Advertisement

Impact of Genomics on Personalization of Breast Cancer Care

  • F. Scott Heinemann
  • Alice Police
  • Erin Lin
  • Mandy Liu
  • Sherry Liang
  • Ying Huang
Chapter

Abstract

Over the past 50 years, progress on multiple fronts has dramatically altered the nature of the disease known as breast cancer. The initiation of randomized prospective clinical trials in 1959, a novel concept at the time, by the National Surgical Adjuvant Breast and Bowel Project (NSABP) under the guidance of Bernard Fisher established a scientific philosophy as the guiding force in breast cancer treatment. Since 1975, multiple innovations have increased the therapeutic options and improved the outcomes available to women with breast cancer. Increased awareness of breast cancer, improvements in breast imaging, and the development of screening programs have made early diagnosis commonplace. The de-radicalization of surgical techniques used to obtain local control and the application of plastic surgical techniques for breast reconstruction have dramatically reduced the morbidity associated with mastectomy and axillary dissection. The development of pharmacologic hormonal therapy, more effective cytotoxic chemotherapy, and targeted HER2 therapy has improved survival for women with the most common types of breast cancer as well as less common but highly aggressive cancers. The development of predictive assays for response to chemotherapy has spared many patients from unnecessary toxicity and improved their quality of life. Critical to these advances has been the recognition that all breast cancers are not the same and the belief that treatment should be tailored so that every patient receives the best chance of survival with the least morbidity. New insights into the genomic heterogeneity of breast cancer offer the prospect for improved outcomes for patients with breast cancer by further personalization of breast cancer care.

References

  1. 1.
    McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, Sekhon M, Wylie K, Mardis ER, Wilson RK et al (2001) A physical map of the human genome. Nature 409:934–941PubMedCrossRefGoogle Scholar
  2. 2.
    Hayden EC (2014) Technology: the $1,000 genome. Nature 507:294–295PubMedCrossRefGoogle Scholar
  3. 3.
    Hayden EC (2008) International genome project launched. Nature 451:378–379PubMedCrossRefGoogle Scholar
  4. 4.
    Elkin EB, Hudis CA (2015) Parsing progress in breast cancer. J Clin Oncol 33:2837–2838PubMedCrossRefGoogle Scholar
  5. 5.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P, Ducar M, Van Hummelen P, Macconaill LE, Hahn WC et al (2012) High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov 2:82–93PubMedCrossRefGoogle Scholar
  7. 7.
    Fisher B (1999) From halsted to prevention and beyond: advances in the management of breast cancer during the twentieth century. Eur J Cancer 35:1963–1973PubMedCrossRefGoogle Scholar
  8. 8.
    Catenacci DV (2015) Next-generation clinical trials: novel strategies to address the challenge of tumor molecular heterogeneity. Mol Oncol 9:967–996PubMedCrossRefGoogle Scholar
  9. 9.
    Zardavas D, Piccart-Gebhart M (2016) New generation of breast cancer clinical trials implementing molecular profiling. Cancer Biol Med 13:226–235PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Park SY, Gonen M, Kim HJ, Michor F, Polyak K (2010) Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest 120:636–644PubMedCrossRefGoogle Scholar
  11. 11.
    Fisher B, Ravdin RG, Ausman RK, Slack NH, Moore GE, Noer RJ (1968) Surgical adjuvant chemotherapy in cancer of the breast: results of a decade of cooperative investigation. Ann Surg 168:337–356PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fisher B, Bauer M, Wickerham DL, Redmond CK, Fisher ER, Cruz AB, Foster R, Gardner B, Lerner H, Margolese R et al (1983) Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An nsabp update. Cancer 52:1551–1557PubMedCrossRefGoogle Scholar
  13. 13.
    Fisher ER, Anderson S, Redmond C, Fisher B (1993) Pathologic findings from the national surgical adjuvant breast project protocol b-06. 10-year pathologic and clinical prognostic discriminants. Cancer 71:2507–2514PubMedCrossRefGoogle Scholar
  14. 14.
    Huvos AG, Hutter RV, Berg JW (1971) Significance of axillary macrometastases and micrometastases in mammary cancer. Ann Surg 173:44–46PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, Aguilar M, Marubini E (2002) Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347:1227–1232PubMedCrossRefGoogle Scholar
  16. 16.
    Allred DC, Wu Y, Mao S, Nagtegaal ID, Lee S, Perou CM, Mohsin SK, O’Connell P, Tsimelzon A, Medina D (2008) Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res 14:370–378PubMedCrossRefGoogle Scholar
  17. 17.
    Abba MC, Gong T, Lu Y, Lee J, Zhong Y, Lacunza E, Butti M, Takata Y, Gaddis S, Shen J et al (2015) A molecular portrait of high-grade ductal carcinoma in situ. Cancer Res 75:3980–3990PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bloom HJ, Richardson WW (1957) Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11:359–377PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Russnes HG, Vollan HK, Lingjaerde OC, Krasnitz A, Lundin P, Naume B, Sorlie T, Borgen E, Rye IH, Langerod A et al (2010) Genomic architecture characterizes tumor progression paths and fate in breast cancer patients. Sci Transl Med 2:38–47CrossRefGoogle Scholar
  21. 21.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Huggins C, Dao TL (1954) Characteristics of adrenal-dependent mammary cancers. Ann Surg 140:497–501PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410PubMedCrossRefGoogle Scholar
  24. 24.
    Frisch SM, Vuori K, Kelaita D, Sicks S (1996) A role for jun-n-terminal kinase in anoikis; suppression by bcl-2 and crma. J Cell Biol 135:1377–1382PubMedCrossRefGoogle Scholar
  25. 25.
    Kwei KA, Kung Y, Salari K, Holcomb IN, Pollack JR (2010) Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol 4:255–266PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Davey DD, Banks ER, Jennings D, Powell DE (1993) Comparison of nuclear grade and DNA cytometry in breast carcinoma aspirates to histologic grade in excised cancers. Am J Clin Pathol 99:708–713PubMedCrossRefGoogle Scholar
  27. 27.
    Haricharan S, Bainbridge MN, Scheet P, Brown PH (2014) Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data. Breast Cancer Res Treat 146:211–220PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, van’t Veer LJ, Perou CM (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569PubMedCrossRefGoogle Scholar
  29. 29.
    Prat A, Parker JS, Fan C, Cheang MC, Miller LD, Bergh J, Chia SK, Bernard PS, Nielsen TO, Ellis MJ et al (2012) Concordance among gene expression-based predictors for er-positive breast cancer treated with adjuvant tamoxifen. Ann Oncol 23:2866–2873PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    McGuire WL (1975) Current status of estrogen receptors in human breast cancer. Cancer 36:638–644PubMedCrossRefGoogle Scholar
  31. 31.
    Jensen EV, Mohla S, Gorell TA, De Sombre ER (1974) The role of estrophilin in estrogen action. Vitam Horm 32:89–127PubMedCrossRefGoogle Scholar
  32. 32.
    Block GE, Jensen EV, Polley TZ (1975) The prediction of hormonal dependency of mammary cancer. Ann Surg 182:342–352PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Horwitz KB, McGuire WL (1975) Predicting response to endocrine therapy in human breast cancer: a hypothesis. Science 189:726–727PubMedCrossRefGoogle Scholar
  34. 34.
    Osborne CK, Yochmowitz MG, Knight WA 3rd, McGuire WL (1980) The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 46:2884–2888PubMedCrossRefGoogle Scholar
  35. 35.
    Hefti MM, Hu R, Knoblauch NW, Collins LC, Haibe-Kains B, Tamimi RM, Beck AH (2013) Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res 15:R68PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cancello G, Maisonneuve P, Rotmensz N, Viale G, Mastropasqua MG, Pruneri G, Montagna E, Iorfida M, Mazza M, Balduzzi A et al (2013) Progesterone receptor loss identifies luminal b breast cancer subgroups at higher risk of relapse. Ann Oncol 24:661–668PubMedCrossRefGoogle Scholar
  37. 37.
    Oppermann H, Levinson AD, Varmus HE, Levintow L, Bishop JM (1979) Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Proc Natl Acad Sci U S A 76:1804–1808PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbb-related gene in a human mammary carcinoma. Science 229:974–976PubMedCrossRefGoogle Scholar
  39. 39.
    Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erb-b oncogene protein sequences. Nature 307:521–527PubMedCrossRefGoogle Scholar
  40. 40.
    Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA (1984) The neu oncogene: an erb-b-related gene encoding a 185,000-mr tumour antigen. Nature 312:513–516PubMedCrossRefGoogle Scholar
  41. 41.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the her-2/neu oncogene. Science 235:177–182PubMedCrossRefGoogle Scholar
  42. 42.
    Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A (1989) P185her2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9:1165–1172PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M et al (2001) Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses her2. N Engl J Med 344:783–792PubMedCrossRefGoogle Scholar
  44. 44.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M et al (2011) Adjuvant trastuzumab in her2-positive breast cancer. N Engl J Med 365:1273–1283PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Genestie C, Zafrani B, Asselain B, Fourquet A, Rozan S, Validire P, Vincent-Salomon A, Sastre-Garau X (1998) Comparison of the prognostic value of Scarff-Bloom-Richardson and Nottingham histological grades in a series of 825 cases of breast cancer: major importance of the mitotic count as a component of both grading systems. Anticancer Res 18:571–576PubMedGoogle Scholar
  46. 46.
    Chatterjee D, Bal A, Das A, Singh G (2015) Proliferation rate and breast cancer subtype, but not aldh1 expression, predict pathological response to neoadjuvant chemotherapy in locally advanced breast cancer. Virchows Arch 467:303–310PubMedCrossRefGoogle Scholar
  47. 47.
    Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31:13–20PubMedCrossRefGoogle Scholar
  48. 48.
    Barnard NJ, Hall PA, Lemoine NR, Kadar N (1987) Proliferative index in breast carcinoma determined in situ by ki67 immunostaining and its relationship to clinical and pathological variables. J Pathol 152:287–295PubMedCrossRefGoogle Scholar
  49. 49.
    Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS et al (2009) Ki67 index, her2 status, and prognosis of patients with luminal b breast cancer. J Natl Cancer Inst 101:736–750PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Maisonneuve P, Disalvatore D, Rotmensz N, Curigliano G, Colleoni M, Dellapasqua S, Pruneri G, Mastropasqua MG, Luini A, Bassi F et al (2014) Proposed new clinicopathological surrogate definitions of luminal a and luminal b (her2-negative) intrinsic breast cancer subtypes. Breast Cancer Res 16:R65PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Turner NC, Reis-Filho JS (2013) Tackling the diversity of triple-negative breast cancer. Clin Cancer Res 19:6380–6388PubMedCrossRefGoogle Scholar
  55. 55.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826PubMedCrossRefGoogle Scholar
  56. 56.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  57. 57.
    Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, Pierga JY, Brain E, Causeret S, DeLorenzi M et al (2016) 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375:717–729PubMedCrossRefGoogle Scholar
  58. 58.
    Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Perez EA, Olson JA Jr et al (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373:2005–2014PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301–354PubMedCrossRefGoogle Scholar
  60. 60.
    Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM (1983) Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci U S A 80:1707–1711PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821PubMedCrossRefGoogle Scholar
  62. 62.
    Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM (1994) Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci U S A 91:2156–2160PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211PubMedCrossRefGoogle Scholar
  64. 64.
    Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO (1999) Genome-wide analysis of DNA copy-number changes using cdna microarrays. Nat Genet 23:41–46PubMedCrossRefGoogle Scholar
  65. 65.
    Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, Esposito D, Alexander J, Troge J, Grubor V et al (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–1479PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bergamaschi A, Kim YH, Wang P, Sorlie T, Hernandez-Boussard T, Lonning PE, Tibshirani R, Borresen-Dale AL, Pollack JR (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45:1033–1040PubMedCrossRefGoogle Scholar
  67. 67.
    Vire E, Curtis C, Davalos V, Git A, Robson S, Villanueva A, Vidal A, Barbieri I, Aparicio S, Esteller M et al (2014) The breast cancer oncogene emsy represses transcription of antimetastatic microrna mir-31. Mol Cell 53:806–818PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274PubMedCrossRefGoogle Scholar
  69. 69.
    Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70CrossRefGoogle Scholar
  71. 71.
    Fisher B, Jeong JH, Anderson S, Bryant J, Fisher ER, Wolmark N (2002) Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med 347:567–575PubMedCrossRefGoogle Scholar
  72. 72.
    Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233–1241PubMedCrossRefGoogle Scholar
  73. 73.
    Hughes KS, Schnaper LA, Bellon JR, Cirrincione CT, Berry DA, McCormick B, Muss HB, Smith BL, Hudis CA, Winer EP, Wood WC (2013) Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: long-term follow-up of calgb 9343. J Clin Oncol 31:2382–2387PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Silverstein MJ, Lagios MD, Craig PH, Waisman JR, Lewinsky BS, Colburn WJ, Poller DN (1996) A prognostic index for ductal carcinoma in situ of the breast. Cancer 77:2267–2274PubMedCrossRefGoogle Scholar
  75. 75.
    Sautter-Bihl ML, Sedlmayer F, Budach W, Dunst J, Engenhart-Cabillic R, Fietkau R, Feyer P, Haase W, Harms W, Rodel C et al (2010) Intraoperative radiotherapy as accelerated partial breast irradiation for early breast cancer: beware of one-stop shops? Strahlenther Onkol 186:651–657PubMedCrossRefGoogle Scholar
  76. 76.
    Veronesi U, Orecchia R, Maisonneuve P, Viale G, Rotmensz N, Sangalli C, Luini A, Veronesi P, Galimberti V, Zurrida S et al (2013) Intraoperative radiotherapy versus external radiotherapy for early breast cancer (eliot): a randomised controlled equivalence trial. Lancet Oncol 14:1269–1277PubMedCrossRefGoogle Scholar
  77. 77.
    Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW, Blumencranz PW, Leitch AM, Saha S, McCall LM, Morrow M (2011) Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 305:569–575PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Debska-Szmich S, Krakowska M, Czernek U, Habib-Lisik M, Zieba A, Potemski P (2016) The role of preoperative systemic treatment in patients with breast cancer. Contemp Oncol (Pozn) 20:93–101Google Scholar
  79. 79.
    Russell CA (2014) Personalized medicine for breast cancer: it is a new day! Am J Surg 207:321–325PubMedCrossRefGoogle Scholar
  80. 80.
    Ng CK, Schultheis AM, Bidard FC, Weigelt B, Reis-Filho JS (2015) Breast cancer genomics from microarrays to massively parallel sequencing: paradigms and new insights. J Natl Cancer Inst 107(5)Google Scholar
  81. 81.
    Ali S, Mondal N, Choudhry H, Rasool M, Pushparaj PN, Khan MA, Mahfooz M, Sami GA, Jarullah J, Ali A, Jamal MS (2016) Current management strategies in breast cancer by targeting key altered molecular players. Front Oncol 6:45PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Rondon-Lagos M, Villegas VE, Rangel N, Sanchez MC, Zaphiropoulos PG (2016) Tamoxifen resistance: emerging molecular targets. Int J Mol Sci 17(8):1357PubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lazzeroni M, Serrano D, Dunn BK, Heckman-Stoddard BM, Lee O, Khan S, Decensi A (2012) Oral low dose and topical tamoxifen for breast cancer prevention: modern approaches for an old drug. Breast Cancer Res 14:214PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Silverman SL (2010) New selective estrogen receptor modulators (serms) in development. Curr Osteoporos Rep 8:151–153PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chumsri S, Howes T, Bao T, Sabnis G, Brodie A (2011) Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 125:13–22PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chumsri S (2015) Clinical utilities of aromatase inhibitors in breast cancer. Int J Womens Health 7:493–499PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fisher B, Carbone P, Economou SG, Frelick R, Glass A, Lerner H, Redmond C, Zelen M, Band P, Katrych DL et al (1975) 1-Phenylalanine mustard (l-pam) in the management of primary breast cancer. A report of early findings. N Engl J Med 292:117–122PubMedCrossRefGoogle Scholar
  88. 88.
    Bonadonna G, Brusamolino E, Valagussa P, Rossi A, Brugnatelli L, Brambilla C, De Lena M, Tancini G, Bajetta E, Musumeci R, Veronesi U (1976) Combination chemotherapy as an adjuvant treatment in operable breast cancer. N Engl J Med 294:405–410PubMedCrossRefGoogle Scholar
  89. 89.
    Anampa J, Makower D, Sparano JA (2015) Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Med 13:195PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Turner N, Biganzoli L, Di Leo A (2015) Continued value of adjuvant anthracyclines as treatment for early breast cancer. Lancet Oncol 16:e362–e369PubMedCrossRefGoogle Scholar
  91. 91.
    Torti FM, Bristow MM, Lum BL, Carter SK, Howes AE, Aston DA, Brown BW Jr, Hannigan JF Jr, Meyers FJ, Mitchell EP et al (1986) Cardiotoxicity of epirubicin and doxorubicin: assessment by endomyocardial biopsy. Cancer Res 46:3722–3727PubMedGoogle Scholar
  92. 92.
    Kundranda MN, Niu J (2015) Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des Devel Ther 9:3767–3777PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Palumbo R, Sottotetti F, Bernardo A (2016) Targeted chemotherapy with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) in metastatic breast cancer: which benefit for which patients? Ther Adv Med Oncol 8:209–229PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Fabi A, Malaguti P, Vari S, Cognetti F (2016) First-line therapy in her2 positive metastatic breast cancer: is the mosaic fully completed or are we missing additional pieces? J Exp Clin Cancer Res 35:104PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Jiang H, Rugo HS (2015) Human epidermal growth factor receptor 2 positive (her2+) metastatic breast cancer: how the latest results are improving therapeutic options. Ther Adv Med Oncol 7:321–339PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, Chan S, Grimes D, Anton A, Lluch A et al (2005) Randomized phase ii trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the m77001 study group. J Clin Oncol 23:4265–4274PubMedCrossRefGoogle Scholar
  97. 97.
    Mitri Z, Constantine T, O’Regan R (2012) The her2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 2012:743193PubMedPubMedCentralGoogle Scholar
  98. 98.
    Loibl S, Jackisch C, Schneeweiss A, Schmatloch S, Aktas B, Denkert C, Wiebringhaus H, Kummel S, Warm M, Paepke S et al (2016) Dual her2-blockade with pertuzumab and trastuzumab in her2-positive early breast cancer: a subanalysis of data from the randomized phase iii geparsepto trial. Ann Oncol 28(3):497–504Google Scholar
  99. 99.
    Hutchinson L (2013) Breast cancer: Altto: wake-up call for setting up clinical trials. Nat Rev Clin Oncol 10:121PubMedCrossRefGoogle Scholar
  100. 100.
    Jolie A (2013) My medical choice. New York Times, New YorkGoogle Scholar
  101. 101.
    Narod SA, Lynch HT (2007) Chek2 mutation and hereditary breast cancer. J Clin Oncol 25:6–7PubMedCrossRefGoogle Scholar
  102. 102.
    Sharpless NE, DePinho RA (2007) Cancer biology: gone but not forgotten. Nature 445:606–607PubMedCrossRefGoogle Scholar
  103. 103.
    Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A et al (2008) An integrative genomic and proteomic analysis of pik3ca, pten, and akt mutations in breast cancer. Cancer Res 68:6084–6091PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ellis MJ, Perou CM (2013) The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov 3:27–34PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ et al (2016) The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7:11479PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Basho RK, Gagliato DM, Ueno NT, Wathoo C, Chen H, Shariati M, Wei C, Alvarez RH, Moulder SL, Sahin AA et al (2016) Clinical outcomes based on multigene profiling in metastatic breast cancer patients. Oncotarget 7(47):76362–76373PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Silwal-Pandit L, Vollan HK, Chin SF, Rueda OM, McKinney S, Osako T, Quigley DA, Kristensen VN, Aparicio S, Borresen-Dale AL et al (2014) Tp53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin Cancer Res 20:3569–3580PubMedCrossRefGoogle Scholar
  108. 108.
    Holstege H, Horlings HM, Velds A, Langerod A, Borresen-Dale AL, van de Vijver MJ, Nederlof PM, Jonkers J (2010) Brca1-mutated and basal-like breast cancers have similar acgh profiles and a high incidence of protein truncating tp53 mutations. BMC Cancer 10:654PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lu J, McEachern D, Li S, Ellis MJ, Wang S (2016) Reactivation of p53 by mdm2 inhibitor mi-77301 for the treatment of endocrine-resistant breast cancer. Mol Cancer Ther 15(12):2887–2893PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Duffy MJ, Synnott NC, McGowan PM, Crown J, O’Connor D, Gallagher WM (2014) P53 as a target for the treatment of cancer. Cancer Treat Rev 40:1153–1160PubMedCrossRefGoogle Scholar
  111. 111.
    Wade M, Li YC, Wahl GM (2013) Mdm2, mdmx and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83–96PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Synnott NC, Murray A, McGowan PM, Kiely M, Kiely PA, O’Donovan N, O’Connor DP, Gallagher WM, Crown J, Duffy MJ (2016) Mutant p53: a novel target for the treatment of patients with triple-negative breast cancer? Int J Cancer 140(1):234–246PubMedCrossRefGoogle Scholar
  113. 113.
    Liang Y, Besch-Williford C, Benakanakere I, Hyder SM (2007) Re-activation of the p53 pathway inhibits in vivo and in vitro growth of hormone-dependent human breast cancer cells. Int J Oncol 31:777–784PubMedGoogle Scholar
  114. 114.
    Whitman M, Downes CP, Keeler M, Keller T, Cantley L (1988) Type i phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332:644–646PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Miller TW, Rexer BN, Garrett JT, Arteaga CL (2011) Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res 13:224PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Yang SX, Polley E, Lipkowitz S (2016) New insights on pi3k/akt pathway alterations and clinical outcomes in breast cancer. Cancer Treat Rev 45:87–96PubMedCrossRefGoogle Scholar
  117. 117.
    Duan L, Ying G, Danzer B, Perez RE, Shariat-Madar Z, Levenson VV, Maki CG (2014) The prolyl peptidases prcp/prep regulate irs-1 stability critical for rapamycin-induced feedback activation of pi3k and akt. J Biol Chem 289:21694–21705PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Massacesi C, Di Tomaso E, Urban P, Germa C, Quadt C, Trandafir L, Aimone P, Fretault N, Dharan B, Tavorath R, Hirawat S (2016) Pi3k inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther 9:203–210PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Castaneda CA, Cortes-Funes H, Gomez HL, Ciruelos EM (2010) The phosphatidyl inositol 3-kinase/akt signaling pathway in breast cancer. Cancer Metastasis Rev 29:751–759PubMedCrossRefGoogle Scholar
  120. 120.
    Rodon J, Dienstmann R, Serra V, Tabernero J (2013) Development of pi3k inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 10:143–153PubMedCrossRefGoogle Scholar
  121. 121.
    Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS, Kotani H (2010) Mk-2206, an allosteric akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9:1956–1967PubMedCrossRefGoogle Scholar
  122. 122.
    Korkola JE, Collisson EA, Heiser L, Oates C, Bayani N, Itani S, Esch A, Thompson W, Griffith OL, Wang NJ et al (2015) Decoupling of the pi3k pathway via mutation necessitates combinatorial treatment in her2+ breast cancer. PLoS One 10:e0133219PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Davies BR, Greenwood H, Dudley P, Crafter C, Yu DH, Zhang J, Li J, Gao B, Ji Q, Maynard J et al (2012) Preclinical pharmacology of azd5363, an inhibitor of akt: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Cancer Ther 11:873–887PubMedCrossRefGoogle Scholar
  124. 124.
    Tamura K, Hashimoto J, Tanabe Y, Kodaira M, Yonemori K, Seto T, Hirai F, Arita S, Toyokawa G, Chen L et al (2016) Safety and tolerability of azd5363 in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 77:787–795PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hortobagyi GN, Chen D, Piccart M, Rugo HS, Burris HA 3rd, Pritchard KI, Campone M, Noguchi S, Perez AT, Deleu I et al (2016) Correlative analysis of genetic alterations and everolimus benefit in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from bolero-2. J Clin Oncol 34:419–426PubMedCrossRefGoogle Scholar
  126. 126.
    O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL et al (2006) Mtor inhibition induces upstream receptor tyrosine kinase signaling and activates akt. Cancer Res 66:1500–1508PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Steelman LS, Martelli AM, Cocco L, Libra M, Nicoletti F, Abrams SL, McCubrey JA (2016) The therapeutic potential of mtor inhibitors in breast cancer. Br J Clin Pharmacol 82:1189–1212PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S, Bradbury I, Bliss JM, Azim HA Jr, Ellis P et al (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30:1879–1887PubMedCrossRefGoogle Scholar
  129. 129.
    Young SR, Pilarski RT, Donenberg T, Shapiro C, Hammond LS, Miller J, Brooks KA, Cohen S, Tenenholz B, Desai D et al (2009) The prevalence of brca1 mutations among young women with triple-negative breast cancer. BMC Cancer 9:86PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Dizdar O, Arslan C, Altundag K (2015) Advances in parp inhibitors for the treatment of breast cancer. Expert Opin Pharmacother 16:2751–2758PubMedCrossRefGoogle Scholar
  131. 131.
    Murata S, Zhang C, Finch N, Zhang K, Campo L, Breuer EK (2016) Predictors and modulators of synthetic lethality: an update on parp inhibitors and personalized medicine. Biomed Res Int 2016:2346585PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13:674–690PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Budczies J, Bockmayr M, Denkert C, Klauschen F, Lennerz JK, Gyorffy B, Dietel M, Loibl S, Weichert W, Stenzinger A (2015) Classical pathology and mutational load of breast cancer - integration of two worlds. J Pathol Clin Res 1:225–238PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Vincent-Salomon A, Benhamo V, Gravier E, Rigaill G, Gruel N, Robin S, de Rycke Y, Mariani O, Pierron G, Gentien D et al (2013) Genomic instability: a stronger prognostic marker than proliferation for early stage luminal breast carcinomas. PLoS One 8:e76496PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • F. Scott Heinemann
    • 1
  • Alice Police
    • 2
  • Erin Lin
    • 2
  • Mandy Liu
    • 3
  • Sherry Liang
    • 3
  • Ying Huang
    • 3
  1. 1.Department of PathologyHoag Memorial HospitalNewport BeachUSA
  2. 2.Department of SurgeryUniversity of California, Irvine Medical CenterIrvineUSA
  3. 3.Department of Pharmaceutical Sciences, College of PharmacyWestern University of Health SciencesPomonaUSA

Personalised recommendations