CrossRefGoogle Scholar
  30. Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Syst 61:237–255Google Scholar
  31. Kabir EM, Webb EL (2009) Can home-gardens conserve bio-diversity in Bangladesh? Biotropica 40:95–103Google Scholar
  32. Kardol P, Gregger MA, Campany CE, Classen AT (2010) Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91:767–781CrossRefPubMedGoogle Scholar
  33. Kardol P, Reynolds WN, Norby RJ, Classen AT (2011) Climate change effects on soil microarthropod abundance and community structure. Appl Soil Ecol 47:37–44CrossRefGoogle Scholar
  34. King KL, Hutchinson KJ (1976) The effects of sheep stocking intensity on the abundance and distribution of mesofauna in pasture. J Appl Ecol 13:41–55CrossRefGoogle Scholar
  35. Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8:468–479CrossRefPubMedGoogle Scholar
  36. Lakshmi G, Joseph A (2016) Soil microarthropods as indicator of soil quality of tropical home gardens in a village in Kerala, India. Agrofor Syst.  https://doi.org/10.1007/s10457-016-9941/z
  37. Laossi KR, Barot S, Carvalho D, Desjardins T, Lavelle P, Martins M, Mitja D, Rendeiro AC, Rousseau G, Sarrazin M, Velasquez E, Grimald M (2008) Effects of plant diversity on plant biomass production and soil macrofauna in Amazonian pastures. Pedobiologia 51:397–407CrossRefGoogle Scholar
  38. Larink O (1997) Springtails and mites: important knots in the food web of soils. In: Benckiser G (ed) Fauna in soil ecosystems: recycling processes, nutrient fluxes and agricultural productions. Marcel Dekker, New York, pp 225–264Google Scholar
  39. Larsen T, Schjonning P, Axelsen J (2004) The impact of soil compaction on euedaphic Collembola. Appl Soil Ecol 26:273–281CrossRefGoogle Scholar
  40. Lussenhop J (1992) Mechanisms of microarthropod – microbial interactions in soil. Adv Ecol Res 23:1–33CrossRefGoogle Scholar
  41. Mikkelsen TN, Beier C, Jonasson S, Holmstrup M, Schmidt IK, Ambus P, Pilegaard K, Michelsen A, Albert K, Andresen LC, Arndal MF, Bruun N, Christensen S, Danbæk S, Gunder- sen P, Jørgensen P, Kongstad J, Maraldo K, Prieme A, Riis-Nielsen T, Ro-Poulsen H, Stevnbak K, Selsted MB, Sørensen P, Larsen KS, Carter MS, Martinussen T, Miglietta F, Sverdrup H (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought – the CLIMAITE project. Funct Ecol 22:185–195Google Scholar
  42. Minor MA, Cianciolo JM (2007) Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Appl Soil Ecol 35:140–153CrossRefGoogle Scholar
  43. Moco MKS, Gama-Rodrigues EF, Gama-Rodrigues AC, Machado RCR, Baligar VC (2009) Soil and litter fauna of cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 76:127–138CrossRefGoogle Scholar
  44. Moco MKS, Gama-Rodrigues EF, Gama-Rodrigues AC, Machado RCR, Baligar VC (2010) Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Appl Soil Ecol 46:347–354CrossRefGoogle Scholar
  45. Moron-Rios A, Rodrigues MA, Perez-Camacho L, Rebollo S (2010) Effects of seasonal grazing and precipitation regime on the soil macroinvertebrates of a Mediterranean old field. Eur J Soil Biol 46:91–96CrossRefGoogle Scholar
  46. Nair PKR (2008) Agroecosystem management in the 21st century: it is time for a paradigm shift. J Trop Agric 46:1–12Google Scholar
  47. Ostle NJ, Ward SE (2012) Climate change and soil biotic carbon cycling. In: Wall DH, Bradgett RD, Pelletier VB, Herrick JE, Jones HF, Ritz K, Six J, Strong DR, van der Putten WH (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 241–255CrossRefGoogle Scholar
  48. Ostle NJ, Smith P, Fisher R, Woodward FI, Fisher JB, Smith JU, Galbraith D, Levy P, Meir P, McNamara NP, Bardgett RD (2009) Integrating plant soil interactions into global carbon cycle models. J Ecol 97:851–563CrossRefGoogle Scholar
  49. Palacios-Vargas JG, Castano-Meneses G (2003) Seasonality and community composition of springtails in Mexican forests. In: Basset Y, Novotny V, Miller SE, Kitching RL (eds) Arthropods of tropical forests: spatio temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge, pp 159–169Google Scholar
  50. Parisi V, Menta C, Gardi C, Jacominic C, Mozzanica E (2005) Microarthropod communities as a tool to access soil quality and biodiversity: a new approach in Italy. Agric Ecosyst Environ 105:323–333CrossRefGoogle Scholar
  51. Peterson H, Krogh PH (1987) Effects of perturbing microarthropod communities of a permanent pasture and a rye field by an insecticide and a fungicide. In: Striganova BR (ed) Soil fauna and soil fertility. Proceedings of the 9th international colloquium on soil zoology. Nauka, Moscow, pp 217–229Google Scholar
  52. Peterson H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:287–388Google Scholar
  53. Postma-Blaauw MB, de Goede RGM, Bloem J, Faber JH, Brussaard L (2010) Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91:460–473Google Scholar
  54. Proulx R, Wirth C, Voigt W, Weigelt A, Roscher C, Attinger S, Baade J, Barnard RL, Buchmann N, Buscot F, Eisenhauer N, Fischer M, Gleixner G, Halle S, Hildebrandt A, Kowalski E, Kuu A, Lange M, Milcu A, Niklaus PA, Oelmann Y, Rosenkranz S, Sabais A, Scherber C, Lorenzen MS, Scheu S, Schulze ED, Schumacher J, Schwichtenberg G, Soussana JF, Temperton VM, Weisser WW, Wilcke W, Schmid B (2010) Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands. PLoS One 5:e13382.  https://doi.org/10.1371/journal.pone.0013382 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Richter A, Maria Klein A, Tscharntke T, Tylianakis JM (2007) Abandonement of coffee agroforests increases insect abundance and diversity. Agrofor Syst 69:175–182CrossRefGoogle Scholar
  56. Rocheforta S, Therrienb F, Shetlarc DJ, Brodeura J (2006) Species diversity and seasonal abundance of Collembola in turfgrass ecosystems of North America. Pedobiologia 50:61–68CrossRefGoogle Scholar
  57. Roy S, Panwar NR (2014) Soil biodiversity in grasslands of arid western plain. Annual Report 2013-14. Central Arid Zone Research Institute, Jodhpur, Rajasthan, India, pp 27–28Google Scholar
  58. Roy S, Roy MM (2006) Spatial distribution and seasonal abundance of soil mites and collembola in grassland and Leucaena plantation in a semi-arid region. Trop Ecol 47(1):57–62Google Scholar
  59. Roy S, Srivastava AK, Roy MM (1998) Soil arthropods inhabiting grassland and silvopastoral systems in Central India. Flora Fauna 4(1):35–39Google Scholar
  60. Roy S, Saxena P, Roy MM (2004) Impact of forage production technology on non-target soil microorganisms – a veiled side of plant protection. J Mycol Plant Pathol 33:362–371Google Scholar
  61. Roy S, Saxena P, Roy MM (2008) Soil biodiversity under forage production systems. IGFRI, Jhansi, p 45Google Scholar
  62. Roy S, Shah NK, Bano R, Saxena P, Azmi MI, Tyagi PK (2009) Effect of pest control measures on beneficial soil micro arthropods in a year-round fodder production system. Indian. J Agric Sci 79(5):407–409Google Scholar
  63. Roy S, Bano R, Saxena P (2010) Response of fodder production systems to oribatid mite community structure in semiarid central India. Range Manage Agrofor 31:33–34Google Scholar
  64. Roy S, Saxena P, Bano R (2012) Soil biota assemblage under organic and inorganic fertilization in semiarid central India. Ann Arid Zone 51(2):1–8Google Scholar
  65. Rutgers M, Mulder C, Schouten AJ, Bloem J, Bogte JJ, Breure AM, Brussaard L, De Goede RGM, Faber JH, Jagers op Akkerhuis GAJM, Keidel H, Korthals GW, Smeding FW, Ter Berg C, Van Eekeren N (2008) Soil ecosystem profiling in The Netherlands with ten references for biological soil quality. Report 607604009. RIVM, BilthovenGoogle Scholar
  66. Salamon JA, Alphei J (2009) The Collembola community of a Central European forest: influence of tree species composition. Eur J Soil Biol 45:199–206CrossRefGoogle Scholar
  67. Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Bessler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, König S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Müller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556CrossRefPubMedGoogle Scholar
  68. Schmidt O, Clements RO, Donaldson G (2003) Why do cereal–legume intercrops support large earthworm populations? Appl Soil Ecol 22(2):181–190Google Scholar
  69. Seastedt TR (1984) The role of microarthropods in decomposition and mineralization process. Ann Rev Entomol 29:25–46CrossRefGoogle Scholar
  70. Singh J, Lal VB (2001) A hand book of soil fauna. Technical Bulletin 3. Indian Council of Agricultural Research, New Delhi, India, p 43Google Scholar
  71. Sjursen H, Holmstrup M (2004) Cold and drought stress in combination with pyrene exposure: studies with Protaphorura armata (Collembola: Onychiuridae). Ecotoxicol Environ Safety 57(2):145–152CrossRefPubMedGoogle Scholar
  72. Sousa JP, Bolger T, Da Gama MM, Lukkari T, Ponge JF, Simon C, Traser G, Vanbergen AJ, Brennan A, Florence D, Ivitis E, Keating A, Stofer S, Watt AD (2006) Changes in collembolan richness and diversity along a gradient of land use intensity: a pan European study. Paedobiologia 50:147–156CrossRefGoogle Scholar
  73. St John MG, Wall DH, Behan-Pelletier VM (2006) Does plant species co-occurrence influence soil mite diversity? Ecology 87:625–633CrossRefPubMedGoogle Scholar
  74. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publication, Oxford, p 373Google Scholar
  75. Tripathi G, Kumari R, Sharma BM (2007) Mesofaunal biodiversity and its importance in Thar desert. J Environ Biol 28(2):503–515PubMedGoogle Scholar
  76. Tsiafoulia MA, Kallimanisa AS, Katanab E, Stamoua GP, Sgardelisa SP (2005) Responses of soil microarthropods to experimental short-term manipulations of soil moisture. Appl Soil Ecol 29:17–26CrossRefGoogle Scholar
  77. Van Eekeren N, Murray PJ, Smeding FW (2007) Soil biota in grassland, its ecosystem services and the impact of management. In: Permanent and temporary grassland; plant, environment and economy. Proceedings of the 14th symposium of the European grassland federation (Ghent, Belgium, 3–5 September 2007). Belgium Society for grassland and forage crops, Belgium, pp 247–258Google Scholar
  78. Van Eekeren N, Bommele L, Bloem J, Schouten T, Rutgers M, de Goede R, Reheul D, Brussaard L (2008) Soil biological quality after 36 years of lay-arable cropping, permanent grassland and permanent arable cropping. Appl Soil Ecol 40:432–446CrossRefGoogle Scholar
  79. Van Straalen NM (1998) Evaluation of bioindicator systems derived from soil arthropod communities. Appl Soil Ecol 9:429–437CrossRefGoogle Scholar
  80. Vanbergen AJ, Watt AD, Mitchell R, Truscott AM, Palmer SCF, Ivits E, Eggleton P, Jones TH, Sousa JP (2007) Scale specific correlations between habitat heterogeneity and soil fauna diversity along a land scape structure gradient. Oecologia 153:713–725CrossRefPubMedGoogle Scholar
  81. Veeresh GK, Rajgopal D (1983) Applied soil biology and ecology. Oxford/IBH Publishing, New Delhi, 407pGoogle Scholar
  82. Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 111:5266–5270CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wallwork JA (1970) Ecology of soil animals. McGraw-Hill, New York, p 283Google Scholar
  84. Wan S, Norby RJ, Ledford J, Weltzin JF (2007) Response of soil respiration to elevated CO2, air warming and changing soil water availability in a model old field grassland. Glob Chang Biol 13:2411–2424CrossRefGoogle Scholar
  85. Wardle DA (2002) Communities and ecosystems: linking the above ground and belowground components. Monograph in population biology 34. Princeton University Press, PrincetonGoogle Scholar
  86. Wardle DA, Yeates GW, Williamson W, Bonner KI (2003) The response of three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos 102:45–56CrossRefGoogle Scholar
  87. Wardle DA, Bardgett RD, Klironomus JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633CrossRefPubMedGoogle Scholar
  88. Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, South Western China. Soil Biol Biochem 41:910–918CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Sharmila Roy
    • 1
  • M. M. Roy
    • 2
  • Ruquaeya Bano
    • 3
  • Pradeep Saxena
    • 4
  1. 1.Central Institute for Subtropical HorticultureLucknowIndia
  2. 2.Indian Institute of Sugarcane ResearchLucknowIndia
  3. 3.Zoological Survey of IndiaPuneIndia
  4. 4.Indian Grassland and Fodder Research InstituteJhansiIndia

Personalised recommendations