Advertisement

Fetal Autopsy and Placental Examination as a Complimentary Tool

  • Priyanka Gogoi
Chapter

Abstract

Recurrent pregnancy loss (RPL) is defined as the loss of three or more consecutive pregnancies and affects 1% of couples trying to conceive; however, a definitive diagnosis is possible in only 50% of cases, and significant number of RPL remains unexplained despite intensive investigations of probable causes. The autopsy of the fetus as well the placental examination can help by providing additional information beyond that achieved by conventionally recommended investigations. The role of routine histopathological examination of evacuated products of conception in determining the etiology of RPL has generated a lot of debate and controversy. The limited amount of material available as well as the fragmented nature of the specimens submitted makes the morphological study particularly challenging. While not recommended as a part of routine workup of a patient of RPL currently, it cannot be denied that such an exercise allows identification of important etiology in few cases while giving direction for further diagnostic workup in others. However in the majority of cases the morphological examination alone is unlikely to alter clinical management. An optimized protocol for the histopathological evaluation of products of conceptus in RPL, supplemented with use of newer advanced techniques including immunohistochemistry, FISH, PCR, and microarray profiling, is the need of the hour to extract maximum diagnostic yield from these specimens.

Keywords

Recurrent pregnancy loss Histopathology Products of conception 

References

  1. 1.
    Stirrat GM. Recurrent miscarriage. Lancet. 1990;336(8716):673–5.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Nybo Anderson AM, Wohlfahrt J, Christens P, Olsen J, Melbye M. Maternal age and fetal loss: population based register linkage study. BMJ. 2000;320:1708–12.CrossRefGoogle Scholar
  3. 3.
    Regan L, Braude PR, Trembath PL. Influence of past reproductive performance on risk of spontaneous abortion. BMJ. 1989;299:541–5.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    de la Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod. 2002;17:1649–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Lindbohm ML, Sallmén M, Taskinen H. Effects of exposure to environmental tobacco smoke on reproductive health. Scand J Work Environ Health. 2002;28(Suppl 2):84–96.PubMedGoogle Scholar
  6. 6.
    Rasch V. Cigarette, alcohol, and caffeine consumption: risk factors for spontaneous abortion. Acta Obstet Gynecol Scand. 2003;82:182–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Peck JD, Leviton A, Cowan LD. A review of the epidemiologic evidence concerning the reproductive health effects of caffeine consumption: a 2000–2009 update. Food Chem Toxicol. 2010;48:2549–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Kesmodel U, Wisborg K, Olsen SF, Henriksen TB, Secher NJ. Moderate alcohol intake in pregnancy and the risk of spontaneous abortion. Alcohol Alcohol. 2002;37:87–92.PubMedCrossRefGoogle Scholar
  9. 9.
    Marcus M, McChesney R, Golden A, Landrigan P. Video display terminals and miscarriage. J Am Med Womens Assoc. 2000;55:84–8, 105.Google Scholar
  10. 10.
    Shuhaiber S, Koren G. Occupational exposure to inhaled anaesthetic. Is it a concern for pregnant women? Can Fam Physician. 2000;46:2391–2.PubMedPubMedCentralGoogle Scholar
  11. 11.
    McGregor DG. Occupational exposure to trace concentrations of waste anesthetic gases. Mayo Clin Proc. 2000;75:273–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Rai RS, Regan L, Clifford K, Pickering W, Dave M, Mackie I, et al. Antiphospholipid antibodies and beta-2-glycoprotein-I in 500 women with recurrent miscarriage: results of a comprehensive screening approach. Hum Reprod. 1995;10:2001–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Rai RS, Clifford K, Cohen H, Regan L. High prospective fetal loss rate in untreated pregnancies of women with recurrent miscarriage and antiphospholipid antibodies. Hum Reprod. 1995;10:3301–4.PubMedCrossRefGoogle Scholar
  14. 14.
    de Braekeleer M, Dao TN. Cytogenetic studies in couples experiencing repeated pregnancy losses. Hum Reprod. 1990;5:519–28.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Clifford K, Rai R, Watson H, Regan L. An informative protocol for the investigation of recurrent miscarriage: preliminary experience of 500 consecutive cases. Hum Reprod. 1994;9:1328–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Stephenson MD, Sierra S. Reproductive outcomes in recurrent pregnancy loss associated with a parental carrier of a structural chromosome rearrangement. Hum Reprod. 2006;21:1076–82.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Franssen MT, Korevaar JC, van der Veen F, Leschot NJ, Bossuyt PM, Goddijn M. Reproductive outcome after chromosome analysis in couples with two or more miscarriages: index [corrected]-control study. BMJ. 2006;332:759–63. Erratum in: BMJ 2006; 332:1012.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Carp H, Toder V, Aviram A, Daniely M, Mashiach S, Barkai G. Karyotype of the abortus in recurrent miscarriage. Fertil Steril. 2001;75:678–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Stephenson MD, Awartani KA, Robinson WP. Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case–control study. Hum Reprod. 2002;17:446–51.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Grimbizis GF, Camus M, Tarlatzis BC, Bontis JN, Devroey P. Clinical implications of uterine malformations and hysteroscopic treatment results. Hum Reprod Update. 2001;7:161–74.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Salim R, Regan L, Woelfer B, Backos M, Jurkovic D. A comparative study of the morphology of congenital uterine anomalies in women with and without a history of recurrent first trimester miscarriage. Hum Reprod. 2003;18:162–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Acién P. Incidence of Müllerian defects in fertile and infertile women. Hum Reprod. 1997;12:1372–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Woelfer B, Salim R, Banerjee S, Elson J, Regan L, Jurkovic D. Reproductive outcomes in women with congenital uterine anomalies detected by three-dimensional ultrasound screening. Obstet Gynecol. 2001;98:1099–103.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Hanson U, Persson B, Thunell S. Relationship between haemoglobin A1C in early type 1 (insulin-dependent) diabetic pregnancy and the occurrence of spontaneous abortion and fetal malformation in Sweden. Diabetologia. 1990;33:100–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Mills JL, Simpson JL, Driscoll SG, Jovanovic-Peterson L, Van Allen M, Aarons JH, et al. Incidence of spontaneous abortion among normal women and insulin-dependent diabetic women whose pregnancies were identified within 21 days of conception. N Engl J Med. 1988;319:1617–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Abalovich M, Gutierrez S, Alcaraz G, Maccallini G, Garcia A, Levalle O. Overt and subclinical hypothyroidism complicating pregnancy. Thyroid. 2002;12:63–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Bussen S, Sütterlin M, Steck T. Endocrine abnormalities during the follicular phase in women with recurrent spontaneous abortion. Hum Reprod. 1999;14:18–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Li TC, Spuijbroek MD, Tuckerman E, Anstie B, Loxley M, Laird S. Endocrinological and endometrial factors in recurrent miscarriage. BJOG. 2000;107:1471–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Esplin MS, Branch DW, Silver R, Stagnaro-Green A. Thyroid autoantibodies are not associated with recurrent pregnancy loss. Am J Obstet Gynecol. 1998;179:1583–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Rushworth FH, Backos M, Rai R, Chilcott IT, Baxter N, Regan L. Prospective pregnancy outcome in untreated recurrent miscarriers with thyroid autoantibodies. Hum Reprod. 2000;15:1637–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Rai R, Backos M, Rushworth F, Regan L. Polycystic ovaries and recurrent miscarriage—a reappraisal. Hum Reprod. 2000;15:612–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Craig LB, Ke RW, Kutteh WH. Increased prevalence of insulin resistance in women with a history of recurrent pregnancy loss. Fertil Steril. 2002;78:487–90.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cocksedge KA, Saravelos SH, Wang Q, Tuckerman E, Laird SM, Li TC. Does free androgen index predict subsequent pregnancy outcome in women with recurrent miscarriage? Hum Reprod. 2008;23:797–802.PubMedCrossRefGoogle Scholar
  34. 34.
    Wold AS, Arici A. Natural killer cells and reproductive failure. Curr Opin Obstet Gynecol. 2005;17:237–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Rai R, Sacks G, Trew G. Natural killer cells and reproductive failure—theory, practice and prejudice. Hum Reprod. 2005;20:1123–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Tuckerman E, Laird SM, Prakash A, Li TC. Prognostic value of the measurement of uterine natural killer cells in the endometrium of women with recurrent miscarriage. Hum Reprod. 2007;22:2208–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Bombell S, McGuire W. Cytokine polymorphisms in women with recurrent pregnancy loss: meta-analysis. Aust N Z J Obstet Gynaecol. 2008;48:147–54.CrossRefPubMedGoogle Scholar
  38. 38.
    Regan L, Jivraj S. Infection and pregnancy loss. In: MacLean AB, Regan L, Carrington D, editors. Infection and pregnancy. London: RCOG Press; 2001. p. 291–304.Google Scholar
  39. 39.
    Hay PE, Lamont RF, Taylor-Robinson D, Morgan DJ, Ison C, Pearson J. Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. BMJ. 1994;308:295–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Leitich H, Kiss H. Asymptomatic bacterial vaginosis and intermediate flora as risk factors for adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2007;21:375–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Llahi-Camp JM, Rai R, Ison C, Regan L, Taylor-Robinson D. Association of bacterial vaginosis with a history of second trimester miscarriage. Hum Reprod. 1996;11:1575–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Ralph SG, Rutherford AJ, Wilson JD. Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study. BMJ. 1999;319:220–3.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Rey E, Kahn SR, David M, Shrier I. Thrombophilic disorders and fetal loss: a meta-analysis. Lancet. 2003;361(9361):901–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Kovalevsky G, Gracia CR, Berlin JA, Sammel MD, Barnhart KT. Evaluation of the association between hereditary thrombophilias and recurrent pregnancy loss: a meta-analysis. Arch Intern Med. 2004;164:558–63.CrossRefPubMedGoogle Scholar
  45. 45.
    Carp H, Dolitzky M, Tur-Kaspa I, Inbal A. Hereditary thrombophilias are not associated with a decreased live birth rate in women with recurrent miscarriage. Fertil Steril. 2002;78:58–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Rai R, Backos M, Elgaddal S, Shlebak A, Regan L. Factor V Leiden and recurrent miscarriage—prospective outcome of untreated pregnancies. Hum Reprod. 2002;17:442–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Jivraj S, Makris M, Saravelos S, Li TC. Pregnancy outcome in women with factor V Leiden and recurrent miscarriage. BJOG. 2009;116:995–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Stephenson MD, Kutteh W. Evaluation and management of recurrent early pregnancy loss. Clin Obstet Gynecol. 2007;50:1312–45.CrossRefGoogle Scholar
  49. 49.
    Royal College of Obstetricians and Gynaecologists, Scientific Advisory Committee, Guideline No. 17. The investigation and treatment of couples with recurrent first-trimester and second-trimester miscarriage. Published May 2011. https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_17.pdf.
  50. 50.
    Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98:1103–11.CrossRefGoogle Scholar
  51. 51.
    Stephenson MD. Frequency of factors associated with habitual abortion in 197 couples. Fertil Steril. 1996;66:24–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Jaslow CR, Camey JL, Kutteh WH. Diagnostic factors identified in 1020 women with two versus three or more recurrent pregnancy losses. Fertil Steril. 2010;93:1234–43.PubMedCrossRefGoogle Scholar
  53. 53.
    Mall FP, Meyer AW. Studies on abortuses: a survey of pathologic ova in the Carnegie embryological collection. In:Contributions to embryology, vol. 12. Washington, DC: Carnegie Institution; 1921. p. 1–364.Google Scholar
  54. 54.
    Hertig AT. Human trophoblast. Springfield, IL: Charles C.Thomas; 1968. p. 167.Google Scholar
  55. 55.
    Rushton DI. Simplified classification of spontaneous abortions. J Med Genet. 1978;15:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bagshawe KD, Dent J, Webb J. Hydatidiform mole in England and Wales 1973–83. Lancet. 1986;2:673–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Berkowitz RS, Im SS, Bernstein MR, Goldstein DP. Gestational trophoblastic disease. Subsequent pregnancy outcome, including repeat molar pregnancy. J Reprod Med. 1998;43:81–6.PubMedGoogle Scholar
  58. 58.
    Lorigan PC, Sharma S, Bright N, Coleman RE, Hancock BW. Characteristics of women with recurrent molar pregnancies. Gynecol Oncol. 2000;78:288–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Matsui H, Iitsuka Y, Suzuka K, Seki K, Sekiya S. Subsequent pregnancy outcome in patients with spontaneous resolution of HCG after evacuation of hydatidiform mole: comparison between complete and partial mole. Hum Reprod. 2001;16:1274–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Sebire NJ, Fisher RA, Foskett M, Rees H, Seckl MJ, Newlands ES. Risk of recurrent hydatidiform mole and subsequent pregnancy outcome following complete or partial hydatidiform molar pregnancy. BJOG. 2003;110:22–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Sebire NJ, Savage PM, Seckl MJ, Fisher RA. Histopathological features of biparental complete hydatidiform moles in women with NLRP7 mutations. Placenta. 2013;34:50–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Jauniaux E, Nicolaides KH. Early ultrasound diagnosis and follow-up of molar pregnancies. Ultrasound Obstet Gynecol. 1997;9:17–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Lazarus E, Hulka CA, Siewert B, Levine D. Sonographic appearance of early complete molar pregnancies. J Ultrasound Med. 1999;18:589–93.PubMedCrossRefGoogle Scholar
  64. 64.
    Lindholm H, Flam F. The diagnosis of molar pregnancy by sonography and gross morphology. Acta Obstet Gynecol Scand. 1999;78:6–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Benson CB, Genest DR, Bernstein MR, Soto-Wright V, Goldstein DP, Berkowitz RS. Sonographic appearance of first trimester complete hydatidiform moles. Ultrasound Obstet Gynecol. 2000;16:188–91.PubMedCrossRefGoogle Scholar
  66. 66.
    Jauniaux E, Kadri R, Hustin J. Partial mole and triploidy: screening in patients with first trimester spontaneous abortion. Obstet Gynecol. 1996;88:616–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Jauniaux E, Hustin J. Histological examination of first trimester spontaneous abortions: the impact of materno-embryonic interface features. Histopathology. 1992;21:409–14.PubMedCrossRefGoogle Scholar
  68. 68.
    Fukunaga M, Ushigome S, Fukunaga M, Sugishita M. Application of flow cytometry in diagnosis of hydatidiform moles. Mod Pathol. 1993;6:353–9.PubMedGoogle Scholar
  69. 69.
    Koening C, Demopoulos RI, Vamvakas EC, Mittal KR, Feiner HD, Espiritu EC. Flow cytometric DNA ploidy and quantitative histopathology in partial moles. Int J Gynaecol Pathol. 1993;12:235–40.CrossRefGoogle Scholar
  70. 70.
    van Oven MW, Schoots CJ, Oosterhuis JW, Keij JF, Dam-Meiring A, Huisjes HJ. The use of DNA flow cytometry in the diagnosis of triploidy in human abortions. Hum Pathol. 1989;20:238–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Blocklage TJ, Smith HO, Barlow SA. Distinctive flow histogram pattern in molar pregnancies with elevated maternal serum human chorionic gonadotropin levels. Cancer. 1994;73:2782–90.CrossRefGoogle Scholar
  72. 72.
    Kaspar HG, Kraemer BB, Kraus FT. DNA ploidy by image cytometry and karyotype in spontaneous abortion. Hum Pathol. 1998;29:1013–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Chew SH, Perlmann EJ, Williams R, Kurman RJ, Ronnett BM. Morphology and DNA content analysis in the evaluation of first trimester placentas for partial hydatidiform mole (PHM). Hum Pathol. 2000;31:914–24.PubMedCrossRefGoogle Scholar
  74. 74.
    Genest DR. Partial hydatidiform mole: clinicopathological features, differential diagnosis, ploidy and molecular studies, and gold standards for diagnosis. Int J Gynecol Pathol. 2001;20:315–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Fisher RA, Hodges MD, Newlands ES. Familial recurrent hydatidiform mole: a review. J Reprod Med. 2004;49:595–601.PubMedGoogle Scholar
  76. 76.
    Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, Kircheisen R, Ao A, Ratti B, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–2.PubMedCrossRefGoogle Scholar
  77. 77.
    Parry DA, Logan CV, Hayward BE, Shires M, Landolsi H, Diggle C, Carr I, Rittore C, Touitou I, Philibert L, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet. 2011;89:451–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jacques SM, Qureshi F. Chronic intervillositis of the placenta. Arch Pathol Lab Med. 1993;117(10):1032–5.PubMedGoogle Scholar
  79. 79.
    Doss BJ, Greene MF, Hill J, Heffner LJ, Bieber FR, Genest DR. Massive chronic intervillositis associated with recurrent abortions. Hum Pathol. 1995;26:1245–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Boyd TK, Redline RW. Chronic histiocytic intervillositis: a placental lesion associated with recurrent reproductive loss. Hum Pathol. 2000;31:1389–96.PubMedCrossRefGoogle Scholar
  81. 81.
    Boog G, Le Vaillant C, Alnoukari F, Jossic F, Barrier J, Muller JY. Combining corticosteroid and aspirin for the prevention of recurrent villitis or intervillositis of unknown etiology. J Gynecol Obstet Biol Reprod. 2006;35:396–404.CrossRefGoogle Scholar
  82. 82.
    Rota C, Carles D, Schaeffer V, Guyon F, Saura R, Horovitz J. Perinatal prognosis of pregnancies complicated by placental chronic intervillitis. J Gynecol Obstet Biol Reprod. 2006;35:711–9.CrossRefGoogle Scholar
  83. 83.
    Creagh MD, Malia RG, Cooper SM, Smith AR, Duncan SL, Greaves M. Screening for lupus anticoagulant and anticardiolipin antibodies in women with fetal loss. J Clin Pathol. 1991;44:45–7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hanly JG, Gladman DD, Rose TH, Laskin CA, Urowitz MB. Lupus pregnancy. A prospective study of placental changes. Arthritis Rheum. 1988;31:358–66.PubMedCrossRefGoogle Scholar
  85. 85.
    Salafia CM, Parke AL. Placental pathology in systemic lupus erythematosus and phospholipid antibody syndrome. Rheum Dis Clin N Am. 1997;23:85–97.CrossRefGoogle Scholar
  86. 86.
    Levy RA, Avvad E, Oliveira J, Porto LC. Placental pathology in antiphospholipid syndrome. Lupus. 1998;7(Suppl 2):S81–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Magid MS, Kaplan C, Sammaritano LR, Peterson M, Druzin ML, Lockshin MD. Placental pathology in systemic lupus erythematosus: a prospective study. Am J Obstet Gynecol. 1998;179:226–34.PubMedCrossRefGoogle Scholar
  88. 88.
    Ackerman J, Gonzalez EF, Gilbert-Barness E. Immunological studies of the placenta in maternal connective tissue disease. Pediatr Dev Pathol. 1999;2:19–24.PubMedCrossRefGoogle Scholar
  89. 89.
    Ogishima D, Matsumoto T, Nakamura Y, Yoshida K, Kuwabara Y. Placental pathology in systemic lupus erythematosus with antiphospholipid antibodies. Pathol Int. 2000;50:224–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Sebire NJ, Fox H, Backos M, Rai R, Paterson C, Regan L. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome associated early pregnancy failure. Hum Reprod. 2002;17:1067–71.PubMedCrossRefGoogle Scholar
  91. 91.
    Arias F, Romero R, Joist H, Kraus FT. Thrombophilia: a mechanism of disease in women with adverse pregnancy outcome and thrombotic lesions in the placenta. J Matern Fetal Med. 1998;7:277–86.PubMedCrossRefGoogle Scholar
  92. 92.
    Mousa HA, Alfirevic Z. Do placental lesions reflect thrombophilia state in women with adverse pregnancy outcome? Hum Reprod. 2000;15:1830–3.PubMedCrossRefGoogle Scholar
  93. 93.
    Rand JH, Wu XX, Guller S, Scher J, Andree HA, Lockwood CJ. Antiphospholipid immunoglobulin G antibodies reduce annexin-V levels on syncytiotrophoblast apical membranes and in culture media of placental villi. Am J Obstet Gynecol. 1997;177:918–23.PubMedCrossRefGoogle Scholar
  94. 94.
    Khong TY, Liddell HS, Robertson WB. Defective haemochorial placentation as a cause of miscarriage: a preliminary study. Br J Obstet Gynaecol. 1987;94(7):649–55.PubMedCrossRefGoogle Scholar
  95. 95.
    Michel MZ, Khong TY, Clark DA, Beard RW. A morphological and immunological study of human placental bed biopsies I miscarriage. Br J Obstet Gynaecol. 1990;97(11):984–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Jauniaux E, Burton GJ. Pathophysiology of histological changes in early pregnancy loss. Placenta. 2005;26(2–3):114–23.PubMedCrossRefGoogle Scholar
  97. 97.
    Nakashima A, Shiozaki A, Myojo S, Ito M, Tatematsu M, Sakai M, Takamori Y, Ogawa K, Nagata K, Saito S. Granulysin produced by uterine natural killer cells induces apoptosis of extravillous trophoblasts in spontaneous abortion. Am J Pathol. 2008;173(3):653–64.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A, Claas FH, Walker JJ, Redman CW, Morgan L, Tower C, Regan L, Moore GE, Carrington M, Moffett A. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest. 2010;120(11):4102–10.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wu S, Zhang H, Tian J, Liu L, Dong Y, Mao T. Expression of kisspeptin/GPR54 and PIBF/PR in the first trimester trophoblast and decidua of women with recurrent spontaneous abortion. Pathol Res Pract. 2014;210(1):47–54.PubMedCrossRefGoogle Scholar
  100. 100.
    Tian FJ, Qin CM, Li XC, Wu F, Liu XR, Xu WM, Lin Y. Decreased stathmin-1 expression inhibits trophoblast proliferation and invasion and is associated with recurrent miscarriage. Am J Pathol. 2015;185(10):2709–21.PubMedCrossRefGoogle Scholar
  101. 101.
    Aplin JD, Haigh T, Vicovac L, Church HJ, Jones CJP. Anchorage in the developing placenta: an overlooked determinant of pregnancy outcome? Hum Fertil. 1998;1(1):75–9.CrossRefGoogle Scholar
  102. 102.
    Bulla R, de Guarrini F, Pausa M, Fischetti F, Meroni PL, De Seta F, Guaschino S, Tedesco F. Inhibition of trophoblast adhesion to endothelial cells by the sera of women with recurrent spontaneous abortions. Am J Reprod Immunol. 1999;42(2):116–23.PubMedGoogle Scholar
  103. 103.
    Cinar O, Kara F, Can A. Potential role of decidual apoptosis in the pathogenesis of miscarriages. Gynecol Endocrinol. 2012;28(5):382–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Lea RG, Underwood J, Flanders KC, Hirte H, Banwatt D, Finotto S, Ohno I, Daya S, Harley C, Michel M, et al. A subset of patients with recurrent spontaneous abortion is deficient in transforming growth factor beta-2-producing “suppressor cells” in uterine tissue near the placental attachment site. Am J Reprod Immunol. 1995;34(1):52–64.PubMedCrossRefGoogle Scholar
  105. 105.
    Zhao A, Lin Q, Zhou H. [Immunohistochemical study on the decidua vessels in recurrent spontaneous abortion]. Zhonghua Fu Chan Ke Za Zhi. 1997;32(11):674–7.Google Scholar
  106. 106.
    Lea RG, Tulppala M, Critchley HO. Deficient syncytiotrophoblast tumour necrosis factor-alpha characterizes failing first trimester pregnancies in a subgroup of recurrent miscarriage patients. Hum Reprod. 1997;12(6):1313–20.PubMedCrossRefGoogle Scholar
  107. 107.
    Kwak JY, Beer AE, Kim SH, Mantouvalos HP. Immunopathology of the implantation site utilizing monoclonal antibodies to natural killer cells in women with recurrent pregnancy losses. Am J Reprod Immunol. 1999;41(1):91–8.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Emmer PM, Steegers EA, Kerstens HM, Bulten J, Nelen WL, Boer K, Joosten I. Altered phenotype of HLA-G expressing trophoblast and decidual natural killer cells in pathological pregnancies. Hum Reprod. 2002;17(4):1072–80.PubMedCrossRefGoogle Scholar
  109. 109.
    Quack KC, Vassiliadou N, Pudney J, Anderson DJ, Hill JA. Leukocyte activation in the decidua of chromosomally normal and abnormal fetuses from women with recurrent abortion. Hum Reprod. 2001;16(5):949–55.PubMedCrossRefGoogle Scholar
  110. 110.
    Askelund K, Liddell HS, Zanderigo AM, Fernando NS, Khong TY, Stone PR, Chamley LW. CD83(+)dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta. 2004;25(2–3):140–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Mei S, Tan J, Chen H, Chen Y, Zhang J. Changes of CD4+CD25high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertil Steril. 2010;94(6):2244–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Ozcimen EE, Kiyici H, Uckuyu A, Yanik FF. Are CD57+ natural killer cells really important in early pregnancy failure? Arch Gynecol Obstet. 2009;279(4):493–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Wang WJ, Hao CF, Yi-Lin, Yin GJ, Bao SH, Qiu LH, Lin QD. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol. 2010;84(2):164–70.PubMedCrossRefGoogle Scholar
  114. 114.
    Bao SH, Wang XP, De Lin Q, Wang WJ, Yin GJ, Qiu LH. Decidual CD4+CD25+CD127dim/- regulatory T cells in patients with unexplained recurrent spontaneous miscarriage. Eur J Obstet Gynecol Reprod Biol. 2011;155(1):94–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Li J, Li FF, Zuo W, Zhou Y, Hao HY, Dang J, Jiang M, He MZ, Deng DR. Up-regulated expression of Tim-3/Gal-9 at maternal-fetal interface in pregnant woman with recurrent spontaneous abortion. J Huazhong Univ Sci Technolog Med Sci. 2014;34(4):586–90.PubMedCrossRefGoogle Scholar
  116. 116.
    Yuan J, Li J, Huang SY, Sun X. Characterization of the subsets of human NKT-like cells and the expression of Th1/Th2 cytokines in patients with unexplained recurrent spontaneous abortion. J Reprod Immunol. 2015;110:81–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Zhang XX, Kang XM, Zhao AM. Regulation of CD4+FOXP3+ T cells by CCL20/CCR6 axis in early unexplained recurrent miscarriage patients. Genet Mol Res. 2015;14(3):9145–54.PubMedCrossRefGoogle Scholar
  118. 118.
    Wang S, Zhu X, Xu Y, Zhang D, Li Y, Tao Y, Piao H, Li D, Du M. Programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) regulate CD4+ T cells to induce Type 2 helper T cell (Th2) bias at the maternal-fetal interface. Hum Reprod. 2016;31(4):700–11.PubMedCrossRefGoogle Scholar
  119. 119.
    Meuleman T, Cohen D, Swings GM, Veraar K, Claas FH, Bloemenkamp KW. Increased complement C4d deposition at the maternal-fetal interface in unexplained recurrent miscarriage. J Reprod Immunol. 2016;113:54–60.PubMedCrossRefGoogle Scholar
  120. 120.
    Dong F, Zhang Y, Xia F, Yang Y, Xiong S, Jin L, Zhang J. Genome-wide miRNA profiling of villus and decidua of recurrent spontaneous abortion patients. Reproduction. 2014;148(1):33–41.PubMedCrossRefGoogle Scholar
  121. 121.
    Li D, Li J. Association of miR-34a-3p/5p, miR-141-3p/5p, and miR-24 in decidual natural killer cells with unexplained recurrent spontaneous abortion. Med Sci Monit. 2016;22:922–9.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wang JM, Gu Y, Zhang Y, Yang Q, Zhang X, Yin L, Wang J. Deep-sequencing identification of differentially expressed miRNAs in decidua and villus of recurrent miscarriage patients. Arch Gynecol Obstet. 2016;293(5):1125–35.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PathologyUniversity College of Medical Sciences and Guru Teg Bahadur HospitalDelhiIndia

Personalised recommendations