Advertisement

Closed-Loop Turbulence Control-From Human to Machine Learning (and Retour)

  • Bernd R. Noack
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Feedback turbulence control is a rapidly evolving, interdisciplinary field of research. The range of current and future engineering applications of closed-loop turbulence control has truly epic proportions, including cars, trains, airplanes, noise, air conditioning, medical applications, wind turbines, combustors, and energy systems. A key feature, opportunity and technical challenge of closed-loop turbulence control is the inherent nonlinearity of the actuation response. For instance, excitation at a given frequency will affect also other frequencies. This frequency crosstalk is not accessible in any linear control framework. This paper will address these nonlinear actuation mechanisms in three parts. First, success stories of human learning in turbulence control are presented, i.e. cases in which the nonlinear actuation mechanism has been modelled and understood. A large class of literature studies can be categorized in terms of surprisingly few mechanisms. Second, we discuss model-free machine learning control (MLC) and selected applications. MLC detects and exploits the winning actuation mechanisms in the experiment in an unsupervised manner. In all studies MLC has reproduced or outperformed existing optimized control strategies. Finally, future directions of turbulence control are outlined. Methods of machine learning are a disruptive technology will contribute to rapidly accelerating progress in turbulence control—both for performance and for physical understanding.

Keywords

Turbulence control Control design Machine learning Reduced-order modeling 

Notes

Acknowledgements

This material presented here was only possible through the hard and enthusiastic work of my former PhD students Diogo Barros, Eurika Kaiser, Ruiying Li, Mark Luchtenburg and Mark Pastoor, my former Postdocs Thomas Duriez and Vladimir Parezanović, other members of the former TUCOROM Team (Jean-Paul Bonnet, Jacques Borée, Laurent Cordier, and Andreas Spohn) and the fruitful collaborations with Markus Abel, Jean-Luc Aider, Steven Brunton, Camila Chovet, Guy Yoslan Cornejo Maceda, Nan Deng, Hiroaki Fukumoto, Nicolas Gautiers, Rudibert King, Laurent Keirsbulck, Azeddine Kourta, François Lusseyran, Lionel Mathelin, Robert Martinuzzi, Marek Morzyński, Robert Niven, Akira Oyama, Luc Pastur, Cedric Raibaudo, Richard Semaan and Michel Stanislas. Three PhD theses have been supported by the OpenLab Fluidics between PSA Peugeot-Citroën and Institute Pprime (Fluidics@poitiers) and L’Ecole Doctorale SMeMAG at LIMSI-CNRS. This work is also supported by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissement dAvenir” program, through the “iCODE Institute project” funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

References

  1. 1.
    Glezer A, Amitay M, Honohan AM (2005) Aspects of low- and high-frequency actuation for aerodynamic flow control. AIAA J 43(7):1501–1511CrossRefGoogle Scholar
  2. 2.
    Noack BR, Schlegel M, Ahlborn B, Mutschke G, Morzyński M, Comte P, Tadmor G (2008) A finite-time thermodynamics of unsteady fluid flows. J Non-Equilib Thermodyn 33(2):103–148CrossRefGoogle Scholar
  3. 3.
    Brunton SL, Noack, BR (2015) Closed-loop turbulence control: progress and challenges. Appl Mech Rev 67(5):050801:01–48CrossRefGoogle Scholar
  4. 4.
    Choi H, Moin P, Kim J (1994) Active turbulence control for drag reduction in wall-bounded flows. J Fluid Mech 262:75–110CrossRefGoogle Scholar
  5. 5.
    Airiau C, Bottaro A, Walther S, Legendre D (2003) A methodology for optimal laminar flow control: application to the damping of Tollmien-Schlichting waves in a boundary layer. Phys Fluids 15(5):1131–1145MathSciNetCrossRefGoogle Scholar
  6. 6.
    Rowley CW, Williams DR (2006) Dynamics and control of high-Reynolds number flows over open cavities. Ann Rev Fluid Mech 38:251–276MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhang MM, Cheng L, Zhou Y (2004) Closed-loop control of fluid-structure interactions on a flexibly supported cylinder. Eur J Mech B 23:189–197CrossRefGoogle Scholar
  8. 8.
    Protas B (2004) Linear feedback stabilization of laminar vortex shedding based on a point vortex model. Phys Fluids 16(12):4473–4488MathSciNetCrossRefGoogle Scholar
  9. 9.
    Semaan R, Kumar P, Burnazzi M, Tissot G, Cordier L, Noack BR (2016) Reduced-order modeling of the flow around a high-lift configuration with unsteady Coanda blowing. J Fluid Mech 800:71–110CrossRefGoogle Scholar
  10. 10.
    Pastoor M, Henning L, Noack BR, King R, Tadmor G (2008) Feedback shear layer control for bluff body drag reduction. J Fluid Mech 608:161–196CrossRefGoogle Scholar
  11. 11.
    Barros D, Borée J, Noack BR, Spohn A, Ruiz T (2016) Bluff body drag manipulation using pulsed jets and Coanda effect. J Fluid Mech 805:442–459MathSciNetCrossRefGoogle Scholar
  12. 12.
    Noack BR, Morzyński M, Tadmor G (2011) Reduced-order modelling for flow control, volume 528 of CISM courses and lectures. SpringerGoogle Scholar
  13. 13.
    Duriez T, Brunton S, Noack BR (2016) Machine learning control—taming nonlinear dynamics and turbulence, volume 116 of fluid mechanics and its applications. SpringerGoogle Scholar
  14. 14.
    Kim J, Bewley TR (2007) A linear systems approach to flow control. Ann Rev Fluid Mech 39:383–417MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bagheri S, Hoepffner J, Schmid PJ, Henningson DS (2009). Input-output analysis and control design applied to a linear model of spatially developing flows. Appl Mech Rev 62(2):020803:1–27CrossRefGoogle Scholar
  16. 16.
    Choi H, Jeon W-P, Kim J (2008) Control of flow over a bluff body. Ann Rev Fluid Mech 40:113–139MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cattafesta L, Shelpak M (2011) Actuators for active flow control. Ann Rev Fluid Mech 43:247–272CrossRefGoogle Scholar
  18. 18.
    Brockett R (2012) Notes on the control of the Liouville equation. In Alabau-Boussouira F, Brockett R, Glass O, Le Rousseau J, Zuazua E (eds) Control of partial differential equations, volume 2048 of lecture notes in mathematics. Springer, pp 101–130Google Scholar
  19. 19.
    Kaiser E, Noack BR, Cordier L, Spohn A, Segond M, Abel MW, Daviller G, Östh J, Krajnović S, Niven RK (2014) Cluster-based reduced-order modelling of a mixing layer. J Fluid Mech 754:365–414CrossRefGoogle Scholar
  20. 20.
    Kaiser E, Noack BR, Spohn A, Cattafesta LN, Morzyński M (2017) Cluster-based control of nonlinear dynamics. Theor Comput Fluid Dyn (online) 1–15Google Scholar
  21. 21.
    Rechenberg I (1973) Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog, StuttgartGoogle Scholar
  22. 22.
    Schwefel H-P (1965) Kybernetische Evolution als Strategie der experimentellen Forschung in der Strömunstechnik. Master thesis, Hermann-Föttinger-Institut für Strömungstechnik, Technische Universität Berlin, GermanyGoogle Scholar
  23. 23.
    Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, BostonzbMATHGoogle Scholar
  24. 24.
    Parezanović V, Cordier L, Spohn A, Duriez T, Noack BR, Bonnet J-P, Segond M, Abel M, Brunton SL (2016) Frequency selection by feedback control in a turbulent shear flow. J Fluid Mech 797:247–283CrossRefGoogle Scholar
  25. 25.
    Gautier N, Aider J-L, Duriez T, Noack BR, Segond M, Abel MW (2015) Closed-loop separation control using machine learning. J Fluid Mech 770:424–441CrossRefGoogle Scholar
  26. 26.
    Li R, Noack BR, Cordier L, Borée J, Harambat F (2017) Drag reduction of a car model by linear genetic programming control. Exp Fluids 58:103:1–20Google Scholar
  27. 27.
    Debien A, von Krbek KAFF, Mazellier N, Duriez T, Cordier L, Noack BR, Abel MW, Kourta A (2016) Closed-loop separation control over a sharp-edge ramp using genetic programming. Exp Fluids 57(3):40:1–19Google Scholar
  28. 28.
    Duriez T, Parezanović V, Laurentie J-C, Fourment C, Delville J, Bonnet J-P, Cordier L, Noack BR, Segond M, Abel MW, Gautier N, Aider J-L, Raibaudo C, Cuvier C, Stanislas M, Brunton S (2014) Closed-loop control of experimental shear layers using machine learning (invited). In: 7th AIAA flow control conference. Atlanta, Georgia, USA, pp 1–16Google Scholar
  29. 29.
    Raibaudo C, Zhong P, Martinuzzi RJ, Noack BR (2017) Closed-loop control of a triangular bluff body using rotating cylinders. In: The 20th World Congress of the International Federation of Automatic Control (IFAC), Toulouse, France, pp 1–6Google Scholar
  30. 30.
    Ostwald P (2017) Experimental investigations of active and passive drag-reducing devices over a D-shaped bluff body. Master thesis 445, Technische Universität BraunschweigGoogle Scholar
  31. 31.
    Chovet C, Keirsbulck L, Noack BR, Lippert M, Foucaut JM (2017) Machine learning control for experimental shear flows targeting the reduction of a recirculation bubble. In: The 20th World Congress of the International Federation of Automatic Control (IFAC)CrossRefGoogle Scholar
  32. 32.
    Li R, Barros D, Borée J, Cadot O, Noack BR, Cordier L (2016) Feedback control of bi-modal wake dynamics. Exp Fluids 57(158):1–6Google Scholar
  33. 33.
    Benard N, Pons-Prats J, Periaux J, Bugeda G, Braud P, Bonnet JP, Moreau E (2016) Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Exp Fluids 57:22:1–17Google Scholar
  34. 34.
    Lee C, Kim J, Babcock D, Goodman R (1997) Application of neural networks to turbulence control for drag reduction. Phys Fluids 9(6):1740–1747CrossRefGoogle Scholar
  35. 35.
    Brunton SL, Proctor JL, Kutz NJ (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci USA 113(5):3932–3937MathSciNetCrossRefGoogle Scholar
  36. 36.
    Loiseau J-Ch, Noack BR, Brunton SL (2017) Sparse reduced-order modeling: sensor-based dynamics to full-state estimation. J Fluid Mech 1–28 (in print)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.LIMSI-CNRSOrsayFrance
  2. 2.Harbin Institute of TechnologyShenzhenPeople’s Republic of China
  3. 3.Technische Universität BraunschweigBraunschweigGermany
  4. 4.Technische Universität BerlinBerlinGermany
  5. 5.Institute PPRIMEChasseneuil-du-PoitouFrance

Personalised recommendations