Management, Pharmacotherapies, and Precision Medicine for Smoking Cessation

  • Ming D. Li


Although 70% of smokers want to quit, only 4–7% are successful in the long term. Cigarette smoking persists because of both the addictive propensity of nicotine and the low success rates of existing treatments. Smoking cessation outcomes are influenced by both smoking cessation medications and genetic factors which include variations in the enzymes that metabolize nicotine and in nAChR subunit genes that are the primary targets of nicotine and of treatment medications. Identifying subjects with appropriate variants is an essential element in improving smoking cessation outcomes. In this chapter, we highlight recent progress in our understanding of how genetic variants in the pharmacological targets of nicotine and smoking cessation medications could be used to tailor cessation therapy and increase the success rate.


Smoking dependence Consulting Smoking cessation Quitting DSM-V Genetic markers Fagerström Test for Nicotine Dependence FTND Intervention 5As Biomarkers SNPs Bupropion hydrochloride Zyban Varenicline tartrate Chantix Nicotine replacement therapy CYP2A6 CYP2B6 Tobacco dependence CHRNA5/A3/B4 


  1. Allenby CE, Boylan KA, Lerman C, Falcone M (2016) Precision medicine for tobacco dependence: development and validation of the nicotine metabolite ratio. J Neuroimmune Pharmacol 11:471–483. CrossRefPubMedPubMedCentralGoogle Scholar
  2. APA (1994) American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  3. Benowitz NL, Swan GE, Jacob P 3rd, Lessov-Schlaggar CN, Tyndale RF (2006) CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin Pharmacol Ther 80:457–467. CrossRefPubMedGoogle Scholar
  4. Bergen AW, Javitz HS, Su L, He Y, Conti DV, Benowitz NL, Tyndale RF, Lerman C, Swan GE (2013) The DRD4 exon III VNTR, bupropion, and associations with prospective abstinence. Nicotine Tob Res 15:1190–1200. CrossRefPubMedGoogle Scholar
  5. Broms U, Silventoinen K, Madden PA, Heath AC, Kaprio J (2006) Genetic architecture of smoking behavior: a study of Finnish adult twins. Twin Res Hum Genet 9:64–72CrossRefPubMedGoogle Scholar
  6. Chen LS, Baker TB, Piper ME, Breslau N, Cannon DS, Doheny KF, Gogarten SM, Johnson EO, Saccone NL, Wang JC, Weiss RB, Goate AM, Bierut LJ (2012) Interplay of genetic risk factors (CHRNA5-CHRNA3-CHRNB4) and cessation treatments in smoking cessation success. Am J Psychiatry 169:735–742. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen LS, Baker TB, Jorenby D, Piper M, Saccone N, Johnson E, Breslau N, Hatsukami D, Carney RM, Bierut LJ (2015a) Genetic variation (CHRNA5), medication (combination nicotine replacement therapy vs. varenicline), and smoking cessation. Drug Alcohol Depend 154:278–282. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen LS, Hung RJ, Baker T, Horton A, Culverhouse R, Saccone N, Cheng I, Deng B, Han Y, Hansen HM, Horsman J, Kim C, Lutz S, Rosenberger A, Aben KK, Andrew AS, Breslau N, Chang SC, Dieffenbach AK, Dienemann H, Frederiksen B, Han J, Hatsukami DK, Johnson EO, Pande M, Wrensch MR, McLaughlin J, Skaug V, van der Heijden HF, Wampfler J, Wenzlaff A, Woll P, Zienolddiny S, Bickeboller H, Brenner H, Duell EJ, Haugen A, Heinrich J, Hokanson JE, Hunter DJ, Kiemeney LA, Lazarus P, Le Marchand L, Liu G, Mayordomo J, Risch A, Schwartz AG, Teare D, Wu X, Wiencke JK, Yang P, Zhang ZF, Spitz MR, Kraft P, Amos CI, Bierut LJ (2015b) CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis – a meta-analysis. J Natl Cancer Inst 107. doi:
  9. Conti DV, Lee W, Li D, Liu J, Van Den Berg D, Thomas PD, Bergen AW, Swan GE, Tyndale RF, Benowitz NL, Lerman C (2008) Nicotinic acetylcholine receptor beta2 subunit gene implicated in a systems-based candidate gene study of smoking cessation. Hum Mol Genet 17:2834–2848CrossRefPubMedPubMedCentralGoogle Scholar
  10. David SP, Brown RA, Papandonatos GD, Kahler CW, Lloyd-Richardson EE, Munafo MR, Shields PG, Lerman C, Strong D, McCaffery J, Niaura R (2007) Pharmacogenetic clinical trial of sustained-release bupropion for smoking cessation. Nicotine Tob Res 9:821–833. CrossRefPubMedPubMedCentralGoogle Scholar
  11. David SP, Munafo MR, Murphy MF, Proctor M, Walton RT, Johnstone EC (2008) Genetic variation in the dopamine D4 receptor (DRD4) gene and smoking cessation: follow-up of a randomised clinical trial of transdermal nicotine patch. Pharmacogenomics J 8:122–128. CrossRefPubMedGoogle Scholar
  12. Faessel HM, Obach RS, Rollema H, Ravva P, Williams KE, Burstein AH (2010) A review of the clinical pharmacokinetics and pharmacodynamics of varenicline for smoking cessation. Clin Pharmacokinet 49:799–816. CrossRefPubMedGoogle Scholar
  13. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 86:1119–1127CrossRefPubMedGoogle Scholar
  14. Kharasch ED, Mitchell D, Coles R (2008) Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for cytochrome P4502B6 (CYP2B6) activity. J Clin Pharmacol 48:464–474. CrossRefPubMedGoogle Scholar
  15. King DP, Paciga S, Pickering E, Benowitz NL, Bierut LJ, Conti DV, Kaprio J, Lerman C, Park PW (2012) Smoking cessation pharmacogenetics: analysis of varenicline and bupropion in placebo-controlled clinical trials. Neuropsychopharmacology 37:641–650. CrossRefPubMedGoogle Scholar
  16. Lee AM, Jepson C, Hoffmann E, Epstein L, Hawk LW, Lerman C, Tyndale RF (2007) CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial. Biol Psychiatry 62:635–641CrossRefPubMedGoogle Scholar
  17. Lerman C, Schnoll RA, Hawk LW Jr, Cinciripini P, George TP, Wileyto EP, Swan GE, Benowitz NL, Heitjan DF, Tyndale RF, Group P-PR (2015) Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: a randomised, double-blind placebo-controlled trial. Lancet Respir Med 3:131–138. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Leung T, Bergen A, Munafo MR, De Ruyck K, Selby P, De Luca V (2015) Effect of the rs1051730-rs16969968 variant and smoking cessation treatment: a meta-analysis. Pharmacogenomics 16:713–720. CrossRefPubMedGoogle Scholar
  19. Piper ME, Piasecki TM, Federman EB, Bolt DM, Smith SS, Fiore MC, Baker TB (2004) A multiple motives approach to tobacco dependence: the Wisconsin Inventory of Smoking Dependence Motives (WISDM-68). J Consult Clin Psychol 72:139–154CrossRefPubMedGoogle Scholar
  20. Simpson J, Vetuz G, Wilson M, Brookes KJ, Kent L (2010) The DRD4 receptor exon 3 VNTR and 5′ SNP variants and mRNA expression in human post-mortem brain tissue. Am J Med Genet B Neuropsychiatr Genet 153B:1228–1233. PubMedGoogle Scholar
  21. Tyndale RF, Zhu AZ, George TP, Cinciripini P, Hawk LW Jr, Schnoll RA, Swan GE, Benowitz NL, Heitjan DF, Lerman C, Group P-PR (2015) Lack of associations of CHRNA5-A3-B4 genetic variants with smoking cessation treatment outcomes in Caucasian smokers despite associations with baseline smoking. PLoS One 10:e0128109. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ming D. Li
    • 1
    • 2
  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.Zhejiang UniversityHangzhouChina

Personalised recommendations