Advertisement

Metabolic Pathway Analysis Employing Bioinformatic Software

  • Soma S. Marla
  • Neelofar Mirza
  • K. D. Nadella
Chapter

Abstract

Metabolomics can be defined as the entire content of metabolites in a system and their roles and interactions in various metabolic pathways reflecting the genetic information encrypted in a genome. Of late, various biochemical and metabolic studies are being applied for monitoring the dynamics of growth and development of model plants. Observed variations in composition of metabolites are used for understanding course of gene expression in stress-affected plants. Critical analysis of metabolic pathways in a system when challenged with stress, for example, comparison of metabolic flux with data obtained from physiological, genetic, genomic studies, is helping plant researchers in identification of candidate genes responsible for regulation of a given trait. In this chapter attempts have been made to describe recent developments in plant metabolomics, and application of bioinformatics and databases in metabolic pathway analysis is reviewed.

Keywords

Plants Metabolism Pathways Bioinformatics Software Databases 

References

  1. Akiyama K et al (2008) PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biol 8:339–345PubMedGoogle Scholar
  2. Beckmann M et al (2007) Representation, comparison, and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars. J Agric Food Chem 55:3444–3451CrossRefPubMedGoogle Scholar
  3. Bono H et al (1998) Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. Genome Res 8:203–210CrossRefPubMedGoogle Scholar
  4. Caspi R, Karp PD (2007) Using the MetaCyc pathway database and the BioCyc database collection. Curr Protoc Bioinform.  https://doi.org/10.1002/0471250953.bi0117s20
  5. Caspi R et al (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516CrossRefPubMedGoogle Scholar
  6. Caspi R et al (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480CrossRefGoogle Scholar
  7. Chang A et al (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkn820CrossRefPubMedGoogle Scholar
  8. Christensen B, Nielsen J (2000) Metabolic network analysis of Penicillium chrysogenum using (13)C-labeled glucose. Biotechnol Bioeng 68:652–659CrossRefPubMedGoogle Scholar
  9. Ciocchetta F, Hillston J (2008) Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. Electron Notes Theor Comput Sci 194:103–117CrossRefGoogle Scholar
  10. Clark BL (1998) Stability of complex reaction network analysis. Cell Biophys 12:237–253CrossRefGoogle Scholar
  11. Consortium, I. H. G. S (2001) Initial sequencing and analysis of the human genome. Nature 412:860–921CrossRefGoogle Scholar
  12. DellaPenna D (2007) Biofortification of plant-based food: enhancing folate levels by metabolic engineering. Proc Natl Acad Sci U S A 104:3675CrossRefPubMedPubMedCentralGoogle Scholar
  13. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738CrossRefPubMedGoogle Scholar
  14. Edwards JS, Palsson BO (2000a) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinforma 1:1CrossRefGoogle Scholar
  15. Edwards JS, Palsson BO (2000b) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533CrossRefPubMedPubMedCentralGoogle Scholar
  16. Edwards D et al (2007) BarleyBase/PLEXdb a unified expression profiling database for plants and plant pathogens. Plant Bioinforma 406:347–363Google Scholar
  17. Fell DA (1993) In: Chuster S, Rigoulet M, Ouhabi R, Mazat JP (eds) Modern trends in Biothermakinetics. Plenum Press, New York, pp 97–101CrossRefGoogle Scholar
  18. Fernie AR, Tadmor Y, Zamir D (2006) Natural genetic variation for improving crop quality. Curr Opin Plant Biol 9:196–202CrossRefPubMedGoogle Scholar
  19. Friel E, Green S, Matich A, Beuning L, Yauk YK, Wang M, MacRae E (2006) Pathway analysis in horticultural crops: linalool as an example. Dev Food Sci 43:93–96CrossRefGoogle Scholar
  20. Génard M et al (2007) Towards a virtual fruit focusing on quality: modelling features and potential uses. J Exp Bot 58:917–928CrossRefPubMedGoogle Scholar
  21. Hatzimanikatis V, Lee KH, Bailey JE (1999) A mathematical description of regulation of the G1-S transition of the mammalian cell cycle. Biotechnol Bioeng 65:631–637CrossRefPubMedGoogle Scholar
  22. Hirai MY et al (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:10205–10210CrossRefPubMedPubMedCentralGoogle Scholar
  23. Iijima Y et al (2008) Metabolite annotations based on the integration of mass spectral information. Plant J 54:949–962CrossRefPubMedPubMedCentralGoogle Scholar
  24. International Human Genome Sequencing Consortium (2004) International human genome sequencing consortium. Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRefGoogle Scholar
  25. Jonsson P et al (2004) A strategy for identifying differences in large series of Metabolomic samples analyzed by GC/MS. Anal Chem 76:1738–1745CrossRefPubMedGoogle Scholar
  26. Kopka J et al (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638CrossRefGoogle Scholar
  27. Kose F et al (2001) Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics 17:1198–1208CrossRefPubMedGoogle Scholar
  28. Küffner R, Zimmer R, Lengauer T (2000) Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 16:825–836CrossRefPubMedGoogle Scholar
  29. Larkin P, Harrigan GG (2007) Opportunities and surprises in crops modified by transgenic technology: metabolic engineering of benzylisoquinoline alkaloid, gossypol and lysine biosynthetic pathways. Metabolomics 3:371–382CrossRefGoogle Scholar
  30. Laurentin H, Ratzinger A, Karlovsky P (2008) Relationship between metabolic and genomic diversity in sesame (Sesamum indicum L.) BMC Genomics 9:250CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lee TH et al (2009) RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol 151:16–33CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lisec J et al (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 53:960–972CrossRefPubMedPubMedCentralGoogle Scholar
  33. Magrath R et al (1993) The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breed 111:55–72CrossRefGoogle Scholar
  34. Marla S (2006) Comparative structure analysis of chorismate synthase comparative structure analysis of Chorismate synthase. Online J Bioinforma 7(1):35–45Google Scholar
  35. Marla S (2014) Annotation of genome of Sessamun radiatum, ICAR.NBPGR, New Delhi, Unpublished, Personal communicationGoogle Scholar
  36. Marla S et al (2010) Classification of rice seed storage proteins using neural networks. J Plant Biochem Biotechnol, 19:123–126CrossRefGoogle Scholar
  37. Maruyama K et al (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980CrossRefPubMedPubMedCentralGoogle Scholar
  38. Matsuda F et al (2009) MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J 57:5550–5577Google Scholar
  39. Mendes P (2002) Emerging bioinformatics for the metabolome. Brief Bioinform 3:134–145CrossRefPubMedGoogle Scholar
  40. Mochida K et al (2009) Correlation exploration of metabolic and genomic diversity in rice. BMC Genomics 10:568CrossRefPubMedPubMedCentralGoogle Scholar
  41. Moco S et al (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mohanty B et al (2015) Identification of candidate network hubs involved in metabolic adjustments of rice under drought stress by integrating transcriptome data and genome-scale metabolic network. Plant Sci 241:224–239Google Scholar
  43. Morgan MJ et al (2013) Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiol 161:397–407CrossRefPubMedGoogle Scholar
  44. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nadella KD, Marla SS, Kumar PA (2012) Metabolomics in agriculture. OMICS 16:149–159CrossRefPubMedGoogle Scholar
  46. Naqvi S et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRefPubMedGoogle Scholar
  48. Obayashi T et al (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkn807CrossRefPubMedGoogle Scholar
  49. Ogata Y et al (2010) CoP: a database for characterizing co-expressed gene modules with biological information in plants. Bioinformatics 26:1267–1268CrossRefPubMedGoogle Scholar
  50. Okazaki Y et al (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pfeiffer T et al (1999) METATOOL: for studying metabolic networks. Bioinformatics:251–257Google Scholar
  52. Prakash CS, Egnin M (1997) Engineered Sweet potato (Ipomea batatas) plants with a synthetic protein storage gene show high protein and essential amino acid levels. Concurrent session 35. In: Dean JFD (ed) 5th International Congress of Plant Molecular Biology, 21–27 Sept, Singapore, Kluwer Academic PublishersGoogle Scholar
  53. Roberts CW et al (2002) The shikimate pathway and its branches in apicomplexan parasites. J Infect Dis 185(Suppl):S25–S36CrossRefPubMedGoogle Scholar
  54. Saneoka H et al (1995) Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol 107:631–638CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sasaki T, Burr B (2000) International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3:138–141CrossRefPubMedGoogle Scholar
  56. Schauer N et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454CrossRefPubMedGoogle Scholar
  57. Schauer N et al (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schilling CH, Palsson BO (2000) Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol 203:249–283CrossRefPubMedGoogle Scholar
  59. Schilling CH, Edwards JS, Palsson BO (1999) Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol Prog 15:288–295CrossRefPubMedGoogle Scholar
  60. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332CrossRefPubMedGoogle Scholar
  61. Schwall GP et al (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18:551–554CrossRefGoogle Scholar
  62. Scott IM et al (2010) Enhancement of plant metabolite fingerprinting by machine learning. Plant Physiol 153:1506–1520CrossRefPubMedPubMedCentralGoogle Scholar
  63. Seressiotis A, Bailey JE (1986) MPS: an algorithm and data base for metabolic pathway synthesis. Biotechnol Lett 8:837–842CrossRefGoogle Scholar
  64. Simpson TW, Colon GE, Stephanopoulos G (1995) Two paradigms of metabolic engineering applied to amino acid synthesis. Biochem Soc Trans 23:381–387CrossRefPubMedGoogle Scholar
  65. Smytha DA (1998) Some properties of starch branching enzyme from indica rice endosperm (Oryza sativa L.) Plant Sci 57:1–8CrossRefGoogle Scholar
  66. Souleyre EJF et al (2005) An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J 272:3132–3144CrossRefPubMedGoogle Scholar
  67. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11CrossRefPubMedGoogle Scholar
  68. Sunita T, Ramadevi S (2004) In silico gene identification and homology modeling of chorismate synthase in clostridium difficile. Online J Bioinforma 5:129–131. 1443–50Google Scholar
  69. Swarbreck D et al (2008) The Arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkm965
  70. The UniProt Consortium (2011) Ongoing and future developments at the universal protein resource. Nucleic Acids Res 39:D214–D219CrossRefGoogle Scholar
  71. Thimm O et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tikunov Y et al (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tohge T et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of \emph{Arabidopsis} plants over-expressing an MYB transcription factor. Plant J 42:218–235CrossRefPubMedGoogle Scholar
  74. Tokimatsu T et al (2005) KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138:1289–1300CrossRefPubMedPubMedCentralGoogle Scholar
  75. Urano K et al (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078CrossRefPubMedPubMedCentralGoogle Scholar
  76. Urbanczyk-Wochniak E, Sumner LW (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics 23:1418–1423CrossRefPubMedGoogle Scholar
  77. Womble DD, Rownd RH (1986) Regulation of IncFII plasmid DNA replication. A quantitative model for control of plasmid NR1 replication in the bacterial cell division cycle. J Mol Biol 192:529–547CrossRefPubMedGoogle Scholar
  78. Yonekura-Sakakibara K et al (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang P (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhao X et al (2008) Extracellular Ca2+ regulating stomatal movement and plasma membrane K+ channels in guard cells of Vicia faba under salt stress. Acta Agron Sin 34:1970–1976CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Soma S. Marla
    • 1
  • Neelofar Mirza
    • 1
  • K. D. Nadella
    • 2
    • 3
  1. 1.Indian Council of Agricultural ResearchNational Bureau of Plant Genetic ResourcesNew DelhiIndia
  2. 2.Directorate of Knowledge Management Units (DKMU), ICARNew DelhiIndia
  3. 3.Genetics division, ICAR, IARINew DelhiIndia

Personalised recommendations