Advertisement

Potential Treatment Options in a Post-antibiotic Era

  • R R Bragg
  • C M Meyburgh
  • J-Y Lee
  • M Coetzee
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1052)

Abstract

Following the Golden Age of antibiotic discovery in the previous century, the rate of antibiotic discovery has plummeted during the past 50 years while the incidence of antimicrobial resistance is ever-increasing. Presently, humankind is forced to address a major public health threat in the form of multiple drug resistance and urgent action is required to halt the advent of a post-antibiotic era. This chapter aims to draw the attention to the escalating global crisis of antimicrobial resistance fueled by the irresponsible use of antibiotics in healthcare and animal production sectors. The merits of alternative prevention and treatment options, including vaccines, herbal products, bacteriophages, and improved biosecurity measures are also discussed.

Keywords

Antibiotics Vaccines Essential oils Bacteriophages Antimicrobial resistance 

References

  1. 1.
    Coates A, Halls G, Hu Y (2011) Novel classes of antibiotics or more of the same? Br J Pharmacol 163:184–194CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Davies J (2006) Where have all the antibiotics gone? Can J Infect Dis Med Microbiol 17:287–290PubMedPubMedCentralGoogle Scholar
  3. 3.
    Natural Resources Defense Council (2016) New antibiotics scorecard: number of top restaurant chains restricting use in chicken doubled in 2016 [Internet]. https://www.nrdc.org/media/2016/160920. Accessed 27 July 2017
  4. 4.
    European Centre for Disease Control and Prevention (2009) The bacterial challenge: time to react [Internet]. Reproduction. 2009. http://ecdc.europa.eu/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf
  5. 5.
    Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38:1279–1286CrossRefPubMedGoogle Scholar
  6. 6.
    Barbachyn MR, Ford CW (2003) Oxazolidinone structure-activity relationships leading to linezolid. Angew Chemie Int Ed 42:2010–2023CrossRefGoogle Scholar
  7. 7.
    Kern WV (2006) Daptomycin: first in a new class of antibiotics for complicated skin and soft-tissue infections. Int J Clin Pract 60:370–378CrossRefPubMedGoogle Scholar
  8. 8.
    O’Daniel PI, Peng Z, Pi H, Testero SA, Ding D, Spink E et al (2014) Discovery of a new class of non-B-lactam inhibitors of penicillin-binding proteins with gram-positive antibacterial activity. J Am Chem Soc 136:3664–3672CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boyle W (1955) Spices and essential oils as preservatives. Am Perfum Essent Oil Rev 66:25–28Google Scholar
  10. 10.
    Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem Rev 10:197–204CrossRefGoogle Scholar
  11. 11.
    Mith H, Duré R, Delcenserie V, Zhiri A, Daube G, Clinquart A (2014) Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci Nutr 2:403–416CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bouaziz M, Yangui T, Sayadi S, Dhouib A (2009) Disinfectant properties of essential oils from Salvia officinalis L. cultivated in Tunisia. Food Chem Toxicol 47:2755–2760CrossRefPubMedGoogle Scholar
  13. 13.
    Ziosi P, Manfredini S, Vertuani S, Ruscetta V, Radice M, Sacchetti G et al (2010) Evaluating essential oils in cosmetics: antioxidant capacity and functionality. Cosmet Toilet 6:32–40Google Scholar
  14. 14.
    Manabe A, Nakayama S, Sakamoto K (1987) Effects of essential oils on erythrocytes and hepatocytes from rats and dipalmitoyl phosphatidylcholine-liposomes. Jpn J Pharmacol 44:77–84CrossRefPubMedGoogle Scholar
  15. 15.
    Jouany J-P, Morgavi DP (2007) Use of “natural” products as alternatives to antibiotic feed additives in ruminant production. Anim Int J Anim Biosci 1:1443–1466Google Scholar
  16. 16.
    Li P, Piao X, Ru Y, Han X, Xue L, Zhang H (2012) Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian-Australasian J Anim Sci 25:1617–1626CrossRefGoogle Scholar
  17. 17.
    Bento MHL, Ouwehand AC, Tiihonen K, Lahtinen S, Nurminen P, Saarinen MT et al (2013) Essential oils and their use in animal feeds for monogastric animals-effects on feed quality, gut microbiota, growth performance and food safety: a review. Vet Med (Praha) 58:449–58Google Scholar
  18. 18.
    Barbour EK, Shaib H, Azhar E, Kumosani T, Iyer A, Harakeh S et al (2013) Modulation by essential oil of vaccine response and production improvement in chicken challenged with velogenic newcastle disease virus. J Appl Microbiol 115:1278–1286CrossRefPubMedGoogle Scholar
  19. 19.
    Barbour EK, Bragg RR, Karrouf G, Iyer A, Azhar E, Harakeh S et al (2015) Control of eight predominant Eimeria spp. involved in economic coccidiosis of broiler chicken by a chemically characterized essential oil. J Appl Microbiol 118:583–591CrossRefPubMedGoogle Scholar
  20. 20.
    Mishra RPN, Oviedo-Orta E, Prachi P, Rappuoli R, Bagnoli F (2012) Vaccines and antibiotic resistance. Curr Opin Microbiol 15:596–602CrossRefPubMedGoogle Scholar
  21. 21.
    Azzari C, Resti M (2008) Reduction of carriage and transmission of Streptococcus pneumoniae: The beneficial “side effect” of pneumococcal conjugate vaccine. Clin Infect Dis 47:997–999CrossRefPubMedGoogle Scholar
  22. 22.
    Gonçalves G (2008) Herd immunity: recent uses in vaccine assessment. Expert Rev Vaccines 7:1493–1506CrossRefPubMedGoogle Scholar
  23. 23.
    Serruto D, Serino L, Masignani V, Pizza M (2009) Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine 27:3245–3250CrossRefPubMedGoogle Scholar
  24. 24.
    Finco O, Rappuoli R (2014) Designing vaccines for the twenty-first century society. Front Immunol 5:1–6CrossRefGoogle Scholar
  25. 25.
    Rappuoli R (2001) Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19:2688–2691CrossRefPubMedGoogle Scholar
  26. 26.
    Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820CrossRefPubMedGoogle Scholar
  27. 27.
    Romero JD, Outschoorn IM (1994) Current status of meningococcal Group B vaccine candidates: capsular or noncapsular? Clin Microbiol Rev 7:559–575CrossRefGoogle Scholar
  28. 28.
    Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA et al (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 247:1809–1815CrossRefGoogle Scholar
  29. 29.
    Sette A, Rappuoli R (2012) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33:530–541CrossRefGoogle Scholar
  30. 30.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefGoogle Scholar
  31. 31.
    De La Cruz VF, Lal AA, McCutchan TF (1988) Immunogenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage. J Biol Chem 263:4318–4322PubMedGoogle Scholar
  32. 32.
    Van Houten NE, Zwick MB, Menendez A, Scott JK (2006) Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide. Vaccine 24:4188–4200CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H et al (2016) Phage display as a promising approach for vaccine development. J Biomed Sci 23:1–18CrossRefGoogle Scholar
  34. 34.
    Wang H, Gao Y, Gong Y, Chen X, Liu C, Zhou X et al (2007) Identification and immunogenicity of an immunodominant mimotope of Avibacterium paragallinarum from a phage display peptide library. Vet Microbiol 119:231–239CrossRefPubMedGoogle Scholar
  35. 35.
    Elbreki M, Ross RP, Hill C, O’Mahony J, McAuliffe O, Coffey A (2014) Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment. J Viruses 2014:1–20CrossRefGoogle Scholar
  36. 36.
    Bragg R, Boucher C, van der Westhuizen W, Lee J-Y, Coetsee E, Theron C et al (2016) Bacteriophage therapy as a treatment option in a post-antibiotic era. In: Kon KV, Rai M (ed) Antibiotics resistant: mechanisms and new antimicrobial approaches, 1st ed. Elsevier, Amsterdam, pp 309–28Google Scholar
  37. 37.
    Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowska A (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp (Warsz) 35:569–83Google Scholar
  38. 38.
    Bhattacharya S (2010) The facts about penicillin allergy: a review. J Adv Pharm Technol Res 1:11–17PubMedPubMedCentralGoogle Scholar
  39. 39.
    Örmälä A, Jalasvuori M (2013) Should bacterial resistance to phages be a concern, even in the long run? Bacteriophage:3Google Scholar
  40. 40.
    Abedon ST (2012) Bacterial “immunity” against bacteriophages. Bacteriophage 2:50–54CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327CrossRefPubMedGoogle Scholar
  42. 42.
    Barrangou R, Fremaux C, Devaux H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  43. 43.
    Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128CrossRefPubMedGoogle Scholar
  44. 44.
    Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc London B:931–6CrossRefPubMedGoogle Scholar
  45. 45.
    Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2016) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–432CrossRefGoogle Scholar
  46. 46.
    Seed KD, Lazinski DW, Calderwood SB, Camilli A (2013) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–491CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496CrossRefPubMedGoogle Scholar
  48. 48.
    Wang I-N, Smith DL, Young R (2000) Holins: The protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825CrossRefPubMedGoogle Scholar
  49. 49.
    Catalão MJ, Gil F, Moniz-Pereira J, São-José C, Pimentel M (2013) Diversity in bacterial lysis systems: bacteriophages how the way. FEMS Microbiol Rev 37:554–571CrossRefPubMedGoogle Scholar
  50. 50.
    Tišáková L, Vidová B, Farkašovská J, Godány A (2014) Bacteriophage endolysin Lyt μ1/6: characterization of the C-terminal binding domain. FEMS Microbiol Lett 350:199–208CrossRefPubMedGoogle Scholar
  51. 51.
    Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci 98:4107–4112CrossRefPubMedGoogle Scholar
  52. 52.
    Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172CrossRefPubMedGoogle Scholar
  53. 53.
    Dong H, Zhu C, Chen J, Ye X, Huang YP (2015) Antibacterial activity of Stenotrophomonas maltophilia endolysin P28 against both gram-positive and gram-negative bacteria. Front Microbiol 6:1–8Google Scholar
  54. 54.
    Fernandes S, Proença D, Cantante C, Silva FA, Leandro C, Lourenço S et al (2012) Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus. Microb Drug Resist 18:333–343CrossRefPubMedGoogle Scholar
  55. 55.
    Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci 104(27):11197–202CrossRefPubMedGoogle Scholar
  56. 56.
    Bragg RR (2004) Limitation of the spread and impact of infectious coryza through the use of a continuous disinfection programme. Onderstepoort J Vet Res 71:1–8PubMedGoogle Scholar
  57. 57.
    Bragg RR, Plumstead P (2003) Continuous disinfection as a means to control infectious diseases in poultry: evaluation of a continuous disinfection programme for broilers. Onderstepoort J Vet Res 70:219–229PubMedGoogle Scholar
  58. 58.
    Russell AD (1998) Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect 43 (Supple):S57–68CrossRefPubMedGoogle Scholar
  59. 59.
    Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16:91–104CrossRefPubMedGoogle Scholar
  60. 60.
    Russell AD (1997) Plasmids and bacterial resistance to biocides. J Appl Microbiol 83(2):155–65CrossRefPubMedGoogle Scholar
  61. 61.
    McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179PubMedPubMedCentralGoogle Scholar
  62. 62.
    Méchin L, Dubois-Brissonnet F, Heyd B, Leveau JY (1999) Adaptation of Pseudomonas aeruginosa ATCC 15442 to didecyldimethylammonium bromide induces changes in membrane fatty acid composition and in resistance of cells. J Appl Microbiol 86(5):859–66CrossRefPubMedGoogle Scholar
  63. 63.
    White DG, McDermott PF (2001) Emergence and transfer of antibacterial resistance. J Dairy Sci 84:E151–E155CrossRefGoogle Scholar
  64. 64.
    Paulsen IT, Park JH, Choi PS, Saier MH Jr (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of protiens, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 156:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Adair FW, Geftic S, Gelzer J (1971) Resistance of Pseudomonas to quaternary ammonium compounds. Appl Microbiol 21:1058–1063PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34:1865–1868CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C (2002) Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother 46:1469–1474CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int J Antimicrob Agents 39:381–389CrossRefPubMedGoogle Scholar
  69. 69.
    McBain AJ, Ledder RG, Moore LE, Carl E, Gilbert P, Catrenich CE (2004) Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl Environ Microbiol 70:3449–3456CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Bjorland J, Sunde M, Waage S (2001) Plasmid-borne smr gene causes resistance to quaternary ammonium compounds in bovine Staphylococcus aureus. J Clin Microbiol 39:3999–4004CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bjorland J, Steinum T, Kvitle B, Waage S, Sunde M, Heir E (2005) Widespread distribution of disinfectant resistance genes among staphylococci of bovine and caprine origin in Norway. J Clin Microbiol 43:4363–4368CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ioannou CJ, Hanlon GW, Denyer SP (2007) Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrob Agents Chemother 51:296–306CrossRefPubMedGoogle Scholar
  73. 73.
    Bjorland J, Steinum T, Sunde M, Waage S, Heir E (2003) Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob Agents Chemother. 47(10):3046–52CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Heir E, Sundheim G, Holck AL (1999) Identification and characterization of quaternary ammonium compound resistant staphylococci from the food industry. Int J Food Microbiol 48:211–219CrossRefPubMedGoogle Scholar
  75. 75.
    Heir E, Sundheim G, Holck AL (1999) The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J Appl Microbiol 86:378–388CrossRefPubMedGoogle Scholar
  76. 76.
    Heir E, Sundheim G, Holck AL (1998) The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol Lett 163:49–56CrossRefPubMedGoogle Scholar
  77. 77.
    Anthonisen I, Sunde M, Steinum TM, Sidhu MS, Sørum H (2002) Organization of the antiseptic resistance gene qacA and Tn 552 -related β -lactamase genes in multidrug-resistant Staphylococcus haemolyticus strains of animal and human origins. Antimicrob Agents Chemother 46:3606–3612CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Langsrud S, Sundheim G, Borgmann-Strahsen R (2003) Intrinsic and acquired resistance to quaternary ammonium compounds in food-related Pseudomonas spp. J Appl Microbiol 95(4):874–82CrossRefPubMedGoogle Scholar
  79. 79.
    Alam MM, Ishino M, Kobayashi N (2003) Analysis of genomic diversity and evolution of the low-level antiseptic resistance gene smr in Staphylococcus aureus. Microb Drug Resist 9:S-1–S-7CrossRefGoogle Scholar
  80. 80.
    Littlejohn TG, DiBerardino D, Messerotti LJ, Spiers SJ, Skurray RA (1991) Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Gene 101:59–66CrossRefPubMedGoogle Scholar
  81. 81.
    Paulsen IT, Brown MH, Dunstan SJ, Skurray RA (1995) Molecular characterization of the Staphylococcal multidrug resistance export protein QacC. J Bacteriol 177:2827–2833CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Gillings MR, Holley MP, Stokes HW (2009) Evidence for dynamic exchange of qac gene cassettes between class 1 integrons and other integrons in freshwater biofilms. FEMS Microbiol Lett 296:282–288CrossRefPubMedGoogle Scholar
  83. 83.
    Gillings MR, Xuejun D, Hardwick SA, Holley MP, Stokes HW (2009) Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons? Int Soc Microb Ecol J 3:209–215Google Scholar
  84. 84.
    Recchia GD, Hall RM (1995) Gene cassettes: a new class of mobile element. Microbiology 141:3015–3027CrossRefPubMedGoogle Scholar
  85. 85.
    Partridge SR, Recchia GD, Stokes HW, Hall M (2001) Family of Class 1 integrons related to In4 from Tn 1696. Society 45:3014–3020Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Microbial, Biochemical and Food Microbiology, Faculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinRepublic of South Africa

Personalised recommendations