Advertisement

The Role of Bioinformatics in Epigenetics

  • Budhayash Gautam
  • Kavita Goswami
  • Neeti Sanan Mishra
  • Gulshan Wadhwa
  • Satendra Singh
Chapter

Abstract

Epigenetics is an upcoming field that studies the gene regulation of mitotically heritable genes which change the physiology of cells without altering the DNA sequence. Various epigenetic elements such as modification of histone proteins, methylation of DNA, chromatin modeling, and RNA-mediating silencing influence the regulation of genes at many levels, which leads to diseases such as cancer. All of these factors modulate gene expression in a tissue-specific manner. Bioinformatics is a successful approach in the field of molecular biology for studying epigenomics data. To generate these epigenomic data which can be analyzed using various bioinformatics tools and software, a variety of technologies are being used by researchers. Many biological databases which store a huge amount of information related to the modifications due to epigenetics are available online. With the help of these data, we can identify key target genes that can be manipulated to achieve some resistance against diseases caused by epigenetic factors.

Keywords

Epigenetics Methylation RNA silencing Histone modification Bioinformatics 

Notes

Acknowledgments

The authors are grateful to the Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India, for providing the facilities and support to complete the present research work.

References

  1. Arand J et al (2012) In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet 8:e1002750CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12:142–148CrossRefPubMedGoogle Scholar
  4. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21CrossRefPubMedGoogle Scholar
  5. Bowman GD, Poirier MG (2014) Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115:2274–2295CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brunet AS, Berger L (2014) Epigenetics of aging and aging-related disease. J Gerontol A Biol Sci Med Sci 69:S17–S20CrossRefPubMedPubMedCentralGoogle Scholar
  7. Calvanese V et al (2009) The role of epigenetics in aging and age-related diseases. Ageing Res Rev 8:268–276CrossRefPubMedGoogle Scholar
  8. Carey MF et al (2009) Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc,pdb prot5279Google Scholar
  9. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dupont C et al (2009) Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 27:351–357CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep 3:224–229CrossRefPubMedPubMedCentralGoogle Scholar
  12. Egger G et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463CrossRefPubMedGoogle Scholar
  13. Ehrich M et al (2007) A new method for accurate assessment of DNA quality after bisulfite treatment. Nucleic Acids Res 35:e29CrossRefPubMedPubMedCentralGoogle Scholar
  14. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gangaraju VK, Bartholomew B (2007) Mechanisms of ATP dependent chromatin remodeling. Mutat Res/Fundam Mol Mech Mutagen 618:3–17CrossRefGoogle Scholar
  16. Hackett JA, Surani MA (2013) DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond Ser B Biol Sci 368:20110328CrossRefGoogle Scholar
  17. Hirst M, Marra MA (2010) Next generation sequencing based approaches to epigenomics. Brief Funct Genomics 9:455–465CrossRefPubMedGoogle Scholar
  18. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254CrossRefGoogle Scholar
  20. Jiang YH et al (2004) Epigenetics and human disease. Annu Rev Genomics Hum Genet 5:479–510CrossRefPubMedGoogle Scholar
  21. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492CrossRefPubMedGoogle Scholar
  22. Jothi R et al (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36:5221–5231CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kadonaga JT (2004) Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116:247–257CrossRefPubMedGoogle Scholar
  24. Lee TI et al (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lim SJ et al (2010) Computational epigenetics: the new scientific paradigm. Bioinformation 4:331–337CrossRefPubMedPubMedCentralGoogle Scholar
  26. Patterson K et al (2011) DNA methylation: bisulphite modification and analysis. J Vis Exp 56:3170Google Scholar
  27. Villeneuve LM, Natarajan R (2010) The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol 299:F14–F25CrossRefPubMedPubMedCentralGoogle Scholar
  28. Visel A et al (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wilkinson KA, Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428:133–145CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wolffe AP (1998) Packaging principle: how DNA methylation and histone acetylation control the transcriptional activity of chromatin. J Exp Zool 282:239–244CrossRefPubMedGoogle Scholar
  31. Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486CrossRefPubMedGoogle Scholar
  32. Yang HH, Lee MP (2004) Application of bioinformatics in cancer epigenetics. Ann N Y Acad Sci 1020:67–76CrossRefPubMedGoogle Scholar
  33. Yang Z, Wu J (2007) MicroRNAs and regenerative medicine. DNA Cell Biol 26:257–264CrossRefPubMedGoogle Scholar
  34. Zou C, Mallampalli RK (2014) Regulation of histone modifying enzymes by the ubiquitin-proteasome system. Biochim Biophys Acta 1843:694–702CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Budhayash Gautam
    • 1
  • Kavita Goswami
    • 2
  • Neeti Sanan Mishra
    • 2
  • Gulshan Wadhwa
    • 3
  • Satendra Singh
    • 1
  1. 1.Department of Computational Biology and BioinformaticsJacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia
  2. 2.Plant RNAi Biology GroupInternational Center for Genetic Engineering and BiotechnologyNew DelhiIndia
  3. 3.Department of Biotechnology, Apex Bioinformatics CentreMinistry of Science & TechnologyNew DelhiIndia

Personalised recommendations