Advertisement

Pharmacogenomics: Setting Newer Paradigms of Genetics in Therapy and Medicine

  • Sanjay Dey
  • Kumud Joshi
  • Bhaskar Mazumder
Chapter

Abstract

Pharmacogenomics is receiving a lot of attention for its potential clinical applications in preventive as well as personalized medicine. Pharmacogenomics provides a tool to determine the genetic makeup of individuals and help in establishing relevant genotype-phenotype correlation. This knowledge may uncover the predisposition of patients toward specific disease conditions like diabetes and cardiovascular diseases. It can also be used to gauge the possibility of toxicities of specific drugs in patients and, consequently, assist in the modification of therapy for such patients to improve clinical outcome. In this chapter, we study the current status of pharmacogenomics and its future prospects of how it will impact the current clinical practices for better therapy.

References

  1. 1.
    Evans WE, Johnson JA (2001) Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet 2:9–39CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Halpern SA (1988) American pediatrics: the social dynamic of professionalism, 1880–1980, vol 52. University of California Press, BerkeleyGoogle Scholar
  3. 3.
    Burton ME, Show LM, Schentag JJ et al (2006) Applied pharmacokinetics and pharmacodynamics. Baltimore, Lippincott Williams & WilkinoGoogle Scholar
  4. 4.
    Kalow W (1956) Familial incidence of low Pseudocholinesterase level. Lancet 2:576–577CrossRefGoogle Scholar
  5. 5.
    Carson PE, Flangan CL, Ickes CE et al (1956) Enzymatic deficiency in primaquine sensitive erythrocytes. Science 124:484–485CrossRefPubMedGoogle Scholar
  6. 6.
    Vogel F (1959) Moderne problem der humangenetik. Ergeb Inn Med Kinderheilkd 12:52–125Google Scholar
  7. 7.
    Sachidanandam R, Weissman D, Schmidt SC et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933CrossRefPubMedGoogle Scholar
  8. 8.
    Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapy. Science 286:487–491CrossRefPubMedGoogle Scholar
  9. 9.
    McLeod HL, Evans WE (2001) Pharmacogenomics: unlocking the human genome for better drug therapy. Annu Rev Pharmacol Toxicol 41:101–121CrossRefPubMedGoogle Scholar
  10. 10.
    Yates CR, Krynetski EY, Loennechen T et al (1997) Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 126:608–614CrossRefPubMedGoogle Scholar
  11. 11.
    Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352:2211–2221CrossRefPubMedGoogle Scholar
  12. 12.
    Aouri M, Barcelo C, Guidi M, Swiss HIV Cohort Study et al (2017) Population pharmacokinetics and pharmacogenetics analysis of rilpivirine in HIV-1-infected individuals. Antimicrob Agents Chemother 61:899–916CrossRefGoogle Scholar
  13. 13.
    Heller T et al (2006) AmpliChip CYP450 GeneChip®: a new gene chip that allows rapid and accurate CYP2D6 genotyping. Ther Drug Monit 28:673–677CrossRefPubMedGoogle Scholar
  14. 14.
    De Leon J, Armstrong SC, Cozza KL (2006) Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosom Med 47:75–85CrossRefGoogle Scholar
  15. 15.
    Squassina A, Manchia M, Manolopoulos VG et al (2010) Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice. Pharmacogenomics J 11:1149–1167CrossRefGoogle Scholar
  16. 16.
    Ortega VE, Hawkins GA, Peters SP et al (2007) Pharmacogenetics of the β2-adrenergic receptor gene. Immunol Allergy Clin N Am 4:665–684CrossRefGoogle Scholar
  17. 17.
    Maitland-van der Zee AH, Klungel OH, Stricker BH, Verschuren WM, Kastelein JJ, Leufkens HG, de Boer A (2002) Genetic polymorphisms: importance for response to HMG-CoA reductase inhibitors. Atherosclerosis 163:213–222CrossRefPubMedGoogle Scholar
  18. 18.
    Kerb R (2006) Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett 234:4–33CrossRefPubMedGoogle Scholar
  19. 19.
    Reynolds GP, Templeman LA, Zhang ZJ (2005) The role of 5-HT2C receptor polymorphisms in the pharmacogenetics of antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry 29:1021–1028CrossRefPubMedGoogle Scholar
  20. 20.
    Sherry ST et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Marsh S, Kwok P, McLeod HL (2002) SNP databases and pharmacogenetics: great start, but a long way to go. Hum Mutat 20:174–179CrossRefPubMedGoogle Scholar
  22. 22.
    Relling MV et al (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91:2001–2008CrossRefPubMedGoogle Scholar
  23. 23.
    McLeod HL, Siva C (2002) The thiopurine S-methyltransferase gene locus-implications for clinical pharmacogenomics. Pharmacogenomics J 3:89–98CrossRefGoogle Scholar
  24. 24.
    Viguier J, Boige V, Miguel C et al (2005) ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5- fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin Cancer Res 11:6212–6217CrossRefPubMedGoogle Scholar
  25. 25.
    Roden DM et al (2006) Pharmacogenomics: challenges and opportunities. Ann Intern Med 145:749–757CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ratain MJ (2006) From bedside to bench to bedside to clinical practice: an odyssey with irinotecan. Clin Cancer Res 12:1658–1660CrossRefPubMedGoogle Scholar
  27. 27.
    Knight JC et al (1999) A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet 22:145–150CrossRefPubMedGoogle Scholar
  28. 28.
    Lu Z-X et al (2011) Context-dependent robustness to 5′ splice site polymorphisms in human populations. Hum Mol Genet 20:1084–1096CrossRefPubMedGoogle Scholar
  29. 29.
    Drazen JM et al (1999) Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 22:168–170CrossRefPubMedGoogle Scholar
  30. 30.
    McGovern DPB et al (2005) Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet 14:1245–1250CrossRefPubMedGoogle Scholar
  31. 31.
    Feigelson HS et al (2001) Determinants of DNA yield and quality from buccal cell samples collected with mouthwash. Cancer Epidemiol Biomark Prev 10:1005–1008Google Scholar
  32. 32.
    Philibert RA et al (2008) A comparison of the genotyping results using DNA obtained from blood and saliva. Psychiatr Genet 18:275CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    (2001) QIAGEN genomic DNA handbook. Available at: https://www.qiagen.com/us/?redirect=%2fliterature%2frender.aspx%3fid%3d405. Accessed 20 Oct 2016
  34. 34.
    Eisenstein BI (1990) The polymerase chain reaction: a new method of using molecular genetics for medical diagnosis. N Engl J Med 322:178–183CrossRefPubMedGoogle Scholar
  35. 35.
    Markham AF (1993) The polymerase chain reaction: a tool for molecular medicine. BMJ 306:441CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zdanowicz MM (2010) Concepts in pharmacogenomics. American Society of Health-System Pharmacists, BethesdaGoogle Scholar
  37. 37.
    Mitani Y et al (2007) Rapid SNP diagnostics using asymmetric isothermal amplification and a new mismatch-suppression technology. Nat Methods 4:257–262CrossRefPubMedGoogle Scholar
  38. 38.
    Mitani Y et al (2009) Rapid and cost-effective SNP detection method: application of SmartAmp2 to pharmacogenomics research. Pharmacogenomics J 10:1187–1197CrossRefGoogle Scholar
  39. 39.
  40. 40.
  41. 41.
    Flockhart DA et al (2009) Clinically available pharmacogenomics tests. Clin Pharmacol Ther 86:109–113CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Group SC, Link E, Parish S, Armitage J, Bowman L, Heath S et al (2008) SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med 359:789–799CrossRefGoogle Scholar
  43. 43.
    Suppiah V, Moldovan M, Ahlenstiel G et al (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41:1100–1104CrossRefPubMedGoogle Scholar
  44. 44.
    Daly AK, Donaldson PT, Bhatnagar P et al (2009) HLA-B5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41:816–819CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hillman MA, Wilke RA, Yale SH et al (2005) A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res 3:137–145CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mallal S, Phillips E, Carosi G et al (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358:568–579CrossRefPubMedGoogle Scholar
  47. 47.
    Young B, Squires K, Patel P et al (2008) First large, multicenter, open-label study utilizing HLA-B*5701 screening for abacavir hypersensitivity in North America. AIDS 22:1673–1675CrossRefPubMedGoogle Scholar
  48. 48.
    Gerdes LU, Gerdes C, Kervinen K et al (2000) The apolipoprotein epsilon 4 allele determines prognosis and the effect on prognosis of simvastatin in survivors of myocardial infarction: a substudy of the Scandinavian simvastatin survival study. Circulation 101:1366–1371CrossRefPubMedGoogle Scholar
  49. 49.
    Ordovas JM, Lopez-Miranda J, Perez-Jimenez F et al (1995) Effect of apolipoprotein E and A-IV phenotypes on the low density lipoprotein response to HMG CoA reductase inhibitor therapy. Atherosclerosis 113:157–166CrossRefPubMedGoogle Scholar
  50. 50.
    Issa AM, Keyserlingk EW (2000) Apolipoprotein E genotyping for pharmacogenetic purposes in Alzheimer’s disease: emerging ethical issues. Can J Psychiatr 45:917–922CrossRefGoogle Scholar
  51. 51.
    Poirier J, Delisle MC, Quirion R et al (1995) Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci U S A 92:12260–12264CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Madian AG, Wheeler HE, Jones RB, Dolan ME (2012) Relating human genetic variation to variation in drug responses. Trends Genet 28:487–495CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Scott S (2011) Personalizing medicine with clinical pharmacogenetics. Genet Med 13:987–995CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yan L, Beckman RA (2005) Pharmacogenetics and pharmacogenomics in oncology therapeutic antibody development. Biotechniques 39:565–568CrossRefPubMedGoogle Scholar
  55. 55.
    Muller AA (2016) New cancer drugs pave the way for precision medicine. Pharm Today 22:28–29CrossRefGoogle Scholar
  56. 56.
    Challenge and opportunity on the critical path to new medical products. Food and Drug Administration Website. Available at: http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.pdf. Accessed 19 May 2016
  57. 57.
    Guidance for industry: pharmacogenomic data submissions. US Dept of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), and Center for Devices and Radiological Health (CDRH) Web site. Available at: http://www.fda.gov/cber/gdlns/pharmdtasub.pdf. Accessed 31 May 2016
  58. 58.
    (2002) Personalized medicine: the impact of pharmacogenomics on pharmaceutical R&D and sales. Data Monitor, New York. Report DMHC1804Google Scholar
  59. 59.
    Tollman P, Guy P, Altshuler J, Flanagan A, Steiner M (2001) A revolution in R&D: how genomics and genetics are transforming the biopharmaceutical industry. Boston, Boston Consulting GroupGoogle Scholar
  60. 60.
    Sorelle R (2001) Baycol withdrawn from market. Circulation 104:E9015–E9016CrossRefPubMedGoogle Scholar
  61. 61.
    Martinez B, Mathews AW, Lublin JS, Winslow R (2004) Merck pulls Vioxx from market after link to heart problems. Wall Street J:A1Google Scholar
  62. 62.
    (2000) Rezulin to be withdrawn from the market. Diabetes Technol Ther 2:289Google Scholar
  63. 63.
    Smart A, Martin P, Parker M (2004) Tailored medicine: whom will it fit? The ethics of patient and disease stratification. Bioethics 18:322–343CrossRefPubMedGoogle Scholar
  64. 64.
    Ahmed MU, Saaem I, Wu PC, Brown AS (2014) Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine. Crit Rev Biotechnol 34:180–196CrossRefPubMedGoogle Scholar
  65. 65.
    Hardiman G (2008) Applications of microarrays and biochips in pharmacogenomics. In: Pharmacogenomics in drug discovery and development: from bench to bedside, pp 21–30CrossRefGoogle Scholar
  66. 66.
    Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–13544CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Evans WE, Hon YY, Bomgaars L et al (2001) Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 19:2293–2301CrossRefPubMedGoogle Scholar
  68. 68.
    Black AJ, McLeod HL, Capell HA et al (1998) Thiopurinemethyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine. Ann Intern Med 129:716–718CrossRefGoogle Scholar
  69. 69.
    Relling MV, Rubnitz JE, Rivera GK et al (1999) High incidence of secondary brain tumours after radiotherapy and anti metabolites. Lancet 354:34–39CrossRefPubMedGoogle Scholar
  70. 70.
    Liang SQ, Chen XL, Deng GM et al (2014) Beta-2 adrenergic receptor (ADRB2) gene polymorphisms and the risk of asthma: a meta-analysis of case-control studies. PLoS One 9:e104488CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ortega VE, Hawkins GA, Moore WC et al (2014) Effect of rare variants in ADRB2 on risk of severe exacerbations and symptom control during long acting β agonist treatment in a multiethnic asthma population: a genetic study. Lancet Respir Med 2:204–213CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pirmohamed M (2014) Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet 15:349–370CrossRefPubMedGoogle Scholar
  73. 73.
    Ehmann F, Caneva L, Prasad K, Paulmichl M et al (2015) Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenomics J 15:201–210CrossRefPubMedGoogle Scholar
  74. 74.
  75. 75.
    Drysdale CM, McGraw DW, Stack CB et al (2000) Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci U S A 97:10483–10488CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    McDonald OG, Krynetski EY, Evans WE (2002) Molecular haplotyping of genomic DNA for multiple single-nucleotide polymorphisms located kilobases apart using long-range polymerase chain reaction and intramolecular ligation. Pharmacogenetics 12:93–99CrossRefPubMedGoogle Scholar
  77. 77.
    Hauschild A, Grob JJ, Demidov LV, Jouary T et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365CrossRefGoogle Scholar
  78. 78.
    Baselga J, Campone M, Piccart M, Burris HA III et al (2012) Everolimus in postmenopausal hormone-receptor–positive advanced breast cancer. N Engl J Med 366:520–529CrossRefPubMedGoogle Scholar
  79. 79.
    Hess GP et al (2015) Pharmacogenomic and pharmacogenetic-guided therapy as a tool in precision medicine: current state and factors impacting acceptance by stakeholders. Genet Res (Camb) 97:e13CrossRefGoogle Scholar
  80. 80.
    Kesic A (2013) Importance of product in high-tech industry. Int J Bus Manag Soc Sci 4:27–45CrossRefGoogle Scholar
  81. 81.
    Spallone P, Wilkie T (1999) Social, ethical, and public policy implications of advances in the biomedical sciences: the wellcome trust’s initiative on pharmacogenetics. The Wellcome Trust, LondonGoogle Scholar
  82. 82.
    Shah J (2003) Economic and regulatory considerations in pharmacogenomics for drug licensing and healthcare. Nat Biotechnol 21:747–753CrossRefPubMedGoogle Scholar
  83. 83.
    Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinibmesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480CrossRefPubMedGoogle Scholar
  84. 84.
    George DJ (2002) Receptor tyrosine kinases as rational targets for prostate cancer treatment: platelet-derived growth factor receptor and imatinibmesylate. Urology 60:115–121CrossRefPubMedGoogle Scholar
  85. 85.
    Ziada A, Barqawi A, Glode LM et al (2004) The use of trastuzumab in the treatment of hormone refractory prostate cancer; phase II trial. Prostate 60:332–337CrossRefPubMedGoogle Scholar
  86. 86.
    Holleman A, Cheok MH, den Boer ML et al (2004) Gene expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351:533–542CrossRefPubMedGoogle Scholar
  87. 87.
    Lugthart S, Cheok MH, den Boer ML et al (2005) Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell 7:375–386CrossRefPubMedGoogle Scholar
  88. 88.
    Goldsmith J (2004) Technology and the boundaries of the hospital: three emerging technologies. Health Aff (Millwood) 23:149–156CrossRefGoogle Scholar
  89. 89.
    Williams RS, Willard HF, Snyderman R (2003) Personalized health planning. Science 300:549CrossRefPubMedGoogle Scholar
  90. 90.
    Kaul P, Schulman KA (2003) Costs of care and costeffectiveness analysis: primary prevention of coronary artery disease. In: Weintraub WS (ed) Cardiovascular health care economics. Humana Press, TotowaGoogle Scholar
  91. 91.
    Schrag D, Kuntz KM, Garber JE, Weeks JC (1997) Decision analysis–effects of prophylactic mastectomy and oophorectomy on life expectancy among women with BRCA1 or BRCA2 mutations. N Engl J Med 336:1465–1471CrossRefPubMedGoogle Scholar
  92. 92.
    Lerman C, Narod S, Schulman K et al (1996) BRCA1 testing in families with hereditary breast-ovarian cancer. A prospective study of patient decision making and outcomes. JAMA 275:1885–1892CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of PharmacyTechno India UniversityKolkataIndia
  2. 2.Defence Research LaboratoryTezpurIndia
  3. 3.Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhIndia

Personalised recommendations