Advertisement

Challenges in Malaria Management and a Glimpse at Some Nanotechnological Approaches

  • Adrian Najer
  • Cornelia G. Palivan
  • Hans-Peter Beck
  • Wolfgang Meier
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1052)

Abstract

Malaria is a devastating infectious disease transmitted by mosquitoes, affecting millions of people and killing about half a million children each year. Despite tremendous progress in the control and elimination of malaria within the past years, there are still considerable challenges to be solved. To name a few, drug-resistant parasites, insecticide-resistant mosquitoes and the difficulty to formulate a potent malaria vaccine need to be addressed with new strategies to achieve the final goal of malaria eradication. Nanotechnology—researching and designing innovative structures at the nanoscale—is a promising contemporary technology that is being applied to a vast number of biomedical problems. In the case of malaria, nanotechnology provides tools to design strategies to target drug molecules to specific stages of the parasite, treat drug-resistant parasites, resolve severe malaria, increase vaccine efficacies and combinations thereof. This chapter introduces malaria, discusses current challenges of malaria control and relates these challenges to some potential solutions provided by the nanotechnology field.

Keywords

Malaria Nanotechnology Drug delivery Vaccine delivery 

Notes

Acknowledgements

This work was supported by the Swiss National Science Foundation and by the NCCR Molecular Systems Engineering, which is gratefully acknowledged.

References

  1. 1.
    World Health Organization. World Health Statistics (2015) World Health Organization, Geneva, 1–164Google Scholar
  2. 2.
    Josling GA, Llinás M (2015) Sexual development in Plasmodium parasites: knowing when it’s time to commit. Nat Rev Micro 13:573–587CrossRefGoogle Scholar
  3. 3.
    Su X, Hayton K, Wellems TE (2007) Genetic linkage and association analyses for trait mapping in Plasmodium falciparum. Nat Rev Genet 8:497–506CrossRefPubMedGoogle Scholar
  4. 4.
    White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM (2014) Malaria. Lancet 383:723–735CrossRefPubMedGoogle Scholar
  5. 5.
    Cowman AF, Berry D, Baum J (2012) The cell biology of disease: the cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol 198:961–971CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell 124:755–766CrossRefPubMedGoogle Scholar
  7. 7.
    Cooke B, Coppel R, Wahlgren M (2000) Falciparum malaria: sticking up, standing out and out-standing. Parasitol Today 16:416–420CrossRefPubMedGoogle Scholar
  8. 8.
    Mundwiler-Pachlatko E, Beck H-P (2013) Maurer’s clefts, the enigma of Plasmodium falciparum. Proc Natl Acad Sci USA 110:19987–19994CrossRefPubMedGoogle Scholar
  9. 9.
    Voss TS, Healer J, Marty AJ, Duffy MF, Thompson JK, Beeson JG et al (2006) A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439:1004–1008PubMedCrossRefGoogle Scholar
  10. 10.
    Ginsburg H, Stein WD (2004) The new permeability pathways induced by the malaria parasite in the membrane of the infected erythrocyte: comparison of results using different experimental techniques. J Membrane Biol 197:113–134CrossRefGoogle Scholar
  11. 11.
    Pouvelle B, Spiegel R, Hsiao L, Howard RJ, Morris RL, Thomas AP et al (1991) Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature 353:73–75CrossRefPubMedGoogle Scholar
  12. 12.
    Goodyer ID, Pouvelle B, Schneider TG, Trelka DP, Taraschi TF (1997) Characterization of macromolecular transport pathways in malaria-infected erythrocytes. Mol Biochem Parasitol 87:13–28CrossRefPubMedGoogle Scholar
  13. 13.
    El Tahir A, Malhotra P, Chauhan VS (2003) Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-infected human erythrocytes. Malar J 2:1–8CrossRefGoogle Scholar
  14. 14.
    Bergmann-Leitner ES, Duncan EH, Angov E (2009) MSP-1p42-specific antibodies affect growth and development of intra-erythrocytic parasites of Plasmodium falciparum. Malar J 8:183–195CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Urbán P, Valle-Delgado JJ, Mauro N, Marques J, Manfredi A, Rottmann M et al (2014) Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. J Control Release 177:84–95CrossRefPubMedGoogle Scholar
  16. 16.
    Spillman NJ, Beck JR, Goldberg DE (2015) Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annu Rev Biochem 84:813–841CrossRefPubMedGoogle Scholar
  17. 17.
    Kappe SHI, Vaughan AM, Boddey JA, Cowman AF (2010) That was then but this is now: malaria research in the time of an eradication agenda. Science 328:862–866CrossRefPubMedGoogle Scholar
  18. 18.
    Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J et al (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T et al (2015) Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis 15:415–421CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Amaratunga C, Lim P, Suon S, Sreng S, Mao S (2016) Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis 16:357–365CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Miller LH, Ackerman HC, Su X-Z, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19:156–167CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wells TNC, van Huijsduijnen RH, Van Voorhis WC (2015) Malaria medicines: a glass half full? Nat Rev Drug Discov 14:424–442 Nature Publishing GroupCrossRefPubMedGoogle Scholar
  23. 23.
    Rts SCTP (2015) Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386:31–45 Elsevier Ltd.CrossRefGoogle Scholar
  24. 24.
    World Health Organization (2016) Malaria vaccine: WHO position paper-January 2016. Wkly Epidemiol Rec 91:33–51Google Scholar
  25. 25.
    Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ et al (2013) Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359–1365CrossRefPubMedGoogle Scholar
  26. 26.
    Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, et al (2016) Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med 1–13. Nature Publishing GroupGoogle Scholar
  27. 27.
    Kester KE, Cummings JF, Ofori Anyinam O, Ockenhouse CF, Krzych U, Moris P et al (2009) Randomized, Double-Blind, Phase 2a Trial of Falciparum Malaria Vaccines RTS, S/AS01B and RTS, S/AS02A in Malaria-Naive Adults: Safety, Efficacy, and Immunologic Associates of Protection. J Infect Dis 200:337–346CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Richards JS, Beeson JG (2009) The future for blood-stage vaccines against malaria. Immunol Cell Biol 87:377–390CrossRefPubMedGoogle Scholar
  29. 29.
    Hoffman SL, Billingsley PF, James E, Richman A, Loyevsky M, Li T et al (2010) Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum Vaccines 6:97–106CrossRefGoogle Scholar
  30. 30.
    Tanner M, Greenwood B, Whitty CJM, Ansah EK, Price RN, Dondorp AM et al (2014) Malaria eradication and elimination: views on how to translate a vision into reality. BMC Med 13:167CrossRefGoogle Scholar
  31. 31.
    Hemingway J, Ranson H, Magill A, Kolaczinski J (2016) Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet 387:1785–1788CrossRefPubMedGoogle Scholar
  32. 32.
    Lukianova-Hleb EY, Campbell KM, Constantinou PE, Braam J, Olson JS, Ware RE et al (2014) Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria. Proc Natl Acad Sci USA 111:900–905CrossRefPubMedGoogle Scholar
  33. 33.
    Santos-Magalhães NS, Mosqueira VCF (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliver Rev 62:560–575. Elsevier B.VCrossRefPubMedGoogle Scholar
  34. 34.
    Dennis E, Peoples VA, Johnson F (2015) Utilizing Nanotechnology to Combat Malaria. J Infect Dis Ther 3:1–6CrossRefGoogle Scholar
  35. 35.
    Aditya NP, Vathsala PG, Vieira V, Murthy RSR, Souto EB (2013) Advances in nanomedicines for malaria treatment. Adv Colloid Interfac 201–202:1–17CrossRefGoogle Scholar
  36. 36.
    Kuntworbe N, Martini N, Shaw J, Al-Kassas R (2012) Malaria intervention policies and pharmaceutical nanotechnology as a potential tool for malaria management. Drug Dev Res 73:167–184CrossRefGoogle Scholar
  37. 37.
    Tyagi RK, Garg NK, Sahu T (2012) Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. J Control Release 162:242–254CrossRefPubMedGoogle Scholar
  38. 38.
    Burkhard P, Lanar DE (2015) Malaria vaccine based on self-assembling protein nanoparticles. Expert Rev Vaccines 14:1525–1527CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Movellan J, Urbán P, Moles E, la Fuente de JM, Sierra T, Serrano JL, et al (2014) Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials 35:7940–7950CrossRefPubMedGoogle Scholar
  40. 40.
    Pouvelle B, Gormley JA, Taraschi TF (1994) Characterization of trafficking pathways and membrane genesis in malaria-infected erythrocytes. Mol Biochem Parasitol 66:83–96CrossRefPubMedGoogle Scholar
  41. 41.
    Urbán P, Estelrich J, Cortés A, Fernàndez-Busquets X (2011) A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. J Control Release 151:202–211. Elsevier B.VCrossRefPubMedGoogle Scholar
  42. 42.
    Urbán P, Estelrich J, Adeva A, Cortés A, Fernàndez-Busquets X (2011) Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Res Lett 6:620–630CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Moles E, Urbán P, Jiménez-Díaz MB, Viera-Morilla S, Angulo-Barturen I, Busquets MA et al (2015) Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. J Control Release 210:217–229CrossRefPubMedGoogle Scholar
  44. 44.
    Kirk K (2001) Membrane transport in the malaria-infected erythrocyte. Physiol Rev 81:495–537CrossRefPubMedGoogle Scholar
  45. 45.
    Marques J, Moles E, Urbán P, Prohens R, Busquets MA, Sevrin C et al (2014) Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells. Nanomed-Nanotechnol 10:1719–1728CrossRefGoogle Scholar
  46. 46.
    Moles E, Fernàndez-Busquets X (2015) Loading antimalarial drugs into noninfected red blood cells: an undesirable roommate for Plasmodium. Future Med Chem 7:833–835CrossRefGoogle Scholar
  47. 47.
    Isacchi B, Arrigucci S, Marca GL, Bergonzi MC, Vannucchi MG, Novelli A et al (2011) Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. J Lipos Res 21:237–244CrossRefGoogle Scholar
  48. 48.
    Isacchi B, Bergonzi MC, Grazioso M, Righeschi C, Pietretti A, Severini C, et al (2012) Artemisinin and artemisinin plus curcumin liposomal formulations: Enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur J Pharm Biopharm 80:528–534. Elsevier B.VCrossRefPubMedGoogle Scholar
  49. 49.
    Waknine-Grinberg JH, Even-Chen S, Avichzer J, Turjeman K, Bentura-Marciano A, Haynes RK, et al (2013) Glucocorticosteroids in nano-sterically stabilized liposomes are efficacious for elimination of the acute symptoms of experimental cerebral malaria. PLoS ONE 8:e72722. Coban C (ed)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Guo J, Waknine-Grinberg JH, Mitchell AJ, Barenholz Y, Golenser J (2014) Reduction of experimental cerebral malaria and its related proinflammatory responses by the novel liposome-based β-Methasone nanodrug. Biomed Res Int 2014:1–8Google Scholar
  51. 51.
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRefGoogle Scholar
  52. 52.
    Palivan CG, Goers R, Najer A, Zhang X, Car A, Meier W (2016) Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev 45:377–411CrossRefGoogle Scholar
  53. 53.
    Kasozi D, Mohring F, Rahlfs S, Meyer AJ, Becker K (2013) Real-time imaging of the intracellular glutathione redox potential in the malaria parasite plasmodium falciparum. PLoS Pathog 9:e1003782. Ginsburg H (ed)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Najer A, Wu D, Nussbaumer MG, Schwertz G, Schwab A, Witschel MC et al (2016) An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery. Nanoscale 8:14858–14869CrossRefPubMedGoogle Scholar
  55. 55.
    Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212CrossRefPubMedGoogle Scholar
  56. 56.
    Witschel MC, Rottmann M, Schwab A, Leartsakulpanich U, Chitnumsub P, Seet M et al (2015) Inhibitors of Plasmodial Serine Hydroxymethyltransferase (SHMT): cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities. J Med Chem 58:3117–3130CrossRefPubMedGoogle Scholar
  57. 57.
    Dubois VL, Platel DF, Pauly G, Tribouley-Duret J (1995) Plasmodium berghei: implication of intracellular glutathione and its related enzyme in chloroquine resistance in vivo. Exp Parasitol 81:117–124CrossRefPubMedGoogle Scholar
  58. 58.
    Vega-Rodríguez J, Pastrana-Mena R, Crespo-Lladó KN, Ortiz JG, Ferrer-Rodríguez I, Serrano AE (2015) Implications of glutathione levels in the plasmodium berghei response to chloroquine and artemisinin. PLoS ONE 10:e0128212. Carvalho LH (ed)CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Paaijmans K, Fernàndez-Busquets X (2014) Antimalarial drug delivery to the mosquito: an option worth exploring? Future Microbiol 9:579–582CrossRefPubMedGoogle Scholar
  60. 60.
    Reed SG, Orr MT, Fox CB (2013) Key roles of adjuvants in modern vaccines. Nat Med 19:1597–1608CrossRefPubMedGoogle Scholar
  61. 61.
    Vekemans J, Leach A, Cohen J (2009) Development of the RTSS/AS malaria candidate vaccine. Vaccine 27S:G67–G71CrossRefGoogle Scholar
  62. 62.
    Mueller MS, Renard A, Boato F, Vogel D, Naegeli M, Zurbriggen R et al (2003) Induction of Parasite Growth-Inhibitory Antibodies by a Virosomal Formulation of a Peptidomimetic of Loop I from Domain III of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun 71:4749–4758CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M et al (2015) Recent advances in recombinant protein-based malaria vaccines. Vaccine 33:7433–7443 Elsevier Ltd.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Vaughan AM, Kappe SH (2012) Malaria vaccine development: persistent challenges. Curr Opin Immunol 24:324–331 Elsevier LtdCrossRefPubMedGoogle Scholar
  65. 65.
    Najer A, Wu D, Bieri A, Brand F, Palivan CG, Beck H-P et al (2014) Nanomimics of host cell membranes block invasion and expose invasive malaria parasites. ACS Nano 8:12560–12571CrossRefPubMedGoogle Scholar
  66. 66.
    Najer A, Thamboo S, Duskey JT, Palivan CG, Beck H-P, Meier W (2015) Analysis of molecular parameters determining the antimalarial activity of polymer-based nanomimics. Macromol Rapid Commun 36:1923–1928. Lendlein A, Pandit A (eds)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Adrian Najer
    • 1
    • 2
  • Cornelia G. Palivan
    • 1
  • Hans-Peter Beck
    • 2
  • Wolfgang Meier
    • 1
  1. 1.Department of ChemistryUniversity of BaselBaselSwitzerland
  2. 2.Swiss Tropical and Public Health InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations