Cryptanalysis of Image Cryptosystem Using Synchronized 4D Lorenz Stenflo Hyperchaotic Systems

  • Musheer Ahmad
  • Aisha Aijaz
  • Subia Ansari
  • Mohammad Moazzam Siddiqui
  • Sarfaraz Masood
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 701)

Abstract

Lately, a color image cryptosystem is suggested for secure wireless communication using 4D Lorenz Stenflo hyperchaotic systems. The proposition specified a nonlinear state feedback-based synchronization for master–slave Lorenz Stenflo chaotic systems. It presents seemingly successful application of synchronized chaotic systems for image encryption which is backed by simulations to assess the efficiency and stability of encryption. However, the image cryptosystem has the presence of certain loopholes. This paper aims to propose the cryptanalysis of this cryptosystem by exploiting existing vulnerabilities and loopholes. To prove that encryption algorithm is devoid of security, we mount the proposed attacks in the form of chosen-plaintext attack that recover the plaintext image from encrypted image without secret key. It is, therefore, shown through experimental simulations that the image cryptosystem is all insecure for use in practical applications of image-based secure wireless communication.

Keywords

Lorenz Stenflo hyperchaotic system Image cryptosystem Synchronization Cryptanalysis 

References

  1. 1.
    El-Samie, F.E.A., Ahmed, H.E.H., Elashry, I.F., Shahieen, M.H., Faragallah, O.S., El-Rabaie, E.S.M., Alshebeili, S.A.: Image Encryption: A Communication Perspective. CRC Press (2013)Google Scholar
  2. 2.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 662 (1949)MathSciNetMATHGoogle Scholar
  3. 3.
    Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC press (1996)CrossRefGoogle Scholar
  4. 4.
    Kocarev, L., Lian, S. (eds.): Chaos-Based Cryptography: Theory, Algorithms and Applications, vol. 354. Springer (2011)MATHGoogle Scholar
  5. 5.
    Kocarev, L., Galias, Z., Lian, S. (eds.): Intelligent Computing Based on Chaos, vol. 184. Springer (2009)MATHGoogle Scholar
  6. 6.
    Bard, G.V.: Algebraic Cryptanalysis. Springer, Berlin (2009)CrossRefGoogle Scholar
  7. 7.
    Hammami, S.: State feedback-based secure image cryptosystem using hyperchaotic synchronization. ISA Trans. 54, 52–59 (2015)CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Wu, X., Gui, Z.: Global synchronization criteria for two Lorenz-Stenflo systems via single-variable substitution control. Nonlinear Dyn. 62(1), 361–369 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Özkaynak, F., Özer, A.B., Yavuz, S.: Cryptanalysis of a novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 285(2), 4946–4948 (2012)CrossRefGoogle Scholar
  10. 10.
    Akhavan, A., Samsudin, A., Akhshani, A.: Cryptanalysis of an image encryption algorithm based on DNA encoding. Opt. Laser Technol. 95, 94–99 (2017)CrossRefGoogle Scholar
  11. 11.
    Norouzi, B., Mirzakuchaki, S., Norouzi, P.: Breaking an image encryption technique based on neural chaotic generator. Optik-Int. J. Light Electr. Opt. 140, 946–952 (2017)CrossRefGoogle Scholar
  12. 12.
    Singh, S., Ahmad, M., Malik, D.: Breaking an image encryption scheme based on chaotic synchronization phenomenon. In: 2016 Ninth International Conference on, Contemporary Computing (IC3), pp. 1–4. IEEE Aug 2016Google Scholar
  13. 13.
    Sharma, P.K., Kumar, A., Ahmad, M.: Cryptanalysis of image encryption algorithms based on pixels shuffling and bits shuffling. In: Proceedings of the International Congress on Information and Communication Technology, pp. 281–289. Springer, Singapore (2016)Google Scholar
  14. 14.
  15. 15.
    Lambić, D.: Security analysis and improvement of a block cipher with dynamic S-boxes based on tent map. Nonlinear Dyn. 79(4), 2531–2539 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wu, J., Liao, X., Yang, B.: Cryptanalysis and Enhancements of image encryption based on three-dimensional bit matrix permutation. Sig. Process. 142, 292–300 (2018).  https://doi.org/10.1016/j.sigpro.2017.06.014CrossRefGoogle Scholar
  17. 17.
    Ahmad, M., AlSharari, H.D.: On the security of chaos-based watermarking scheme for secure communication. In: Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications, pp. 313–321. Springer, Singapore (2017)Google Scholar
  18. 18.
    Ahmad, M., Shamsi, U., Khan, I.R.: An enhanced image encryption algorithm using fractional chaotic systems. Procedia Comput. Sci. 57, 852–859 (2015)CrossRefGoogle Scholar
  19. 19.
    Sharma, P.K., Ahmad, M., Khan, P.M.: Cryptanalysis of image encryption algorithm based on pixel shuffling and chaotic S-box transformation. In: International Symposium on Security in Computing and Communication, pp. 173–181. Springer, Berlin, Heidelberg, Sept 2014Google Scholar
  20. 20.
    Verma, O.P., Nizam, M., Ahmad, M.: Modified multi-chaotic systems that are based on pixel shuffle for image encryption. J. Inf. Process. Syst. 9(2), 271–286 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Musheer Ahmad
    • 1
  • Aisha Aijaz
    • 1
  • Subia Ansari
    • 1
  • Mohammad Moazzam Siddiqui
    • 2
  • Sarfaraz Masood
    • 1
  1. 1.Department of Computer Engineering, Faculty of Engineering and TechnologyJamia Millia IslamiaNew DelhiIndia
  2. 2.Subhash Institute of Software Technology, A.P.J. Abdul Kalam Technical UniversityLucknowIndia

Personalised recommendations