Recent Advances in Carbon–Semiconductor Nanocomposites for Water Remediation

  • Kunal MondalEmail author
  • Ankur Gupta
Part of the Energy, Environment, and Sustainability book series (ENENSU)


The demand of clean decontaminated water supply is increasing with the increase in the population of the world. As a result, the global need for more economic and efficient technologies for water remediation is also rising. The entry of nanotechnology into the wastewater treatment engineering exemplified a noteworthy advancement, and nanoparticles (NPs) have been exhaustively studied for possible remediation applications. However, the wastewater treatment with dispersed NP suspensions is still inadequate and to some extent antagonistic on the grounds of health and environmental safety, even as NP reaction mechanisms, ecotoxicity, and their transport properties are quiet under exploration. Theoretically, the development of porous nanocomposites containing nanoparticles to overcome these concerns offers the next logical step for developing functional nanomaterials and nanocomposites that are better investigated in the wastewater industry. This purpose of this review is to provide an overview of the range of carbon nanocomposites containing NP of semiconductor photocatalysts being technologically advanced, at the same time highlighting their limitations in practical uses. The review also briefly covers what further improvements are needed to optimize existing nanocomposite-mediated water remediation processes to successively accomplish viable maturity.


Carbon nanocomposites Carbon/metal-oxide nanocomposites Carbon/metal nanocomposites Carbon/photocatalyst composites Carbon nanofiber/metal-oxide photocatalyst Wastewater remediation UV and visible light photocatalysis Water disinfection Photocatalyst recycling 



The authors would like to acknowledge Professor Ashutosh Sharma (2015 to till date), the Honorable Secretary to the Department of Science and Technology, for his constant support and inspiration to many generations of colloid and surface scientists and engineers and enormous contribution to the nanoscience and nanotechnology of India and to the world.


  1. Acar C, Dincer I, Naterer GF (2016) Review of photocatalytic water-splitting methods for sustainable hydrogen production: review: photocatalysis for sustainable hydrogen. Int J Energy Res 40:1449–1473. doi: 10.1002/er.3549 CrossRefGoogle Scholar
  2. Adamu H, McCue AJ, Taylor RSF et al (2017) Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2–AC composites. Appl Catal B Environ 217:181–191. doi: 10.1016/j.apcatb.2017.05.091 CrossRefGoogle Scholar
  3. Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4:4174–4180. doi: 10.1021/nn1007429 CrossRefGoogle Scholar
  4. Akir S, Hamdi A, Addad A et al (2017) Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance. Appl Surf Sci 400:461–470. doi: 10.1016/j.apsusc.2016.12.212 CrossRefGoogle Scholar
  5. Ali MA, Singh C, Mondal K et al (2016a) Mesoporous few-layer graphene platform for affinity biosensing application. ACS Appl Mater Interfaces 8:7646–7656. doi: 10.1021/acsami.5b12460 CrossRefGoogle Scholar
  6. Ali MA, Mondal K, Jiao Y et al (2016b) Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl Mater Interfaces 8:20570–20582. doi: 10.1021/acsami.6b05648 CrossRefGoogle Scholar
  7. Ali MA, Mondal K, Wang Y et al (2017) In situ integration of graphene foam–titanium nitride based bio-scaffolds and microfluidic structures for soil nutrient sensors. Lab Chip 17:274–285. doi: 10.1039/C6LC01266C CrossRefGoogle Scholar
  8. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. doi: 10.1021/cr900070d CrossRefGoogle Scholar
  9. Ameta SC, Ameta R (2016) Solar energy conversion and storage: photochemical modes. CRC Press, Boca Raton, FLGoogle Scholar
  10. Arshad A, Iqbal J, Mansoor Q, Ahmed I (2017) Graphene/SiO2 nanocomposites: the enhancement of photocatalytic and biomedical activity of SiO2 nanoparticles by graphene. J Appl Phys 121:244901. doi: 10.1063/1.4979968 CrossRefGoogle Scholar
  11. Asahi R (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science (80-)293:269–271. doi: 10.1126/science.1061051
  12. Bailón-García E, Elmouwahidi A, Carrasco-Marín F et al (2017) Development of carbon-ZrO 2 composites with high performance as visible-light photocatalysts. Appl Catal B Environ 217:540–550. doi: 10.1016/j.apcatb.2017.05.090 CrossRefGoogle Scholar
  13. Bakos LP, Justh N, Hernádi K et al (2016) Core-shell carbon nanosphere-TiO2 composite and hollow TiO2 nanospheres prepared by atomic layer deposition. J Phys: Conf Ser 764:12005. doi: 10.1088/1742-6596/764/1/012005 Google Scholar
  14. Basahel SN, Ali TT, Mokhtar M, Narasimharao K (2015) Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res Lett. doi: 10.1186/s11671-015-0780-z Google Scholar
  15. Binas V, Venieri D, Kotzias D, Kiriakidis G (2017) Modified TiO2 based photocatalysts for improved air and health quality. J Mater 3:3–16. doi: 10.1016/j.jmat.2016.11.002 Google Scholar
  16. Blake DM, Maness P-C, Huang Z et al (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods 28:1–50. doi: 10.1080/03602549909351643 CrossRefGoogle Scholar
  17. Bora LV, Mewada RK (2017) Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renew Sustain Energy Rev 76:1393–1421. doi: 10.1016/j.rser.2017.01.130 CrossRefGoogle Scholar
  18. Bressan E, Ferroni L, Gardin C et al (2014) Graphene based scaffolds effects on stem cells commitment. J Transl Med. doi: 10.1186/s12967-014-0296-9 Google Scholar
  19. Bustos-Ramírez K, Barrera-Díaz CE, De Icaza-Herrera M et al (2015) 4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts. J Environ Heal Sci Eng. doi: 10.1186/s40201-015-0184-0 Google Scholar
  20. Byrne JA, Eggins BR, Brown NMD et al (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl Catal B Environ 17:25–36. doi: 10.1016/S0926-3373(97)00101-X CrossRefGoogle Scholar
  21. Cai R, Wu J, Sun L et al (2016) 3D graphene/ZnO composite with enhanced photocatalytic activity. Mater Des 90:839–844. doi: 10.1016/j.matdes.2015.11.020 CrossRefGoogle Scholar
  22. Cao L, Sahu S, Anilkumar P et al (2011) Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J Am Chem Soc 133:4754–4757. doi: 10.1021/ja200804h CrossRefGoogle Scholar
  23. Chakrabarti S, Dutta B (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112:269–278. doi: 10.1016/j.jhazmat.2004.05.013 CrossRefGoogle Scholar
  24. Chang G, Cheng Z, Warren R et al (2015) Highly efficient photocatalysts for surface hybridization of TiO2 nanofibers with carbon films. Chem Plus Chem 80:827–831. doi: 10.1002/cplu.201402427 Google Scholar
  25. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science (80-)331:746–750. doi: 10.1126/science.1200448
  26. Chen CS, Liu TG, Lin LW et al (2013) Multi-walled carbon nanotube-supported metal-doped ZnO nanoparticles and their photocatalytic property. J Nanoparticle Res. doi: 10.1007/s11051-012-1295-5 Google Scholar
  27. Chen G, Wu S, Hui L et al (2016) Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Sci Rep. doi: 10.1038/srep19028 Google Scholar
  28. Chen F, An W, Liu L et al (2017) Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy. Appl Catal B Environ 217:65–80. doi: 10.1016/j.apcatb.2017.05.078 CrossRefGoogle Scholar
  29. Cheng Y-F, Cao Q, Zhang J et al (2017a) Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrods array and photo-optimized surface-enhanced Raman scattering. Appl Catal B Environ 217:37–47. doi: 10.1016/j.apcatb.2017.05.021 CrossRefGoogle Scholar
  30. Cheng J, Wang Y, Xing Y et al (2017b) A stable and highly efficient visible-light photocatalyst of TiO2 and heterogeneous carbon core–shell nanofibers. RSC Adv 7:15330–15336. doi: 10.1039/C7RA00546F CrossRefGoogle Scholar
  31. Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111:6976–6982. doi: 10.1021/jp0685030 CrossRefGoogle Scholar
  32. Costa LL, Prado AGS (2009) TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye. J Photochem Photobiol A Chem 201:45–49. doi: 10.1016/j.jphotochem.2008.09.014 CrossRefGoogle Scholar
  33. Cui G, Wang W, Ma M et al (2013) Rational design of carbon and TiO2 assembly materials: covered or strewn, which is better for photocatalysis? Chem Commun 49:6415. doi: 10.1039/c3cc42500b CrossRefGoogle Scholar
  34. Czech B, Buda W (2015) Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environ Res 137:176–184. doi: 10.1016/j.envres.2014.12.006 CrossRefGoogle Scholar
  35. Daneshvar N, Salari D, Khataee A (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem 162:317–322. doi: 10.1016/S1010-6030(03)00378-2 CrossRefGoogle Scholar
  36. Dang X, Zhang X, Lu Z et al (2014) Construction of Au@TiO2/graphene nanocomposites with plasmonic effect and super adsorption ability for enhanced visible-light-driven photocatalytic organic pollutant degradation. J Nanoparticle Res. doi: 10.1007/s11051-013-2215-z Google Scholar
  37. Das RK, Kar JP, Mohapatra S (2016) Enhanced photodegradation of organic pollutants by carbon quantum dot (CQD) deposited Fe3O4@mTiO2 Nano-Pom-Pom Balls. Ind Eng Chem Res 55:5902–5910. doi: 10.1021/acs.iecr.6b00792 CrossRefGoogle Scholar
  38. Das S, Sinha S, Das B et al (2017) Disinfection of multidrug resistant escherichia coli by solar-photocatalysis using Fe-doped ZnO nanoparticles. Sci Rep. doi: 10.1038/s41598-017-00173-0 Google Scholar
  39. Dey NK, Kim MJ, Kim K-D et al (2011) Adsorption and photocatalytic degradation of methylene blue over TiO2 films on carbon fiber prepared by atomic layer deposition. J Mol Catal A: Chem 337:33–38. doi: 10.1016/j.molcata.2011.01.010 CrossRefGoogle Scholar
  40. Dindar B, Içli S (2001) Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J Photochem Photobiol A Chem 140:263–268. doi: 10.1016/S1010-6030(01)00414-2 CrossRefGoogle Scholar
  41. Dominguez S, Huebra M, Han C et al (2017) Magnetically recoverable TiO2-WO3 photocatalyst to oxidize bisphenol A from model wastewater under simulated solar light. Environ Sci Pollut Res 24:12589–12598. doi: 10.1007/s11356-016-7564-6 CrossRefGoogle Scholar
  42. Dong S, Feng J, Fan M et al (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5:14610–14630. doi: 10.1039/C4RA13734E CrossRefGoogle Scholar
  43. Dunlop PSM, Byrne JA, Manga N, Eggins BR (2002) The photocatalytic removal of bacterial pollutants from drinking water. J Photochem Photobiol A Chem 148:355–363. doi: 10.1016/S1010-6030(02)00063-1 CrossRefGoogle Scholar
  44. Dwivedi N, Kumar S, Malik HK (2011) Nanostructured Titanium/Diamond-like carbon multilayer films: deposition, characterization, and applications. ACS Appl Mater Interfaces 3:4268–4278. doi: 10.1021/am200939j CrossRefGoogle Scholar
  45. El-Sadik A (2010) Nanoparticle-labeled stem cells: a novel therapeutic vehicle. Clin Pharmacol Adv Appl 9. doi: 10.2147/cpaa.s8931
  46. Fan H, Zhao X, Yang J et al (2012) ZnO–graphene composite for photocatalytic degradation of methylene blue dye. Catal Commun 29:29–34. doi: 10.1016/j.catcom.2012.09.013 CrossRefGoogle Scholar
  47. Fang J, Wang W, Zhu C et al (2017) CdS/Pt photocatalytic activity boosted by high-energetic photons based on efficient triplet–triplet annihilation upconversion. Appl Catal B Environ 217:100–107. doi: 10.1016/j.apcatb.2017.05.069 CrossRefGoogle Scholar
  48. Fernando KAS, Sahu S, Liu Y et al (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interfaces 7:8363–8376. doi: 10.1021/acsami.5b00448 CrossRefGoogle Scholar
  49. Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. doi: 10.1016/j.surfrep.2008.10.001 CrossRefGoogle Scholar
  50. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9:1–12. doi: 10.1016/j.jphotochemrev.2007.12.003 CrossRefGoogle Scholar
  51. Goswami DY, Trivedi DM, Block SS (1997) Photocatalytic disinfection of indoor air. J Sol Energy Eng 119:92. doi: 10.1115/1.2871871 CrossRefGoogle Scholar
  52. Gu C, Xiong S, Zhong Z et al (2017) A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation. RSC Adv 7:22234–22242. doi: 10.1039/C7RA02583A CrossRefGoogle Scholar
  53. Gumy D, Rincon AG, Hajdu R, Pulgarin C (2006) Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed TiO2 catalysts study. Sol Energy 80:1376–1381. doi: 10.1016/j.solener.2005.04.026 CrossRefGoogle Scholar
  54. Gupta A, Mondal K, Sharma A, Bhattacharya S (2015) Superhydrophobic polymethylsilsesquioxane pinned one dimensional ZnO nanostructures for water remediation through photo-catalysis. RSC Adv 5:45897–45907. doi: 10.1039/C5RA02938D CrossRefGoogle Scholar
  55. Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828Google Scholar
  56. Herring NP, Almahoudi SH, Olson CR, El-Shall MS (2012) Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis. J Nanoparticle Res. doi: 10.1007/s11051-012-1277-7 Google Scholar
  57. Hosseini SA, Babaei S (2016) Graphene oxide/zinc oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of methylene blue (MB)-process modeling by response surface methodology (RSM). J Braz Chem Soc. doi: 10.5935/0103-5053.20160176 Google Scholar
  58. Hu L, Huo K, Chen R et al (2011) Recyclable and high-sensitivity electrochemical biosensing platform composed of carbon-doped TiO2 nanotube arrays. Anal Chem 83:8138–8144. doi: 10.1021/ac201639m CrossRefGoogle Scholar
  59. Hung-Low F, Ramirez DA, Peterson GR et al (2016) Development of a carbon-supported Sn–SnO2 photocatalyst by a new hybridized sol–gel/dextran approach. RSC Adv 6:21019–21025. doi: 10.1039/C6RA01129B CrossRefGoogle Scholar
  60. Ireland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol 59:1668–1670Google Scholar
  61. Jafari T, Moharreri E, Amin A et al (2016) Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21:900. doi: 10.3390/molecules21070900 CrossRefGoogle Scholar
  62. Ji X, Lou W, Wang Q et al (2012) Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on Titanium substrates. Int J Mol Sci 13:5242–5253. doi: 10.3390/ijms13045242 CrossRefGoogle Scholar
  63. Ji Z, Shen X, Li M et al (2013) Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties. Nanotechnology 24:115603. doi: 10.1088/0957-4484/24/11/115603 CrossRefGoogle Scholar
  64. Jiang T, Zhang L, Ji M et al (2013) Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology 11:737–742. doi: 10.1016/j.partic.2012.07.008 CrossRefGoogle Scholar
  65. Jiang L, Yuan X, Pan Y et al (2017) Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl Catal B Environ 217:388–406. doi: 10.1016/j.apcatb.2017.06.003 CrossRefGoogle Scholar
  66. Jin Y, Wu M, Zhao G, Li M (2011) Photocatalysis-enhanced electrosorption process for degradation of high-concentration dye wastewater on TiO2/carbon aerogel. Chem Eng J 168:1248–1255. doi: 10.1016/j.cej.2011.02.026 CrossRefGoogle Scholar
  67. Jo W-K, Lee J, Chun H-H (2014) Titania nanotubes grown on carbon fibers for photocatalytic decomposition of gas-phase aromatic pollutants. Mat (Basel) 7:1801–1813. doi: 10.3390/ma7031801 CrossRefGoogle Scholar
  68. Kalt P, Birzer C, Evans H et al (2014) A solar disinfection water treatment system for remote communities. Procedia Eng 78:250–258. doi: 10.1016/j.proeng.2014.07.064 CrossRefGoogle Scholar
  69. Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47. doi: 10.1007/s10311-013-0428-0 CrossRefGoogle Scholar
  70. Katiyar S, Mondal K, Sharma A (2016) One-step sol–gel synthesis of hierarchically porous, flow-through carbon/silica monoliths. RSC Adv 6:12298–12310. doi: 10.1039/C5RA26503G CrossRefGoogle Scholar
  71. Khan Z, Chetia TR, Vardhaman AK et al (2012) Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of graphene oxide. RSC Adv 2:12122. doi: 10.1039/c2ra21596a CrossRefGoogle Scholar
  72. Kim CH, Kim B-H, Yang KS (2011) Visible light-induced photocatalytic activity of Ag-containing TiO2/carbon nanofibers composites. Synth Met 161:1068–1072. doi: 10.1016/j.synthmet.2011.03.017 CrossRefGoogle Scholar
  73. Kiran V, Sampath S (2013) Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties. Nanoscale 5:10646. doi: 10.1039/c3nr03309k CrossRefGoogle Scholar
  74. Krishnamoorthy K, Mohan R, Kim S-J (2011) Graphene oxide as a photocatalytic material. Appl Phys Lett 98:244101. doi: 10.1063/1.3599453 CrossRefGoogle Scholar
  75. Kumar VB, Borenstein A, Markovsky B et al (2016) Activated carbon modified with carbon nanodots as novel electrode material for supercapacitors. J Phys Chem C 120:13406–13413. doi: 10.1021/acs.jpcc.6b04045 CrossRefGoogle Scholar
  76. Lee WJ, Lee JM, Kochuveedu ST et al (2012) Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. ACS Nano 6:935–943. doi: 10.1021/nn204504h CrossRefGoogle Scholar
  77. Lee HJ, Kim J, Park CH (2014) Fabrication of self-cleaning textiles by TiO2-carbon nanotube treatment. Text Res J 84:267–278. doi: 10.1177/0040517513494258 CrossRefGoogle Scholar
  78. Li J, Wu N (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5:1360–1384. doi: 10.1039/C4CY00974F CrossRefGoogle Scholar
  79. Li Q, Xie R, Li YW et al (2007) Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium oxide. Environ Sci Technol 41:5050–5056. doi: 10.1021/es062753c CrossRefGoogle Scholar
  80. Li X, Lin H, Chen X et al (2015a) Fabrication of TiO2/porous carbon nanofibers with superior visible photocatalytic activity. New J Chem 39:7863–7872. doi: 10.1039/C5NJ01189B CrossRefGoogle Scholar
  81. Li Y, Zhao M, Zhang N et al (2015b) Synthesis and photocatalytic activity of carbon spheres loaded Cu2O/Cu composites. J Alloys Compd 643:106–110. doi: 10.1016/j.jallcom.2015.03.254 CrossRefGoogle Scholar
  82. Li J, Liu X, Piao X et al (2015c) Novel carbon sphere@Bi2 MoO6 core–shell structure for efficient visible light photocatalysis. RSC Adv 5:16592–16597. doi: 10.1039/C4RA16777E CrossRefGoogle Scholar
  83. Liang Y, Wu D, Fu R (2013) Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci Rep. doi: 10.1038/srep01119 Google Scholar
  84. Licht S (2001) Multiple band gap semiconductor/electrolyte solar energy conversion. J Phys Chem B 105:6281–6294. doi: 10.1021/jp010552j CrossRefGoogle Scholar
  85. Lin X, Rong F, Ji X, Fu D (2011) Carbon-doped mesoporous TiO2 film and its photocatalytic activity. Microporous Mesoporous Mater 142:276–281. doi: 10.1016/j.micromeso.2010.12.010 CrossRefGoogle Scholar
  86. Lin W, Yu X, Shen Y et al (2017) Carbon dots/BiOCl films with enhanced visible light photocatalytic performance. J Nanoparticle Res. doi: 10.1007/s11051-017-3764-3 Google Scholar
  87. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921. doi: 10.1038/nmat3151 CrossRefGoogle Scholar
  88. Liu X, Pan L, Zhao Q et al (2012) UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng J 183:238–243. doi: 10.1016/j.cej.2011.12.068 CrossRefGoogle Scholar
  89. Liu X, Pan L, Lv T, Sun Z (2013) Investigation of photocatalytic activities over ZnO–TiO2—reduced graphene oxide composites synthesized via microwave-assisted reaction. J Colloid Interface Sci 394:441–444. doi: 10.1016/j.jcis.2012.11.047 CrossRefGoogle Scholar
  90. Luo Y, Luo J, Jiang J et al (2012) Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5:6559. doi: 10.1039/c2ee03396h CrossRefGoogle Scholar
  91. Maness PC, Smolinski S, Blake DM et al (1999) Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098Google Scholar
  92. Martins NCT, Ângelo J, Girão AV et al (2016) N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl Catal B Environ 193:67–74. doi: 10.1016/j.apcatb.2016.04.016 CrossRefGoogle Scholar
  93. Masih D, Ma Y, Rohani S (2017) Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl Catal B Environ 206:556–588. doi: 10.1016/j.apcatb.2017.01.061 CrossRefGoogle Scholar
  94. Matsuda A, Sreekantan S, Krengvirat W (2013) Well-aligned TiO2 nanotube arrays for energy-related applications under solar irradiation. J Asian Ceram Soc 1:203–219. doi: 10.1016/j.jascer.2013.07.001 CrossRefGoogle Scholar
  95. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214. doi: 10.1111/j.1574-6968.1985.tb00864.x CrossRefGoogle Scholar
  96. Matsunaga T, Tomoda R, Nakajima T et al (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl Environ Microbiol 54:1330–1333Google Scholar
  97. McAllister MJ, Li J-L, Adamson DH et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404. doi: 10.1021/cm0630800 CrossRefGoogle Scholar
  98. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108:1–35. doi: 10.1016/S1010-6030(97)00118-4 CrossRefGoogle Scholar
  99. Miura T, Tao R, Shibata S et al (2016) Geometries, electronic couplings, and hole dissociation dynamics of photoinduced electron-hole pairs in polyhexylthiophene-fullerene dyads rigidly linked by oligophenylenes. J Am Chem Soc 138:5879–5885. doi: 10.1021/jacs.5b13414 CrossRefGoogle Scholar
  100. Miyazaki H, Matsui H, Nagano T et al (2008) Synthesis and electronic behaviors of TiO2/carbon clusters/Cr2O3 composite materials. Appl Surf Sci 254:7365–7369. doi: 10.1016/j.apsusc.2008.05.332 CrossRefGoogle Scholar
  101. Mohapatra L, Parida K (2017) A review of solar and visible light active oxo-bridged materials for energy and environment. Catal Sci Technol 7:2153–2164. doi: 10.1039/C7CY00116A CrossRefGoogle Scholar
  102. Mondal K (2017) Recent advances in the synthesis of metal oxide nanofibers and their environmental remediation applications. Inventions 2:9. doi: 10.3390/inventions2020009 CrossRefGoogle Scholar
  103. Mondal K, Moitra P (2017) Metal-semiconductor core–shell nanostructured photocatalysts for environmental applications and their recycling process. In: Metal semiconductor core-shell nanostructures energy environmental application. Elsevier, pp 133–157Google Scholar
  104. Mondal K, Kumar J, Sharma A (2013) TiO2-nanoparticles-impregnated photocatalytic macroporous carbon films by spin coating. Nanomater Energy 2:121–133. doi: 10.1680/nme.12.00034 CrossRefGoogle Scholar
  105. Mondal K, Bhattacharyya S, Sharma A (2014) Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2 nanofiber mats. Ind Eng Chem Res 53:18900–18909. doi: 10.1021/ie5025744 CrossRefGoogle Scholar
  106. Mondal K, Kumar R, Sharma A (2016) Metal-oxide decorated multilayered three-dimensional (3D) porous carbon thin films for supercapacitor electrodes. Ind Eng Chem Res 55:12569–12581. doi: 10.1021/acs.iecr.6b03396 CrossRefGoogle Scholar
  107. Mondal K, Ali MA, Singh C et al (2017) Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sens Actuators B Chem 246:202–214. doi: 10.1016/j.snb.2017.02.050 CrossRefGoogle Scholar
  108. Mungondori HH, Tichagwa L (2012) Photo-catalytic activity of carbon/nitrogen doped TiO2-SiO2 under UV and visible light irradiation. Mater Sci Forum 734:226–236. doi: 10.4028/ CrossRefGoogle Scholar
  109. Neimark AV, Ruetsch S, Kornev KG et al (2003) Hierarchical pore structure and wetting properties of single-wall carbon nanotube fibers. Nano Lett 3:419–423. doi: 10.1021/nl034013x CrossRefGoogle Scholar
  110. Nguyen DCT, Cho KY, Oh W-C (2017) Synthesis of mesoporous SiO2/Cu2O–Graphene nanocomposites and their highly efficient photocatalytic performance for dye pollutants. RSC Adv 7:29284–29294. doi: 10.1039/C7RA03526H CrossRefGoogle Scholar
  111. Nishijima K, Ohtani B, Yan X et al (2007) Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO2 photocatalysts. Chem Phys 339:64–72. doi: 10.1016/j.chemphys.2007.06.014 CrossRefGoogle Scholar
  112. Nishikiori H, Fujiwara S, Miyagawa S et al (2017) Crystal growth of titania by photocatalytic reaction. Appl Catal B Environ 217:241–246. doi: 10.1016/j.apcatb.2017.05.076 CrossRefGoogle Scholar
  113. Niu P, Zhang L, Liu G, Cheng H-M (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770. doi: 10.1002/adfm.201200922 CrossRefGoogle Scholar
  114. Nosaka Y, Ishizuka Y, Miyama H (1986) Separation mechanism of a photoinduced electron-hole pair in metal-loaded semiconductor powders. Berichte der Bunsengesellschaft für Phys Chemie 90:1199–1204. doi: 10.1002/bbpc.19860901216 CrossRefGoogle Scholar
  115. Nyamukamba P, Tichagwa L, Mamphweli S, Petrik L (2017) Silver/carbon codoped titanium dioxide photocatalyst for improved dye degradation under visible light. Int J Photoenergy 2017:1–9. doi: 10.1155/2017/3079276 CrossRefGoogle Scholar
  116. Ohno T, Akiyoshi M, Umebayashi T et al (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen 265:115–121. doi: 10.1016/j.apcata.2004.01.007 CrossRefGoogle Scholar
  117. Omar FS, Nay Ming H, Hafiz SM, Ngee LH (2014) Microwave synthesis of zinc oxide/reduced graphene oxide hybrid for adsorption-photocatalysis application. Int J Photoenergy 2014:1–8. doi: 10.1155/2014/176835 CrossRefGoogle Scholar
  118. Ouyang K, Dai K, Walker SL et al (2016) Efficient photocatalytic disinfection of Escherichia coli O157:H7 using C70-TiO2 hybrid under visible light irradiation. Sci Rep. doi: 10.1038/srep25702 Google Scholar
  119. Oza G, Pandey S, Gupta A et al (2013) Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7. Mater Sci Eng, C 33:4392–4400. doi: 10.1016/j.msec.2013.06.039 CrossRefGoogle Scholar
  120. Pan D, Jiao J, Li Z et al (2015) Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain Chem Eng 3:2405–2413. doi: 10.1021/acssuschemeng.5b00771 CrossRefGoogle Scholar
  121. Pan Y-X, You Y, Xin S et al (2017) Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J Am Chem Soc 139:4123–4129. doi: 10.1021/jacs.7b00266 CrossRefGoogle Scholar
  122. Park J (2017) Visible and near infrared light active photocatalysis based on conjugated polymers. J Ind Eng Chem 51:27–43. doi: 10.1016/j.jiec.2017.03.022 CrossRefGoogle Scholar
  123. Park JE, Park IS, Bae TS, Lee MH (2014) Electrophoretic deposition of carbon nanotubes over TiO2 nanotubes: evaluation of surface properties and biocompatibility. Bioinorg Chem Appl 2014:1–7. doi: 10.1155/2014/236521 CrossRefGoogle Scholar
  124. Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. doi: 10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  125. Peraltahernandez J, Manriquez J, Measvong Y et al (2007) Photocatalytic properties of nano-structured TiO2-carbon films obtained by means of electrophoretic deposition. J Hazard Mater 147:588–593. doi: 10.1016/j.jhazmat.2007.01.053 CrossRefGoogle Scholar
  126. Permadani I, Phasa DA, Pratiwi AW, Rahmawati F (2016) The composite of ZrO2–TiO2 produced from local zircon sand used as a photocatalyst for the degradation of methylene blue in a single batik dye wastewater. Bull Chem React Eng Catal 11:133. doi: 10.9767/bcrec.11.2.539.133-139 CrossRefGoogle Scholar
  127. Prakash K, Senthil Kumar P, Pandiaraj S et al (2016) Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. J Exp Nanosci 11:1138–1155. doi: 10.1080/17458080.2016.1188222 CrossRefGoogle Scholar
  128. Rahimi R, Zargari S, Yousefi A et al (2015) Visible light photocatalytic disinfection of E. coli with TiO2–graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin. Appl Surf Sci 355:1098–1106. doi: 10.1016/j.apsusc.2015.07.115 CrossRefGoogle Scholar
  129. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chemie Int Ed 48:7752–7777. doi: 10.1002/anie.200901678 CrossRefGoogle Scholar
  130. Rashid J, Barakat MA, Ruzmanova Y, Chianese A (2015) Fe3O4/SiO2/TiO2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater. Environ Sci Pollut Res 22:3149–3157. doi: 10.1007/s11356-014-3598-9 CrossRefGoogle Scholar
  131. Ren Y, Ma Z, Morris RE et al (2013) A solid with a hierarchical tetramodal micro-meso-macro pore size distribution. Nat Commun. doi: 10.1038/ncomms3015 Google Scholar
  132. Réti B, Kiss GI, Gyulavári T et al (2017) Carbon sphere templates for TiO2 hollow structures: preparation, characterization and photocatalytic activity. Catal Today 284:160–168. doi: 10.1016/j.cattod.2016.11.038 CrossRefGoogle Scholar
  133. Rey A, García-Muñoz P, Hernández-Alonso MD et al (2014) WO3–TiO2 based catalysts for the simulated solar radiation assisted photocatalytic ozonation of emerging contaminants in a municipal wastewater treatment plant effluent. Appl Catal B Environ 154–155:274–284. doi: 10.1016/j.apcatb.2014.02.035 CrossRefGoogle Scholar
  134. Roy P, Periasamy AP, Liang C-T, Chang H-T (2013) Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene. Environ Sci Technol 47:6688–6695. doi: 10.1021/es400422k CrossRefGoogle Scholar
  135. Rtimi S, Kiwi J (2017) Bactericide effects of transparent polyethylene photocatalytic films coated by oxides under visible light. Appl Catal B Environ 213:62–73. doi: 10.1016/j.apcatb.2017.05.004 CrossRefGoogle Scholar
  136. Saito T, Iwase T, Horie J, Morioka T (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J Photochem Photobiol B Biol 14:369–379. doi: 10.1016/1011-1344(92)85115-B CrossRefGoogle Scholar
  137. Sakthivel S, Neppolian B, Shankar MV et al (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82. doi: 10.1016/S0927-0248(02)00255-6 CrossRefGoogle Scholar
  138. Salarian M, Xu WZ, Wang Z et al (2014) Hydroxyapatite–TiO 2 -based nanocomposites synthesized in supercritical CO2 for bone tissue engineering: physical and mechanical properties. ACS Appl Mater Interfaces 6:16918–16931. doi: 10.1021/am5044888 CrossRefGoogle Scholar
  139. Saleh AT (2013) The role of carbon nanotubes in enhancement of photocatalysis. In: Synthesis of carbon nanotube/catalyst compositesGoogle Scholar
  140. Salih FM (2002) Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. J Appl Microbiol 92:920–926. doi: 10.1046/j.1365-2672.2002.01601.x CrossRefGoogle Scholar
  141. Sampaio MJ, Silva CG, Marques RRN et al (2011) Carbon nanotube–TiO2 thin films for photocatalytic applications. Catal Today 161:91–96. doi: 10.1016/j.cattod.2010.11.081 CrossRefGoogle Scholar
  142. Santala E, Kemell M, Leskelä M, Ritala M (2009) The preparation of reusable magnetic and photocatalytic composite nanofibers by electrospinning and atomic layer deposition. Nanotechnology 20:35602. doi: 10.1088/0957-4484/20/3/035602 CrossRefGoogle Scholar
  143. Sariciftci NS, Kraabel B, Lee CH et al (1994) Absence of photoinduced electron transfer from the excitonic electron-hole bound state in polydiacetylene conjugated polymers. Phys Rev B 50:12044–12051. doi: 10.1103/PhysRevB.50.12044 CrossRefGoogle Scholar
  144. Sawant VJ, Bamane SR, Kanase DG et al (2016) Encapsulation of curcumin over carbon dot coated TiO2 nanoparticles for pH sensitive enhancement of anticancer and anti-psoriatic potential. RSC Adv 6:66745–66755. doi: 10.1039/C6RA13851A CrossRefGoogle Scholar
  145. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. doi: 10.1021/cr5001892 CrossRefGoogle Scholar
  146. Sha D, Wang J, Wu X et al (2016) One-step and large-scale preparation of TiO2/amorphous carbon composites with excellent visible light photocatalytic properties. RSC Adv 6:65607–65612. doi: 10.1039/C6RA11250A CrossRefGoogle Scholar
  147. Shen Y, Wang W, Xiao K (2016) Synthesis of three-dimensional carbon felt supported TiO2 monoliths for photocatalytic degradation of methyl orange. J Environ Chem Eng 4:1259–1266. doi: 10.1016/j.jece.2016.01.026 CrossRefGoogle Scholar
  148. Shi J, Zheng J, Wu P, Ji X (2008) Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size. Catal Commun 9:1846–1850. doi: 10.1016/j.catcom.2008.02.018 CrossRefGoogle Scholar
  149. Shi E, Zhang L, Li Z et al (2012) TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep. doi: 10.1038/srep00884 Google Scholar
  150. Sies H (1985) Oxidative stress. Academic Press, London, OrlandoGoogle Scholar
  151. Singh P, Mondal K, Sharma A (2013) Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J Colloid Interface Sci 394:208–215. doi: 10.1016/j.jcis.2012.12.006 CrossRefGoogle Scholar
  152. Singh N, Mondal K, Misra M et al (2016) Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications. RSC Adv 6:48109–48119. doi: 10.1039/C6RA04305D CrossRefGoogle Scholar
  153. Singh S, Mondal K, Sharma A (2017) ZnO nanoparticle fortified highly permeable carbon/silica monoliths as a flow-through media. Langmuir. doi: 10.1021/acs.langmuir.7b01361 Google Scholar
  154. Stevenson M, Bullock K, Lin W-Y, Rajeshwar K (1997) Sonolytic enhancement of the bactericidal activity of irradiated titanium dioxide suspensions in water. Res Chem Intermed 23:311–323. doi: 10.1163/156856797X00547 CrossRefGoogle Scholar
  155. Su B-L, Vantomme A, Surahy L et al (2007) Hierarchical multimodal mesoporous carbon materials with parallel macrochannels. Chem Mater 19:3325–3333. doi: 10.1021/cm070294o CrossRefGoogle Scholar
  156. Sun H, Bai Y, Jin W, Xu N (2008) Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species. Sol Energy Mater Sol Cells 92:76–83. doi: 10.1016/j.solmat.2007.09.003 CrossRefGoogle Scholar
  157. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728. doi: 10.1021/es970860o CrossRefGoogle Scholar
  158. Taha AA (2015) Direct synthesis of mesostructured carbon nanofibers decorated with silver-nanoparticles as a multifunctional membrane for water treatment. Adv Nat Sci Nanosci Nanotechnol 6:45003. doi: 10.1088/2043-6262/6/4/045003 CrossRefGoogle Scholar
  159. Tarigh GD, Shemirani F, Maz’hari NS (2015) Fabrication of a reusable magnetic multi-walled carbon nanotube–TiO2 nanocomposite by electrostatic adsorption: enhanced photodegradation of malachite green. RSC Adv 5:35070–35079. doi: 10.1039/c4ra15593a
  160. Teng F, Zhang G, Wang Y et al (2014) The role of carbon in the photocatalytic reaction of carbon/TiO2 photocatalysts. Appl Surf Sci 320:703–709. doi: 10.1016/j.apsusc.2014.09.153 CrossRefGoogle Scholar
  161. Thangavel S, Krishnamoorthy K, Krishnaswamy V et al (2015) Graphdiyne–ZnO nanohybrids as an advanced photocatalytic material. J Phys Chem C 119:22057–22065. doi: 10.1021/acs.jpcc.5b06138 CrossRefGoogle Scholar
  162. Tong H, Ouyang S, Bi Y et al (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251. doi: 10.1002/adma.201102752 CrossRefGoogle Scholar
  163. Velasco LF, Haro M, Parmentier J et al (2013) Tuning the photocatalytic activity and optical properties of mesoporous TiO2 spheres by a carbon scaffold. J Catal 2013:1–9. doi: 10.1155/2013/178512 CrossRefGoogle Scholar
  164. Wang R, Hashimoto K, Fujishima A et al (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10:135–138. doi: 10.1002/(SICI)1521-4095(199801)10:2<135:AID-ADMA135>3.0.CO;2-M CrossRefGoogle Scholar
  165. Wang Y, Di Y, Antonietti M et al (2010) Excellent Visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem Mater 22:5119–5121. doi: 10.1021/cm1019102 CrossRefGoogle Scholar
  166. Wang W, Fang J, Shao S et al (2017a) Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl Catal B Environ 217:57–64. doi: 10.1016/j.apcatb.2017.05.037 CrossRefGoogle Scholar
  167. Wang J, Yang Z, Gao X et al (2017b) Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl Catal B Environ 217:169–180. doi: 10.1016/j.apcatb.2017.05.034 CrossRefGoogle Scholar
  168. Wei C, Lin WY, Zainal Z et al (1994) Bactericidal Activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28:934–938. doi: 10.1021/es00054a027 CrossRefGoogle Scholar
  169. Wei X, Jiang X, Wei J, Gao S (2016) Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors. Chem Mater 28:445–458. doi: 10.1021/acs.chemmater.5b02336 CrossRefGoogle Scholar
  170. Williams G, Kamat PV (2009) Graphene−semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide . Langmuir 25:13869–13873. doi: 10.1021/la900905h CrossRefGoogle Scholar
  171. Williams G, Seger B, Kamat PV (2008) TiO2–Graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491. doi: 10.1021/nn800251f CrossRefGoogle Scholar
  172. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239. doi: 10.1002/adma.200802738 CrossRefGoogle Scholar
  173. Wu X, Jaatinen E, Sarina S, Zhu HY (2017a) Direct photocatalysis of supported metal nanostructures for organic synthesis. J Phys D Appl Phys 50:283001. doi: 10.1088/1361-6463/aa73f6 CrossRefGoogle Scholar
  174. Wu H, Wu X-L, Wang Z-M et al (2017b) Anchoring titanium dioxide on carbon spheres for high-performance visible light photocatalysis. Appl Catal B Environ 207:255–266. doi: 10.1016/j.apcatb.2017.02.027 CrossRefGoogle Scholar
  175. Xing B, Shi C, Zhang C et al (2016) Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. J Nanomater 2016:1–10. doi: 10.1155/2016/8393648 CrossRefGoogle Scholar
  176. Xu H-Y, Wu L-C, Zhao H et al (2015) Synergic effect between adsorption and photocatalysis of metal-free g-C3N4 derived from different precursors. PLoS ONE 10:e0142616. doi: 10.1371/journal.pone.0142616 CrossRefGoogle Scholar
  177. Xu J, Cui Y, Han Y et al (2016) ZnO–graphene composites with high photocatalytic activities under visible light. RSC Adv 6:96778–96784. doi: 10.1039/C6RA19622E CrossRefGoogle Scholar
  178. Yan H, McCreery RL (2009) Anomalous tunneling in carbon/alkane/TiO2/gold molecular electronic junctions: energy level alignment at the metal/semiconductor interface. ACS Appl Mater Interfaces 1:443–451. doi: 10.1021/am800126v CrossRefGoogle Scholar
  179. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397–10401. doi: 10.1021/la900923z CrossRefGoogle Scholar
  180. Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901. doi: 10.1021/la904023j CrossRefGoogle Scholar
  181. Yang J, Bai H, Tan X, Lian J (2006) IR and XPS investigation of visible-light photocatalysis—nitrogen–carbon-doped TiO2 film. Appl Surf Sci 253:1988–1994. doi: 10.1016/j.apsusc.2006.03.078 CrossRefGoogle Scholar
  182. Yang M-Q, Zhang N, Xu Y-J (2013) Synthesis of fullerene– Carbon nanotube– and Graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl Mater Interfaces 5:1156–1164. doi: 10.1021/am3029798 CrossRefGoogle Scholar
  183. Yang GD, Liu F, Wang L et al (2014) Selective deposition of nanocrystalline carbon films on GaN diodes in photocatalytic reactions. Cryst Eng Comm 16:10097–10102. doi: 10.1039/C4CE01431F CrossRefGoogle Scholar
  184. Yao S, Song S, Shi Z (2014) Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite. Russ J Phys Chem A 88:1066–1070. doi: 10.1134/S0036024414060296 CrossRefGoogle Scholar
  185. Yi Q, Wang H, Cong S et al (2016) Self-cleaning glass of photocatalytic anatase TiO2@carbon nanotubes thin film by polymer-assisted approach. Nanoscale Res Lett. doi: 10.1186/s11671-016-1674-4 Google Scholar
  186. Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. doi: 10.1038/nchem.687 CrossRefGoogle Scholar
  187. Yu JC, Ho W, Yu J et al (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline Titania. Environ Sci Technol 39:1175–1179. doi: 10.1021/es035374h CrossRefGoogle Scholar
  188. Zhai W, Li G, Yu P et al (2013) Silver phosphate/carbon nanotube-stabilized pickering emulsion for highly efficient photocatalysis. J Phys Chem C 117:15183–15191. doi: 10.1021/jp404456a CrossRefGoogle Scholar
  189. Zhang H, Zong R, Zhu Y (2009) Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J Phys Chem C 113:4605–4611. doi: 10.1021/jp810748u CrossRefGoogle Scholar
  190. Zhang D, Wu J, Zhou B et al (2013a) Efficient photocatalytic activity with carbon-doped SiO2 nanoparticles. Nanoscale 5:6167. doi: 10.1039/c3nr01314f CrossRefGoogle Scholar
  191. Zhang X, Liu H, Zheng B et al (2013b) Photocatalytic and magnetic behaviors observed in BiFeO3 nanofibers by electrospinning. J Nanomater 2013:1–7. doi: 10.1155/2013/917948 Google Scholar
  192. Zhang J, Li W, Li Y et al (2017) Self-optimizing bifunctional CdS/Cu2S with coexistence of light-reduced Cu0 for highly efficient photocatalytic H2 generation under visible-light irradiation. Appl Catal B Environ 217:30–36. doi: 10.1016/j.apcatb.2017.05.074 CrossRefGoogle Scholar
  193. Zhao W, Ma W, Chen C et al (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−x Bx under visible irradiation. J Am Chem Soc 126:4782–4783. doi: 10.1021/ja0396753 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.School of Mechanical SciencesIndian Institute of Technology BhubaneswarBhubaneswarIndia

Personalised recommendations