Advertisement

Tools, Databases, and Applications of Immunoinformatics

  • Namrata Tomar
  • Rajat K. De
Chapter

Abstract

A large volume of data relevant to immunology research has accumulated due to sequencing of the human and other model organism genomes. At the same time, huge amounts of clinical and epidemiologic data are being deposited in various scientific literature and clinical records. This accumulation of the information is like a gold mine for researchers looking for mechanisms of immune function and disease pathogenesis. Thus the need to handle this rapidly growing immunological resource has given rise to the field known as immunoinformatics. Immunoinformatics, otherwise known as computational immunology, is the interface between computer science and experimental immunology. It represents the use of computational methods and resources for the understanding of immunological information. It not only helps in dealing with huge amount of data but also plays a great role in defining new hypotheses related to immune responses. This article reviews classical immunology, different databases, and prediction tools. Further, it describes applications of immunoinformatics in designing in silico vaccination and immune system modeling, cancer diagnosis, and therapy. It also explores the idea of integrating immunoinformatics with Systems Biology for the development of personalized medicine.

Keywords

Systems biology Immunomics In silico models T cells B cells Allergy Reverse vaccinology Personalized medicine 

References

  1. Admon A, Barnea E, Ziv T (2003) Tumor antigens and proteomics from the point of view of the major histocompatibility complex peptides. Mol Cell Proteomics 2(6):388–398CrossRefPubMedGoogle Scholar
  2. Barsky A, Gardy JL, Hancock RE, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23(8):1040–1042CrossRefPubMedGoogle Scholar
  3. Bhasin M, Raghava G (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridomics 22(4):229–234CrossRefPubMedGoogle Scholar
  4. Braga-Neto UM, Marques ET Jr (2006) From functional genomics to functional immunomics: new challenges, old problems, big rewards. PLoS Comput Biol 2(7):e81CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brusic V, Rudy G, Honeyman M, Hammer J, Harrison L (1998) Prediction of MHC class II-binding peptides using an evolutionary and artificial neural network. Bioinformatics 14:121–130CrossRefPubMedGoogle Scholar
  6. Bui HH, Peters B, Assarsson E, Mbawuike I, Sette A (2007) Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci USA 104(1):246–251CrossRefPubMedGoogle Scholar
  7. Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10(21):7252–7259CrossRefPubMedGoogle Scholar
  8. Davey HM (2003) Flow cytometric techniques for the detection of microorganisms. Advanced flow cytometry: applications in biological research. Springer, pp 91–97CrossRefGoogle Scholar
  9. Davies MN, Flower DR (2007) Harnessing bioinformatics to discover new vaccines. Drug Discov Today 12(9):389–395CrossRefPubMedGoogle Scholar
  10. De Groot AS (2006) Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov Today 11(5):203–209CrossRefPubMedGoogle Scholar
  11. De RK, Tomar N (2014) Immunoinformatics. Humana Press, New YorkCrossRefGoogle Scholar
  12. Durkin MM, Connolly PA, Wheat LJ (1997) Comparison of radioimmunoassay and enzyme-linked immunoassay methods for detection of Histoplasma capsulatum var. capsulatum antigen. J Clin Microbiol 35(9):2252–2255PubMedPubMedCentralGoogle Scholar
  13. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinform 7:131Google Scholar
  14. Feldhahn M, Dönnes P, Thiel P, Kohlbacher O (2009) FRED—a framework for T-cell epitope detection. Bioinformatics 25(20):2758–2759CrossRefPubMedPubMedCentralGoogle Scholar
  15. Galperin MY (2005) The molecular biology database collection: 2005 update. Nucleic Acids Res 33(Database issue):D5–24CrossRefPubMedGoogle Scholar
  16. Gardy JL, Lynn DJ, Brinkman FS, Hancock RE (2009) Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 30(6):249–262CrossRefPubMedGoogle Scholar
  17. Grainger DJ (2004) Immunomics: principles and practice. IRTL 2:1–6Google Scholar
  18. Houot R, Levy R (2009) Vaccines for lymphomas: idiotype vaccines and beyond. Blood Rev 23(3):137–142CrossRefPubMedGoogle Scholar
  19. Hu H, Brzeski H, Hutchins J, Ramaraj M, Qu L, Xiong R, Kalathil S, Kato R, Tenkillaya S, Carney J, Redd R, Arkalgudvenkata S, Shahzad K, Scott R, Cheng H, Meadow S, McMichael J, Sheu SL, Rosendale D, Kvecher L, Ahern S, Yang S, Zhang Y, Jordan R, Somiari SB, Hooke J, Shriver CD, Somiari RI, Liebman MN (2004) Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research. Pharmacogenomics 5(7):933–941CrossRefPubMedGoogle Scholar
  20. Huang L, Dai Y (2006) Direct prediction of T-cell epitopes using support vector machines with novel sequence encoding schemes. J Bioinforma Comput Biol 4(01):93–107CrossRefGoogle Scholar
  21. Huang J, Honda W (2006) CED: a conformational epitope database. BMC Immunol 7(1):1CrossRefGoogle Scholar
  22. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188(12):2357–2368CrossRefPubMedPubMedCentralGoogle Scholar
  23. Iurescia S, Fioretti D, Fazio VM, Rinaldi M (2012) Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech’s challenge. Biotechnol Adv 30(1):372–383CrossRefPubMedGoogle Scholar
  24. Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188(12):2199–2204CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kaplan NO, Everse J, Dixon JE, Stolzenbach FE, Lee C-Y, Lee C-LT, Taylor SS, Mosbach K (1974) Purification and separation of pyridine nucleotide-linked dehydrogenases by affinity chromatography techniques. Proc Natl Acad Sci 71(9):3450–3454CrossRefPubMedGoogle Scholar
  26. Khanolkar A, Badovinac VP, Harty JT (2007) CD8 T cell memory development: CD4 T cell help is appreciated. Immunol Res 39:94–104CrossRefPubMedGoogle Scholar
  27. Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2(4):256–267CrossRefPubMedGoogle Scholar
  28. King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR, Hamblin TJ, Radl J, Stevenson FK (1998) DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 4(11):1281–1286CrossRefPubMedGoogle Scholar
  29. Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2(1):1CrossRefGoogle Scholar
  30. Lefranc M-P, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F, Wu Y, Gemrot E, Brochet X, Lane JM (2009) IMGT®, the international ImMunoGeneTics information system®. Nucleic Acids Res 37(suppl 1):D1006–D1012CrossRefPubMedGoogle Scholar
  31. Levine AM, Thornton P, Forman SJ, Van Hale P, Holdorf D, Rouault CL, Powars D, Feinstein D, Lukes R (1980) Positive coombs test in Hodgkin’s disease: significance and implications. Blood 55(4):607–611PubMedGoogle Scholar
  32. Lu J, Celis E (2000) Use of two predictive algorithms of the world wide web for the identification of tumor-reactive T-cell epitopes. Cancer Res 60(18):5223–5227PubMedGoogle Scholar
  33. Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, Barsky A, Gardy JL, Roche FM, Chan TH, Shah N (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4(1):218PubMedPubMedCentralGoogle Scholar
  34. Ma H, Hongbao K, Lee SL (2006) Study of ELISA technique. Nat Sci 4(2):36Google Scholar
  35. Magdalena J, Odling J, Qiang PH, Martenn S, Joakin L, Uhlen M, Hammarstrom L, Nilsson P (2005) Serum microarrays for large scale screening of protein levels. Mol Cell Proteomics 4:1942–1947CrossRefGoogle Scholar
  36. Mari A, Scala E, Palazzo P, Ridolfi S, Zennaro D, Carabella G (2006) Bioinformatics applied to allergy: allergen databases, from collecting sequence information to data integration. The Allergome platform as a model. Cell Immunol 244(2):97–100CrossRefPubMedGoogle Scholar
  37. Mayrose I, Penn O, Erez E et al (2007a) Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 23:3244–3246CrossRefPubMedGoogle Scholar
  38. Mayrose I, Shlomi T, Rubinstein ND, Gershoni JM, Ruppin E, Sharan R, Pupko T (2007b) Epitope mapping using combinatorial phage-display libraries: a graph-based algorithm. Nucleic Acids Res 35:69–78CrossRefPubMedPubMedCentralGoogle Scholar
  39. Miyata J (1991) A user’s guide to PlaNet Version 5.6Google Scholar
  40. Moreau V, Granier C, Villard S, Laune D, Molina F (2006) Discontinuous epitope prediction based on mimotope analysis. Bioinformatics 22(9):1088–1095CrossRefPubMedGoogle Scholar
  41. Muller GM, Shapira M, Arnon R (1982) Anti-influenza response achieved by immunization with a synthetic conjugate. Proc Natl Acad Sci USA 79(2):569–573CrossRefPubMedGoogle Scholar
  42. Nahtman T, Jernberg A, Mahdavifar S, Zerweck J, Schutkowski M, Maeurer M, Reilly M (2007) Validation of peptide epitope microarray experiments and extraction of quality data. J Immunol Methods 328(1):1–13CrossRefPubMedGoogle Scholar
  43. Naruse H, Ogasawara K, Kaneda R, Hatakeyama S, Itoh T, Kida H, Miyazaki T, Good RA, Onoe K (1994) A potential peptide vaccine against two different strains of influenza virus isolated at intervals of about 10 years. Proc Natl Acad Sci U S A 91(20):9588–9592CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nishimaki T, Sagawa K, Motogi S, Saito K, Morito T, Yoshida H, Kasukawa R (1987) A competitive inhibition test of enzyme immunoassay for the anti-nRNP antibody. J Immunol Methods 100(1):157–160CrossRefPubMedGoogle Scholar
  45. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54(3):187–207CrossRefPubMedGoogle Scholar
  46. Oelke M, Maus MV, Didiano D, June CH, Mackensen A, Schneck JP (2003) Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig–coated artificial antigen-presenting cells. Nat Med 9(5):619–625CrossRefPubMedGoogle Scholar
  47. Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429(6992):629–635CrossRefPubMedGoogle Scholar
  48. Rammensee H-G, Bachmann J, Emmerich NPN, Bachor OA, Stevanović S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219CrossRefPubMedGoogle Scholar
  49. Robinson J, Mistry K, McWilliam H, Lopez R, Parham P, Marsh SG (2011) The IMGT/HLA database. Nucleic Acids Res 39(Database issue):D1171–D1176CrossRefPubMedGoogle Scholar
  50. Rosa DS, Ribeiro SP, Cunha-Neto E (2010) CD4+ T cell epitope discovery and rational vaccine design. Arch Immunol Ther Exp 58(2):121–130CrossRefGoogle Scholar
  51. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48CrossRefPubMedGoogle Scholar
  52. Saha S, Bhasin M, Raghava GPS (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sahin U, Türeci Ö, Pfreundschuh M (1997) Serological identification of human tumor antigens. Curr Opin Immunol 9(5):709–716CrossRefPubMedGoogle Scholar
  54. Sanchez W, Gilman B, Kher M, Lagou S, Covitz P (2004) caGRID white paper (cancer biomedical informatics grid prototype project)Google Scholar
  55. Sathiamurthy M, Peters B, Bui H-H, Sidney J, Mokili J, Wilson SS, Fleri W, McGuinness DL, Bourne PE, Sette A (2005) An ontology for immune epitopes: application to the design of a broad scope database of immune reactivities. Immunome Res 1(1):1CrossRefGoogle Scholar
  56. Schlessinger A, Ofran Y, Yachdav G, Rost B (2006) Epitome: database of structure-inferred antigenic epitopes. Nucleic Acids Res 34(Suppl 1):D777–D780CrossRefPubMedGoogle Scholar
  57. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  58. Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR, Belz GT (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5(11):1143–1148CrossRefPubMedGoogle Scholar
  59. Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22(3):113–120CrossRefPubMedGoogle Scholar
  60. Thirdborough SM, Radcliffe JN, Friedmann PS, Stevenson FK (2002) Vaccination with DNA encoding a single-chain TCR fusion protein induces anticlonotypic immunity and protects against T-cell lymphoma. Cancer Res 62(6):1757–1760PubMedGoogle Scholar
  61. Tomar N, De RK (2010) Immunoinformatics: an integrated scenario. Immunology 131(2):153–168CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tomar N, De RK (2014) In: De RK, Tomar N (eds) Immunoinformatics: a brief review, Immunoinformatics. Humana Press, New York, pp 23–55Google Scholar
  63. Tong JC, Ren EC (2009) Immunoinformatics: current trends and future directions. Drug Discov Today 14(13):684–689CrossRefPubMedGoogle Scholar
  64. Wan YY, Flavell RA (2009) How diverse – CD4 effector T cells and their functions. J Mol Cell Biol 1(1):20–36CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wang Y (2004) Immunostaining with dissociable antibody microarrays. Proteomics 4(1):20–26CrossRefPubMedGoogle Scholar
  66. Wang X, Zhao H, Xu Q, Jin W, Liu C, Zhang H, Huang Z, Zhang X, Zhang Y, Xin D, Simpson AJ, Old LJ, Na Y, Zhao Y, Chen W (2006) HPtaa database-potential target genes for clinical diagnosis and immunotherapy of human carcinoma. Nucleic Acids Res 34(Database issue):D607–D612CrossRefPubMedGoogle Scholar
  67. Wang SS, Bratti MC, Rodriguez AC et al (2009) Common variants in immune and DNA repair genes and risk for human papillomavirus persistence and progression to cervical cancer. J Infect Dis 199:20–30CrossRefPubMedGoogle Scholar
  68. Yan Q (2010) Immunoinformatics and systems biology methods for personalized medicine, systems biology in drug discovery and development. Methods Mol Biol 662:203–220Google Scholar
  69. Yates A, Chan CC, Callard RE, George AJ, Stark J (2001) An approach to modelling in immunology. Brief Bioinform 2(3):245–257CrossRefPubMedGoogle Scholar
  70. Zhang GL, Petrovsky N, Kwoh CK, August JT, Brusic V (2006) PredTAP: a system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res 2Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of BioMedical EngineeringMedical College of WisconsinMilwaukeeUSA
  2. 2.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations