Advertisement

α-Amylase Inhibitor’s Performance in the Control of Diabetes Mellitus: An Application of Computational Biology

  • Jyoti Verma
  • C. Awasthi
  • Qazi Mohammad Sajid Jamal
  • Mohd. Haris Siddiqui
  • Gulshan Wadhwa
  • Kavindra Kumar Kesari
Chapter

Abstract

Diabetes mellitus is the most widespread disorders prevalent in current period. α-Amylase enzyme plays a key role in the onset of the abnormal condition by breaking starch into glucose; hence its inhibitors need to be studied thoroughly. Due to the various side effects posed by the existing commercial non-proteinaceous inhibitors, exploration of the natural plant-based inhibitors of the enzyme is the present-day demand. Ample of plants have been extensively studied and reported to exhibit hypoglycaemic properties. This article describes the mode of action of amylase enzyme, phytochemicals which behave as amylase inhibitors and classes of its inhibitors and summarizes various plants studied for their enzyme inhibitory properties including computational tools and techniques to analyse the binding pattern exploration of inhibitors using molecular interaction with enzymes of interest.

Keywords

Diabetes mellitus α-Amylase inhibitors Phytochemicals 

Notes

Acknowledgement

This study was supported by TEQIP-II (Technical Education Quality Improvement Programme, Government of India).

References

  1. Aagerhofer CK et al (1990) Phospholipase activation in the cytotoxic mechanism of thionin purified from nuts of Pyrularia pubera. Toxicon 28:547–557CrossRefGoogle Scholar
  2. Abe JI et al (1993) Arginine is essential for the α-amylase inhibitory activity of the α-amylase/subtilisin inhibitor (BASI) from barley seeds. Biochem J 293:151–155PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aguiar LGK et al (2007) Microcirculação no Diabetes: Implicações nas Complicações Crônicas e Tratamento da Doença. Arq Bras Endocrinol Metab 51:204–211CrossRefGoogle Scholar
  4. Alam N et al (2001) Substrate–inhibitor interactions in the kinetics of α-amylase inhibition by Ragi α-amylase/ trypsin inhibitor (RATI) and its various N-terminal fragments. Biochemistry 40:4229–4233PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ali H et al (2006) α-amylase inhibitory activity of some Malaysian plants used to treat diabetes: with particular reference to Phyllanthus amarus. J Ethnopharmacol 107:449–455PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bailey CJ (2003) New approaches to the pharmacotherapy of diabetes. In: Pickup JC, William G (eds) Textbook of diabetes, vol 2, 3rd edn. Blackwell Science Ltd, UK, pp 73.1–73.21Google Scholar
  7. Bhandari MR et al (2008) α­glucosidase and α­amylase inhibitory activitiesof Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.) Food Chem 106:247–252CrossRefGoogle Scholar
  8. Bhat M et al (2011) Antidiabetic Indian plants: a good source of potent amylase inhibitors. Evid Based Complement Alternat Med 2011:810207PubMedPubMedCentralGoogle Scholar
  9. Bhutani KK, Gohil VM (2010) Natural products drug discovery research in India: status and appraisal. Indian J Exp Biol 48:199–207PubMedPubMedCentralGoogle Scholar
  10. Bloch JRC, Richardson M (1991) A new family of small (5kD) protein inhibitors of insect α-amylase from seeds of sorghum (Sorghum bicolor (L.) Moench) have sequence homologies with wheat δ -purothionins. FEBS Letter 279:101–104CrossRefGoogle Scholar
  11. Bode W et al (1989) The refined 2.0Å X-ray crystal structure of the complexformed between bovine β-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes. FEBS Lett 242:285–292PubMedCrossRefGoogle Scholar
  12. Bompard-Gilles C et al (1996) Substrate mimicry in the active centre of a mammalian α-amylase: structural analysis of an enzyme-inhibitor complex. Structure 4:1441–1452PubMedCrossRefGoogle Scholar
  13. Bowie FU et al (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170PubMedCrossRefGoogle Scholar
  14. Brayer GD et al (1995) The structure of human pancreatic α-amylase at 1.8Å resolution and comparisons with related enzymes. Protein Sci 4:1730–1742PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brayer GD et al (2000) Subsite mapping of the human pancreatic alpha-amylase active site through structural, kinetic and mutagenesis techniques. Biochemistry-US 39:4778–4791CrossRefGoogle Scholar
  16. Buonocore V et al (1977) Wheat protein inhibitors of α-amylase. Phytochemistry 16:811–820CrossRefGoogle Scholar
  17. Campos FAP, Richardson M (1983) The complete amino acid sequence of the bifunctional α-amylase / trypsin inhibitor from seeds of ragi (Indian finger millet, Eleusine coracana Gaertn). FEBS Lett 152:2CrossRefGoogle Scholar
  18. Carlson GL et al (1983) A bean α-amylase inhibitor formulation (starch blocker) is ineffective in man. Science 219:393–395PubMedCrossRefGoogle Scholar
  19. Cavasotto CN, Phatak SS (2009) Homology modeling in drug discovery: current trends and applications. Drug Discov Today 14:676–683PubMedCrossRefGoogle Scholar
  20. Chagolla-Lopez A et al (1994) A novel α-amylase inhibitor from Amaranth (Amaranthus hypocondriacus) seeds. J Biol Chem 269:23675–23680PubMedPubMedCentralGoogle Scholar
  21. Chandonia JM, Brenner SE (2005) Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches. Proteins 58:166–179PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cheng AYY, Fantus IG (2005) Oral antihyperglycemic therapy for type 2 diabetes Mellitus. Can Med Assoc J 172:213–226CrossRefGoogle Scholar
  23. Choi HJ et al (2000) Inhibitory effects of crude drugs on alpha-glucosidase. Arch Pharm Res 23:261–266PubMedCrossRefPubMedCentralGoogle Scholar
  24. Colilla FJ et al (1990) Gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett 270:191–194PubMedCrossRefPubMedCentralGoogle Scholar
  25. Conforti F et al (2005) In vitro antioxidant effect and inhibition of α-amylase of two varieties of Amaranthus caudatus seeds. Biol Pharm Bull 28:1098–1102PubMedCrossRefPubMedCentralGoogle Scholar
  26. Connolly JD, Hill RA (1999) Triterpenoids. Nat Prod Rep 16:221–240CrossRefGoogle Scholar
  27. Cornelissen BJC et al (1986) A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 231:531–532CrossRefGoogle Scholar
  28. De Lampasona MEP et al (1988) Oleanolic acid and ursolic acid derivatives from Polylepsis australis. Phytochemistry 49:2061–2064CrossRefGoogle Scholar
  29. Dnyaneshwar MN, Archana RJ (2013) In vitro inhibitory effects of Pithecellobium dulce (Roxb.) Benth. seeds on intestinal α-glucosidase and pancreatic α-amylase. J Biochem Technol 4(3):616–621Google Scholar
  30. Du ZY et al (2006) α­glucosidase inhibition of natural curcuminoids and curcumin analogs. Eur J Med Chem 14:213–218CrossRefGoogle Scholar
  31. Feng GH et al (1996) α-amylase inhibitors from wheat: sequences and patterns of inhibition of insect and human α-amylases. Insect Biochem Mol Biol 26:419–426PubMedCrossRefPubMedCentralGoogle Scholar
  32. Finardi-Filho F et al (1996) A putative precursor protein in the evolution of the bean alpha-amylase inhibitor. Phytochemistry 43:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fogel MR, Gray GM (1973) Starch hydrolysis in man: an intraluminal process not requiring membrane digestion. J Appl Physiol 35(2):263–267PubMedCrossRefPubMedCentralGoogle Scholar
  34. Franco OL et al (2000) Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specificities. Eur J Biochem 267(8):1466–1473CrossRefGoogle Scholar
  35. Fujisawa T et al (2005) Effect of two alpha-glucosidase inhibitors, voglibose and acarbose on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism 54:387–390PubMedCrossRefPubMedCentralGoogle Scholar
  36. Funke I, Melzing MF (2006) Traditionally used plants in diabetes therapy- phytotherapeutics as inhibitors of α-amylase activity. Rev Bras Farmacogn 16:1–5CrossRefGoogle Scholar
  37. Gao H et al (2007) Inhibitory effecton α­glucosidase by the fruits of Terminalia chebula Retz. Food Chem 105:628–634CrossRefGoogle Scholar
  38. Gao H et al (2008a) Inhibitory effect on α­glucosidase by Adhatoda vasica Nees. Food Chem 108:965–972PubMedCrossRefGoogle Scholar
  39. Gao H et al (2008b) α­glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chem 106:1195–1201CrossRefGoogle Scholar
  40. Garcia-Casado GL et al (1994) Rye inhibitors of animal α-amylases shown different specificities, aggregative properties and IgE-binding capacities than their homologues from wheat and barley. Eur J Biochem 224:525–531PubMedCrossRefPubMedCentralGoogle Scholar
  41. Garcia-Casado G et al (1995) A major baker’s asthma allergen from rye flour is considerably more active than its barley counterpart. FEBS Lett 364:36–40PubMedCrossRefGoogle Scholar
  42. Garcia-Casado G et al (1996) Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology 6:471–477PubMedCrossRefGoogle Scholar
  43. Garcia-Olmedo F et al (1983) Biochem Biophys Acta 740:52–56Google Scholar
  44. Giri AP, Kachole MS (1998) Amylase inhibitors of pigeonpea (Cajanus cajan) seeds. Phytochemistry 47(2):197–202PubMedCrossRefGoogle Scholar
  45. Goke B, Herrmann-Rinke C (1998) The evolving role of alpha-glucosidase inhibitors. Diabetes/Metab Res 14:S31–S38CrossRefGoogle Scholar
  46. Groot PC et al (1988) Human pancreatic amylase is encoded by two different genes. Nucleic Acids Res 16:4724PubMedPubMedCentralCrossRefGoogle Scholar
  47. Grossi de Sá MF et al (1997) Molecular characterization of a bean α-amylase inhibitor that inhibits the α-amylase of the Mexican bean weevil Zabrotes subfasciatus. Planta 203:295–303PubMedCrossRefPubMedCentralGoogle Scholar
  48. Grover JK et al (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gullotto D et al (2013) Probing the protein space for extending the detection of weak homology folds. J Theor Biol 320:152–158PubMedCrossRefPubMedCentralGoogle Scholar
  50. Gumucio DL et al (1988) Concerted evolution of human amylase genes. Mol Cell Biol 8:1197–1205PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gvozdeva EL et al (1993) Enzymatic oxidation of the bifunctional wheat inhibitor of subtilisin and endogenous α-amylase. FEBS Lett 334:72–74PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gyémánt G et al (2003) Inhibition of human salivary α-amylase by glucopyranosylidene-spiro-thiohydantoin. Biochem Biophys Res Commun 312:334–339PubMedCrossRefGoogle Scholar
  53. Hamdan II, Afifi FU (2010) Capillary electrophoresis as a screening tool for alpha amylase inhibitors in plant extracts. Saudi Pharm J 18:91–95PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hansawasdi C et al (2000) α-amylase inhibitors from Roselle (Hibiscus sabdariffa Linn.) tea. Biosci Biotechnol Biochem 64:1041–1043PubMedCrossRefGoogle Scholar
  55. Hase T et al (1978) Disulfide bonds of purothionin, a lethal toxin for yeasts. J Biochem 83(6):1671–1678PubMedCrossRefGoogle Scholar
  56. Hochstrasser K et al (1970) Physiol Chem 351:721–728CrossRefGoogle Scholar
  57. Imoto T et al (1991) A novel peptide isolated from the leaves of Gymnema sylvestre: characterization and its suppressive effect on the neural responses to sweet taste stimuli in the rat. Comp Biochem Physiol 100:309–314CrossRefGoogle Scholar
  58. Iniyan GT et al (2010) In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Indian J Pharmacol 42(5):280–282CrossRefGoogle Scholar
  59. Inzucchi SE (2002) Oral anti-hyperglycemic therapy for type 2 diabetes. JAMA 287:360–372PubMedCrossRefPubMedCentralGoogle Scholar
  60. Irwin JJ, Shoichet (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182PubMedPubMedCentralCrossRefGoogle Scholar
  61. Iulek J et al (2000) Purification, biochemical characterisation and partial primary structure of a new α-amylase inhibitor from Secale cereale (rye). Int J Biochem Cell Biol 32:1195–1204PubMedCrossRefPubMedCentralGoogle Scholar
  62. Janecek S et al (1997) Domain evolution in the α-amylase family. J Mol Evol 45:322–331PubMedCrossRefPubMedCentralGoogle Scholar
  63. Johnson TC et al (1987) Reduction of purothionin by the wheat seed thioredoxin system. Plant Physiol 85(2):446–451PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jones BL, Mac AS (1977) Amino acid sequences of the two α-purothionins of hexaploid wheat. Cereal Chem 54:511–523Google Scholar
  65. Kadziola A et al (1994) Crystal and molecular structure of barley α-amylase. J Mol Biol 239:104–121PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kadziola A et al (1998) Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278:205–217PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kandra L et al (2004) Inhibitory effects of tannin on human salivary α-amylase. Biochem Biophys Res Commun 319:1265–1271PubMedCrossRefPubMedCentralGoogle Scholar
  68. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652PubMedCrossRefPubMedCentralGoogle Scholar
  69. Karthic K et al (2008) Identification of α- amylase inhibitors from Syzygium cumini Linn seeds. Indian J Exp Biol 46:677–680PubMedPubMedCentralGoogle Scholar
  70. Kasahara K et al (1996) Complete sequence, subunit structure and complexes with pancreatic α-amylase of an α-amylase inhibitor from Phaseolus vulgaris white kidney beans. J Biochem 120:177–183PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kazeem MI et al (2013) Inhibitory effect of A. indica Juss leaf extract on the activities of alpha amylase and alpha glucosidase. Pak J Biol Sci 16(21):1358–1362PubMedCrossRefPubMedCentralGoogle Scholar
  72. Keerthana G et al (2013) In vitro alpha amylase inhibitory and anti-oxidant activities of ethanolic leaf extract of Croton bonplandianum. Asian J Pharm Clin Res 6(Suppl 4):32–36Google Scholar
  73. Kim MJ et al (1999) Comparative study of the inhibition of α-glucosidase, α-amylase and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose and acarviosine-glucose. Arch Biochem Biophys 371:277–283PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kobayashi K et al (2003) Screening of Mongolian plants for influence on amylase activity in mouse plasma and gastrointestinal tube. Biol Pharm Bull 26:1045–1048PubMedCrossRefPubMedCentralGoogle Scholar
  75. Komaki E et al (2003) Identification of anti-amylase components from olive leaf extracts. Food Sci Technol Res 9:35–39CrossRefGoogle Scholar
  76. Kotowaroo MI et al (2006) Screening of traditional antidiabetic medicinal plants of Mauritius for possible alpha-amylase inhibitory effects in vitro. Phytother Res 20:228–231PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kurihara H et al (1999) Inhibitory potencies of bromophenols from Rhodomelaceae algae against α­glucosidase activity. Fish Sci 65:300–303CrossRefGoogle Scholar
  78. Kusaba-Nakayama M et al (2000) CM-3, one of the wheat α-amylase inhibitor subunits, and binding of IgE in sera from Japanese with atopic dermatitis related to wheat. Food Chem Toxicol 38:179–185PubMedCrossRefPubMedCentralGoogle Scholar
  79. Laar FA (2008) Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc Health Risk Manag 4(6):1189–1195PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lam SH et al (2008) α­glucosidase inhibitors from the seeds of Syagrus romanzoffiana. Phytochemistry 69:1173–1178PubMedCrossRefGoogle Scholar
  81. Layer P et al (1985) Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans. Gastroenterology 88:1895–1902PubMedCrossRefGoogle Scholar
  82. Le Berre-Anton V et al (1997) Characterization and functional 149 properties of the [alpha]-amylase inhibitor ([alpha]-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta 1343:31–40PubMedCrossRefGoogle Scholar
  83. Lebowitz HE (1998) Alpha-glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Rev 6:132–145Google Scholar
  84. Lecompte TJ et al (1982) Biochemistry 21:4843–4849CrossRefGoogle Scholar
  85. Li WL et al (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 92(1):1–21PubMedCrossRefPubMedCentralGoogle Scholar
  86. Loizzo MR et al (2008) In vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes. J Ethnopharmacol 119:109–116PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lo-Piparo E et al (2008) Flavonoids for controlling starch digestion: structural requirements for inhibiting human α-amylase. J Med Chem 51:3555–3561PubMedCrossRefPubMedCentralGoogle Scholar
  88. Lu S et al (1999) Solution structure of the major α-amylase inhibitor of the crop plant amaranth. J Biol Chem 274:20473–20478PubMedCrossRefPubMedCentralGoogle Scholar
  89. Luo JG et al (2008) New triterpenoid saponins with strong α­ glucosidase inhibitory activity from the roots of Gypsophila oldhamiana. Bioorg Med Chem 16:2912–2920PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lyons A et al (1987) Characterization of homologous inhibitors of trypsin and α-amylase. Biochim Biophys Acta 915:305–313CrossRefGoogle Scholar
  91. Maarel MJEC et al (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mangal M et al (2013) NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res 41(Database issue):D1124–D1129PubMedCrossRefPubMedCentralGoogle Scholar
  93. Marles R, Farnsworth N (1994) Plants as sources of anti-diabetic agents. In: Wagner H, Farnsworth NR (eds) Economic and medicinal plant research, vol 6. Academic Press Ltd, UK, pp 149–187Google Scholar
  94. Marshall JJ, Lauda CM (1975) Purification and properties of phaseolamin, an inhibitor of α-amylase from the kidney bean Phaseolus vulgaris. J Biol Chem 250:8030–8037PubMedPubMedCentralGoogle Scholar
  95. Martins JC et al (2001) Solution structure of the main alpha-amylase inhibitor from amaranth seeds. Eur J Biochem 268:2379–2389PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mbaze LM et al (2007) α­glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry 68:591–595PubMedCrossRefPubMedCentralGoogle Scholar
  97. Mc-Cue PP, Shetty K (2004) Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac J Clin Nutr 13:101–106Google Scholar
  98. Mc-Dougall et al (2005) Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase. J Agric Food Chem 53:2760–2766CrossRefGoogle Scholar
  99. Melo FR et al (1999) α-amylase from cowpea seeds. Prot Pept Lett 6:387–392Google Scholar
  100. Mentreddy SR (2007) Medicinal plant species with potential antidiabetic properties. J Sci Food Agric 87:743–750CrossRefGoogle Scholar
  101. Moreno J, Chrispeels MJ (1989) A lectin gene encodes the α-amylase inhibitor of the common bean. Proc Natl Acad Sci U S A 86:7885–7889PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mundy J et al (1983) Barley α-amylase/ subtilisin inhibitor: isolation and characterization. Carlsb Res Commun 48:81–90CrossRefGoogle Scholar
  103. Nahoum V et al (2000) Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochem J 346:201–208PubMedPubMedCentralCrossRefGoogle Scholar
  104. Notkins AL (2002) Immunologic and genetic factors in type 1 diabetes. J Biol Chem 277(46):43545–43548PubMedCrossRefPubMedCentralGoogle Scholar
  105. Odani S et al (1982) Sequence homology between barley trypsin inhibitor and wheat alpha-amylase inhibitors. FEBS Lett 141(2):279–282PubMedCrossRefPubMedCentralGoogle Scholar
  106. Ohtani S et al (1978) Complete primary structures of two subunits of purothionin A, a lethal protein for brewer’s yeast from wheat flour. J Biochem 83:733–767Google Scholar
  107. Ohtsubo K, Richardson M (1992) The amino acid sequence of a 20-kDa bifunctional subtilisin/ α-amylase inhibitor from grain of rice (Oryza sativa L.) seeds. FEBS Lett 309:68–72PubMedCrossRefPubMedCentralGoogle Scholar
  108. Onesti S et al (1991) Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina caffra seeds. J Mol Biol 217:153–176PubMedCrossRefPubMedCentralGoogle Scholar
  109. Osaki Y et al (1980) Amino acid sequence of a purothionin homolog from barley flour. J Biochem 87:549–555CrossRefGoogle Scholar
  110. Pal GP et al (1994) The three-dimensional structure of the complex of proteinase K with its naturally occurring inhibitor PKI3. FEBS Lett 341:167–170PubMedCrossRefPubMedCentralGoogle Scholar
  111. Park CS, Miller C (1992) Mapping function to structure in a channel-blocking peptide: electrostatic mutants of charybdotoxin. Biochemistry 31:7749–7755PubMedCrossRefPubMedCentralGoogle Scholar
  112. Pasero L et al (1986) Complete amino acid sequence and location of the five disulfide bridges in protein pancreatic α-amylase. Biochem Biophys Acta 869:147–157PubMedPubMedCentralGoogle Scholar
  113. Perez RM et al (1998) Anti-diabetic effects of compounds isolated from plants. Phytomedicine 5:55–75CrossRefGoogle Scholar
  114. Petrucci T et al (1976) Further characterization studies of the alpha-amylase protein inhibitor of gel electrophoretic mobility 0.19 from the wheat kernel. Biochim Biophys Acta 420:288–297PubMedCrossRefPubMedCentralGoogle Scholar
  115. Prabhakar PK, Doble M (2011) Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med 17(8):563–574PubMedCrossRefPubMedCentralGoogle Scholar
  116. Prashanth D et al (2001) Effect of certain plant extracts on [alpha]-amylase activity. Fitoterapia 72:179–181PubMedCrossRefPubMedCentralGoogle Scholar
  117. Qian M et al (1993) Structure and molecular model refinement of pig pancreatic α-amylase at 2.1Å resolution. J Mol Biol 231:785–799PubMedCrossRefPubMedCentralGoogle Scholar
  118. Qian M et al (1994) The active centre of a mammalian α-amylase: structure of the complex of a pancreatic α-amylase with a carbohydrate inhibitor refined to 2.2Å. Biochemistry 33:6284–6294PubMedCrossRefPubMedCentralGoogle Scholar
  119. Qian M et al (2001) Enzyme-catalyzed condensation reaction in a mammalian alpha-amylase: high resolution structural analysis of an enzyme inhibitor complex. Biochemistry 40:7700–7709PubMedCrossRefPubMedCentralGoogle Scholar
  120. Quideau S et al (2003) DNA topoisomerase inhibitor acutissimin A and other flavano-ellagitannins in red wine. Angew Chem Int Ed 42:6012–6014CrossRefGoogle Scholar
  121. Radhika S et al (2013) Phytochemical investigation and evaluation of anti-hyperglycemic potential of Premna Corymbosa. Int J Pharm Sci 5(4):352–356Google Scholar
  122. Ramasubbu N et al (1996) Structure of human salivary alpha-amylase at 1.6Å resolution: implications for its role in the oral cavity. Acta Crystallogr Sect D Biol Crystallogr 52:435–446CrossRefGoogle Scholar
  123. Rammohan S et al (2008) In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol 55(2):391–398Google Scholar
  124. Richardson M (1990) Seed storage proteins: the enzyme inhibitors. In: Rogers L (ed) Methods in plant biochemistry, 5th edn. Academic, London, pp 261–307Google Scholar
  125. Rituparna C et al (2014) Screening of nine herbal plants for in vitro α-amylase inhibition. Asian J Pharm Clin Res 7:4Google Scholar
  126. Rodenburg KW et al (1995) Arg-27, Arg-127 and Arg-155 in the β-trefoil protein barley α-amylase/ subtilisin inhibitor are interface residues in the complex with barley α-amylase 2. Biochem J 309:969–976PubMedPubMedCentralCrossRefGoogle Scholar
  127. Rutenber E, Robertus JD (1991) Structure of ricin B chain at 2.5Å resolution. Proteins 10:260–269PubMedCrossRefPubMedCentralGoogle Scholar
  128. Ryan CA (1990) Protease inhibitors in plants: genes for improving defences against insects and pathogens. Annu Rev Phytopathol 28:425–449CrossRefGoogle Scholar
  129. Rydberg EH et al (2002) Mechanistic analyses of catalysis in human pancreatic α-amylase: detailed kinetic and structural studies of mutants of three conserved carboxylic acids. Biochemistry 41:4492–4502PubMedCrossRefGoogle Scholar
  130. Samuelsson G, Petterson BM (1971) The amino acid sequence of viscotoxin B from the European mistletoe (Viscum album L, Loranthaceae). Eur J Biochem 21:86–89PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sangeetha R, Vedasree N (2012) In vitro α-amylase inhibitory activity of the leaves of Thespesia populnea. ISRN Pharmacol 2012:1–4CrossRefGoogle Scholar
  132. Scannapieco FA et al (1993) Salivary α-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med 4:301–307PubMedCrossRefPubMedCentralGoogle Scholar
  133. Silano V (1987) α-amylase inhibitors. In: Kruger J, Lineback D (eds) Enzymes and their role in cereal technology. American Association of Cereal Chemists, St. Paul, pp 141–199Google Scholar
  134. Singh SK et al (2007) Evidence-based critical evaluation of glycemic potential of Cynodon dactylon. Evid Based Complement Alternat Med 6(4):415–420CrossRefGoogle Scholar
  135. Sneha JA, Sanjay C (2011) Alpha­amylase inhibitory and hypoglycemic activity of Clerodendrone multiflorum Linn Stems. Asian J Pharm Clin Res 4(2):99–102Google Scholar
  136. Strobl S et al (1998) A novel strategy for inhibition of α-amylases: yellow meal worm α-amylase in complex with the Ragi bifunctional inhibitor at 2.5Å resolution. Structure 6:911–921PubMedCrossRefPubMedCentralGoogle Scholar
  137. Sudha P et al (2011) Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern Med 11:5CrossRefGoogle Scholar
  138. Svensson B et al (2004) Review: proteinaceous α-amylase inhibitors. Biochim Biophys Acta 1696:145–156PubMedCrossRefGoogle Scholar
  139. Tabopda TK et al (2008) Bioactive aristolactams from Piper umbellatum. Phytochemistry 69:1726–1731PubMedCrossRefPubMedCentralGoogle Scholar
  140. Teeter MM et al (1981) Primary structure of the hydrophobic plant protein crambin. Biochemistry 20:5437–5443PubMedCrossRefPubMedCentralGoogle Scholar
  141. Vallée, F (1996). Structure cristalline à 1.9 Å de resolution d’un complexe protéine–protéine entreune α-amylase d’orge et un inhibiteur bifonctionnel. Ph.D. Thesis, CNRS-Marseille & Orsay, FranceGoogle Scholar
  142. Vallée F et al (1998) Barley α-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9Å resolution. Structure 6:649–659PubMedCrossRefPubMedCentralGoogle Scholar
  143. Vander MMJEC et al (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155CrossRefGoogle Scholar
  144. Vernon LP et al (1985) A toxic thionin from Pyrularia pubera: purification, properties, and amino acid sequence. Arch Biochem Biophys 238:18–29PubMedCrossRefPubMedCentralGoogle Scholar
  145. Vigers A et al (1991) A new family of plant antifungal proteins. Mol Plant Microb Interact 4:315–323CrossRefGoogle Scholar
  146. Vitkup D et al (2001) Completeness in structural genomics. Nat Struct Biol 8:559–566PubMedCrossRefPubMedCentralGoogle Scholar
  147. Vyas VK et al (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74(1):1–17PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wang HH et al (2011) Comparisons of [alpha]-amylase inhibitors from seeds of common bean mutants extracted through three phase partitioning. Food Chem 128:1066–1071CrossRefGoogle Scholar
  149. Weselake RJ et al (1985) Effect of endogenous barley α-amylase inhibitor on hydrolysis of starch under various conditions. J Cereal Sci 3:249–259CrossRefGoogle Scholar
  150. Whitcomb DC, Lowe ME (2007) Human pancreatic digestive enzymes. Digest Dis Sci 52:1–17PubMedCrossRefPubMedCentralGoogle Scholar
  151. WHO (World Health Organisation Consultation) (1999). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Report of a WHO Consultation, GenevaGoogle Scholar
  152. World Health Organization (2014) Global status report on noncommunicable diseases 2014: attaining the nine global noncommunicable diseases targets; a shared responsibility. World Health Organization, GenevaGoogle Scholar
  153. Wiegand G et al (1995) The crystal structure of porcine pancreatic α-amylase in complex with the microbial inhibitor Tendamistat. J Mol Biol 247:99–110PubMedCrossRefPubMedCentralGoogle Scholar
  154. Wilcox ER, Whitaker JR (1984) Characterization of two amylase inhibitors from black bean (Phaseolus vulgaris). J Food Biochem 8:189–213CrossRefGoogle Scholar
  155. Xu R et al (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry 65:261–291PubMedCrossRefPubMedCentralGoogle Scholar
  156. Yamada T et al (2001) Purification and characterization of two [alpha]-amylase inhibitors from seeds of tepary bean (Phaseolus acutifolius A. Gray). Phytochemistry 58:59–66PubMedCrossRefPubMedCentralGoogle Scholar
  157. Yamagata H et al (1998) Rice bifunctional α-amylase/subtilisin inhibitor: characterization, localization and changes in developing and germinating seeds. Biosci Biotechnol Biochem 62:978–985PubMedCrossRefPubMedCentralGoogle Scholar
  158. Yoon SH, Robyt JF (2003) Study of the inhibition of four alpha amylases by acarbose and its 4IV-α-maltohexaosyl and 4IV- α-maltododecaosyl analogues. Carbohydr Res 338:1969–1980PubMedCrossRefPubMedCentralGoogle Scholar
  159. Young NM et al (1999) Post-translational processing of two α-amylase inhibitors and an arcelin from the common bean, Phaseolus vulgaris. FEBS Lett 446:203–206PubMedCrossRefPubMedCentralGoogle Scholar
  160. Zemke KJ et al (1991) The three dimensional structure of the bifunctional proteinase K/ α-amylase inhibitor from wheat (PKI3) at 2.5 Å resolution. FEBS Lett 279:240–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jyoti Verma
    • 1
  • C. Awasthi
    • 1
  • Qazi Mohammad Sajid Jamal
    • 2
  • Mohd. Haris Siddiqui
    • 3
  • Gulshan Wadhwa
    • 4
  • Kavindra Kumar Kesari
    • 5
  1. 1.Department of BiotechnologyGobind Ballabh Pant Engineering CollegePauri GarhwalIndia
  2. 2.Department of Health Information ManagementCollege of Applied Medical Sciences, East Qassim UniversityAl Qassim-BuraydahKingdom of Saudi Arabia
  3. 3.Department of Bioengineering, Faculty of EngineeringIntegral UniversityLucknowIndia
  4. 4.Department of Biotechnology, Apex Bioinformatics CentreMinistry of Science & TechnologyNew DelhiIndia
  5. 5.Department of Applied Physics, and Department of Bioproduct & BiosystemAalto UniversityEspooFinland

Personalised recommendations