Modelling Polyketide Synthases and Similar Macromolecular Complexes

  • Rohit Farmer
  • Christopher M. Thomas
  • Peter J. Winn


Science is slowly unlocking the secrets of the exquisite chemical synthesis capabilities of polyketide synthases (PKSs), as well as other secondary metabolites’ biosynthesis pathways, and learning to re-engineer such pathways to synthesize novel chemical compounds. Research over the last 30 years has involved innovative experiments and bioinformatics focused on a wide range of medicinal compounds ranging from antibiotics to anticholesterol agents. Furthermore, it has been possible to manipulate PKSs to produce novel compounds for pharmaceutical use. However, despite great progress, our knowledge is still sketchy, and experiments continue to be time-consuming and difficult. PKSs, and secondary metabolite biosynthetic pathways in general, provide model systems for developing and testing experimental and bioinformatic tools for synthetic biology application. Bioinformatic and molecular modelling are important for making sense of existing and future experimental data. Bioinformatic and structural modelling can help in several ways: by predicting how manipulations of protein domains might yield viable novel biosynthetic pathways to generate variants of existing chemicals/pharmaceuticals of high value or to allow the synthesis of totally novel compounds, by assisting the discovery of novel gene clusters in genomic and metagenomic data, by predicting the metabolites synthesized by novel gene clusters and by interpreting experimental data to elucidate the rules governing polyketide synthase function, which feeds back into the others on this list.


Polyketide synthases Pharmaceuticals Structural modelling 



RF thanks the Darwin Trust of Edinburgh for financial support and Sam Higginbottom University of Agriculture, Technology and Sciences, India, for study leave and financial support. PJW and CMT thank the BBSRC/EPSRC for support via grant BB/F014570/1.


  1. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  2. Anand S, Mohanty D (2012) Modeling holo-ACP:DH and holo-ACP:KR complexes of modular polyketide synthases: a docking and molecular dynamics study. BMC Struct Biol 12(1):10CrossRefGoogle Scholar
  3. Anand S et al (2010) SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Res 38:W487–W496CrossRefGoogle Scholar
  4. Ansari MZ et al (2008) In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites. BMC Bioinforma 9:454CrossRefGoogle Scholar
  5. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20(1):79–110CrossRefGoogle Scholar
  6. Bachmann BO, Ravel J (2009) Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol 458:181–217CrossRefGoogle Scholar
  7. Bender C, Rangaswamy V, Loper J (1999) Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol 37:175–196CrossRefGoogle Scholar
  8. Broadhurst RW et al (2003) The structure of docking domains in modular polyketide synthases. Chem Biol 10(8):723–731CrossRefGoogle Scholar
  9. Busche A et al (2012) Characterization of molecular interactions between ACP and halogenase domains in the Curacin A polyketide synthase. ACS Chem Biol 7(2):378–386CrossRefGoogle Scholar
  10. Caboche S et al (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:D326–D331CrossRefGoogle Scholar
  11. Canutescu AA, Shelenkov AA, Dunbrack RL (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci Publ Protein Soc 12(9):2001–2014CrossRefGoogle Scholar
  12. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology (Reading, England) 154(6):1555–1569CrossRefGoogle Scholar
  13. Challis GL, Ravel J, Townsend C (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7(3):211–224CrossRefGoogle Scholar
  14. Chan YA et al (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26(1):90–114CrossRefGoogle Scholar
  15. de Jong A et al (2010) BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res 38:W647–W651CrossRefGoogle Scholar
  16. de Vries SJ, Van Dijk M, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5(5):883–897CrossRefGoogle Scholar
  17. Dunn BJ, Cane DE, Khosla C (2013) Mechanism and specificity of an acyltransferase domain from a modular polyketide synthase. Biochemistry 52(11):1839CrossRefGoogle Scholar
  18. Dutta S et al (2014) Structure of a modular polyketide synthase. Nature 510:512–517CrossRefGoogle Scholar
  19. Finn RD et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222CrossRefGoogle Scholar
  20. Foerstner KU et al (2008) A computational screen for type I polyketide synthases in metagenomics shotgun data. PLoS One 3(10):3515CrossRefGoogle Scholar
  21. Gokhale RS, Khosla C (2000) Role of linkers in communication between protein modules. Curr Opin Chem Biol 4(1):22–27CrossRefGoogle Scholar
  22. Gokhale RS, Sankaranarayanan R, Mohanty D (2007) Versatility of polyketide synthases in generating metabolic diversity. Curr Opin Struct Biol 17(6):736–743CrossRefGoogle Scholar
  23. Gurney R, Thomas CM (2011) Mupirocin: biosynthesis, special features and applications of an antibiotic from a gram-negative bacterium. Appl Microbiol Biotechnol 90(1):11–21CrossRefGoogle Scholar
  24. Haft DH et al (2001) TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res 29(1):41–43CrossRefGoogle Scholar
  25. Haines AS et al (2013) A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis. Nat Chem Biol 9(11):685–692CrossRefGoogle Scholar
  26. Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Eng 48(26):4688–4716CrossRefGoogle Scholar
  27. Hunter S et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312CrossRefGoogle Scholar
  28. Hutchinson CR et al (2000) Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van Leeuwenhoek 78(3–4):287–295CrossRefGoogle Scholar
  29. Jenke-Kodama H, Dittmann E (2009) Bioinformatic perspectives on NRPS/PKS megasynthases: advances and challenges. Nat Prod Rep 26(7):874–883CrossRefGoogle Scholar
  30. Kapur S et al (2010) Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase. Proc Natl Acad Sci U S A 107(51):22066–22071CrossRefGoogle Scholar
  31. Kapur S et al (2012) Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. Proc Natl Acad Sci U S A 109(11):4110–4115CrossRefGoogle Scholar
  32. Keatinge-Clay A (2008) Crystal structure of the erythromycin polyketide synthase dehydratase. J Mol Biol 384(4):941–953CrossRefGoogle Scholar
  33. Keatinge-Clay AT, Stroud RM (2006) The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases. Structure 14(4):737–748CrossRefGoogle Scholar
  34. Khaldi N et al (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47(9):736–741CrossRefGoogle Scholar
  35. Khare D et al (2010) Conformational switch triggered by alpha-ketoglutarate in a halogenase of curacin A biosynthesis. Proc Natl Acad Sci U S A 107(32):14099–14104CrossRefGoogle Scholar
  36. Khosla C (2009) Structures and mechanisms of polyketide synthases. J Org Chem 74(17):6416–6420CrossRefGoogle Scholar
  37. Khosla C et al (1999) Tolerance and specificity of polyketide synthases. Annu Rev Biochem 68:219–253CrossRefGoogle Scholar
  38. Khosla C et al (2007) Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu Rev Biochem 76:195–221CrossRefGoogle Scholar
  39. Knox C et al (2011) DrugBank 3.0: a comprehensive resource for “omics” research on drugs. Nucleic Acids Res 39:D1035–D1041CrossRefGoogle Scholar
  40. Kufareva I et al (2007) PIER: protein interface recognition for structural proteomics. Proteins 67(2):400–417CrossRefGoogle Scholar
  41. Kwon SJ et al (2012) Expanding nature’s small molecule diversity via in vitro biosynthetic pathway engineering. Curr Opin Chem Biol 16(1–2):186–195CrossRefGoogle Scholar
  42. Lairson LL et al (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555CrossRefGoogle Scholar
  43. Lee TV, Johnson RD, Arcus VL, Lott JS (2015) Prediction of the substrate for nonribosomal peptide synthetase (NRPS) adenylation domains by virtual screening. Proteins 83:2052–2066CrossRefGoogle Scholar
  44. Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232CrossRefGoogle Scholar
  45. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305CrossRefGoogle Scholar
  46. Lohman JR et al (2015) Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases. PNAS 112(41):12693–12698CrossRefGoogle Scholar
  47. Ma SM, Tang Y (2007) Biochemical characterization of the minimal polyketide synthase domains in the lovastatin nonaketide synthase LovB. FEBS J 274(11):2854–2864CrossRefGoogle Scholar
  48. Maier T, Leibundgut M, Ban N (2008) The crystal structure of a mammalian fatty acid synthase. Science 321(5894):1315–1322CrossRefGoogle Scholar
  49. Marchler-Bauer A et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229CrossRefGoogle Scholar
  50. Medema MH et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346CrossRefGoogle Scholar
  51. Minowa Y, Araki M, Kanehisa M (2007) Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J Mol Biol 368(5):1500–1517CrossRefGoogle Scholar
  52. Musiol EW, Weber T (2012) Discrete acyltransferases involved in polyketide biosynthesis. Med Chem Commun 3:871–886CrossRefGoogle Scholar
  53. Nguyen T et al (2008) Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26(2):225–233CrossRefGoogle Scholar
  54. Park SR et al (2010) Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Appl Microbiol Biotechnol 85(5):1227–1239CrossRefGoogle Scholar
  55. Piel J (2010) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27(7):996–1047CrossRefGoogle Scholar
  56. Rausch C et al (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33(18):5799–5808CrossRefGoogle Scholar
  57. Rausch C et al (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7:78CrossRefGoogle Scholar
  58. Röttig M et al (2011) NRPS predictor2 – a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367CrossRefGoogle Scholar
  59. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6(8):493–505CrossRefGoogle Scholar
  60. Stajich JE et al (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12(10):1611–1618CrossRefGoogle Scholar
  61. Starcevic A et al (2008) ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res 36(21):6882–6892CrossRefGoogle Scholar
  62. Starcevic A et al (2012) Recombinatorial biosynthesis of polyketides. J Ind Microbiol Biotechnol 39(3):503–511CrossRefGoogle Scholar
  63. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18(4):380–416CrossRefGoogle Scholar
  64. Tang Y et al (2006) The 2.7-Angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc Natl Acad Sci U S A 103(30):11124–11129CrossRefGoogle Scholar
  65. Tang Y et al (2007) Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. Chem Biol 14(8):931–943CrossRefGoogle Scholar
  66. Thomas CM et al (2010) Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 8(4):281–289CrossRefGoogle Scholar
  67. Tsai SCS, Ames BD (2009) Structural enzymology of polyketide synthases. Methods Enzymol 459(09):17–47CrossRefGoogle Scholar
  68. Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computation tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 1:69–79CrossRefGoogle Scholar
  69. Weber T et al (2009) CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol 140(1–2):13–17CrossRefGoogle Scholar
  70. Weber T et al (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243CrossRefGoogle Scholar
  71. Weissman KJ (2006) The structural basis for docking in modular polyketide biosynthesis. Chembiochem Eur J Chem Biol 7(3):485–494CrossRefGoogle Scholar
  72. Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3(12):925–936CrossRefGoogle Scholar
  73. Weissman KJ, Müller R (2008) Protein-protein interactions in multienzyme megasynthetases. Chembiochem Eur J Chem Biol 9(6):826–848CrossRefGoogle Scholar
  74. Wilkins A et al (2012) Evolutionary trace for prediction and redesign of protein functional sites. Methods Mol Biol 819:29–42CrossRefGoogle Scholar
  75. Wu J et al (2007) Mupirocin H, a novel metabolite resulting from mutation of the HMG-CoA synthase analogue, mupH in Pseudomonas fluorescens. Chem Commun 8(20):2040–2042CrossRefGoogle Scholar
  76. Yadav G, Gokhale RS, Mohanty D (2003) Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J Mol Biol 328(2):335–363CrossRefGoogle Scholar
  77. Yadav G, Gokhale RS, Mohanty D (2009) Towards prediction of metabolic products of polyketide synthases: an in silico analysis. PLoS Comput Biol 5(4):1000351CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of BirminghamBirminghamUK
  2. 2.Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and BioengineeringSam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia

Personalised recommendations