Advertisement

Application of Biotechnology to Generate Drought-Tolerant Soybean Plants in Brazil: Development of Genetic Engineering Technology of Crops with Stress Tolerance Against Degradation of Global Environment

  • Kazuo Nakashima
  • Norihito Kanamori
  • Yukari Nagatoshi
  • Yasunari Fujita
  • Hironori Takasaki
  • Kaoru Urano
  • Junro Mogami
  • Junya Mizoi
  • Liliane Marcia Mertz-Henning
  • Norman Neumaier
  • Jose Renato Bouças Farias
  • Renata Fuganti-Pagliarini
  • Silvana Regina Rockenbach Marin
  • Kazuo Shinozaki
  • Kazuko Yamaguchi-Shinozaki
  • Alexandre Lima Nepomuceno
Chapter

Abstract

Brazil is the second largest soybean-producing country, but yields have recently been unstable because of droughts. The objective of this project was to develop drought-tolerant soybean lines based on information from earlier molecular studies involving model plants. We also searched the soybean genome for genes conferring drought tolerance and elucidated the mechanisms regulating the identified genes. Based on our findings, we generated new soybean lines, which were then evaluated under greenhouse and field conditions to identify the most drought-tolerant lines. We analyzed the functions of drought tolerance genes in Arabidopsis thaliana and identified soybean genes exhibiting similar properties. We also comprehensively investigated soybean gene expression levels in stressed plants. Additionally, we determined the best combinations of drought tolerance genes and promoters and introduced these combinations into soybean cells using biolistic and Agrobacterium tumefaciens-based methods. We evaluated the stress tolerance of the resulting transgenic plants in a greenhouse and in the field and observed that some transgenic soybean lines exhibited increased drought tolerance. We developed a new technique for generating genetically modified soybean lines that are more tolerant to environmental stresses such as drought. These lines may be useful for mitigating the effects of climate changes. The developed technique and generated transgenic soybean lines may help stabilize or increase soybean production in Brazil.

Notes

Acknowledgment

We are grateful to the Science and Technology Research Partnership for Sustainable Development (SATREPS) of the Japan Science and Technology Agency (JST)/Japan International Cooperation Agency (JICA), which supported our study.

References

  1. Barbosa EGG, Leite JP, Marin SRR et al (2013) Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Mol Biol Report 31:719–730CrossRefGoogle Scholar
  2. Behnam B, Kikuchi A, Celebi-Toprak F et al (2007) Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep 26:1275–1282CrossRefPubMedGoogle Scholar
  3. Bhatnagar-Mathur P, Devi MJ, Reddy DS et al (2007) Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082CrossRefPubMedGoogle Scholar
  4. Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encoded transcription activators that function in drought, high-salt and cold responsive gene expression. Plant J 33:751–763CrossRefPubMedGoogle Scholar
  5. Engels C, Fuganti-Pagliarini R, Marin SRR et al (2013) Introduction of the rd29A:AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration. Genet Mol Biol 36:556–565CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fuganti-Pagliarini R, Ferreira LC, Rodrigues FA et al (2017) Characterization of soybean genetically modified for drought tolerance in field conditions. Front Plant Sci 8:448CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147:15–27CrossRefPubMedGoogle Scholar
  8. Honna PT, Fuganti-Pagliarini R, Ferreira LC et al (2016) Molecular, physiological and agronomical characterization, in greenhouse and in field conditions, of soybean plants genetically modified with AtGolS2 gene for drought tolerance. Mol Breed 36:157CrossRefGoogle Scholar
  9. Ito Y, Katsura K, Maruyama K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153CrossRefGoogle Scholar
  10. Iuchi S, Kobayashi M, Taji T et al (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333CrossRefPubMedGoogle Scholar
  11. Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291CrossRefPubMedGoogle Scholar
  12. Kasuga M, Miura S, Shinozaki K et al (2004) Combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350CrossRefPubMedGoogle Scholar
  13. Marcolino-Gomes J, Rodriguez FA, Fuganti-Pagliarini R et al (2014) Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One 9(1):e86402CrossRefPubMedPubMedCentralGoogle Scholar
  14. Marinho JP, Kanamori N, Ferreira LC (2016) Characterization of molecular and physiological responses under water deficit of genetically modified soybean plants overexpressing the AtAREB1 transcription factor. Plant Mol Biol Report 34:410CrossRefGoogle Scholar
  15. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96CrossRefPubMedGoogle Scholar
  16. Mizoi J, Ohori T, Moriwaki T et al (2013) GmDREB2A;2, a canonical dehydration- responsive element binding protein2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol 161:346–361CrossRefPubMedGoogle Scholar
  17. Nakashima K, Yamaguchi-Shinozaki K, Shinoaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170CrossRefPubMedPubMedCentralGoogle Scholar
  18. Nakashima K, Suenaga K (2017) Toward the genetic improvement of drought tolerance in crops. JARQ 51:1–10CrossRefGoogle Scholar
  19. Oh SJ, Song SI, Kim YS et al (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351CrossRefPubMedPubMedCentralGoogle Scholar
  20. Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859CrossRefGoogle Scholar
  21. Pellegrineschi A, Reynolds M, Pacheco M et al (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500CrossRefGoogle Scholar
  22. Polizel AM, Medri ME, Nakashima K et al (2011) Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genet Mol Res 10:3641–3656CrossRefPubMedGoogle Scholar
  23. Qin F, Kakimoto M, Sakuma Y et al (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69CrossRefPubMedGoogle Scholar
  24. Reis RR, da Cunha BA, Martins PK et al (2014) Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci 221–222:59–68CrossRefPubMedGoogle Scholar
  25. Rodrigues FA, Fuganti-Pagliarini R, Marcolino-Gomes J et al (2015) Daytime soybean transcriptome fluctuations during water deficit stress. BMC Genomics 16:505CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rolla AA, Carvalho JFC, Fuganti-Pagliarini R et al (2013) Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res 23:75–87CrossRefGoogle Scholar
  27. Saint-Pierre C, Crossa JL, Bonnett D et al (2012) Phenotyping transgenic wheat for drought resistance. J Exp Bot 2:1–10Google Scholar
  28. Sakuma Y, Maruyama K, Osakabe Y et al (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sakuma Y, Maruyama K, Qin F et al (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sato H, Mizoi J, Tanaka H et al (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26:4954–4973CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sato H, Todaka D, Kudo M et al (2016) The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnol J 14:1756–1767CrossRefPubMedPubMedCentralGoogle Scholar
  32. Taji T, Ohsumi C, Iuchi S et al (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kazuo Nakashima
    • 1
  • Norihito Kanamori
    • 1
  • Yukari Nagatoshi
    • 1
  • Yasunari Fujita
    • 1
  • Hironori Takasaki
    • 2
    • 3
  • Kaoru Urano
    • 2
  • Junro Mogami
    • 4
  • Junya Mizoi
    • 4
  • Liliane Marcia Mertz-Henning
    • 5
  • Norman Neumaier
    • 5
  • Jose Renato Bouças Farias
    • 5
  • Renata Fuganti-Pagliarini
    • 5
  • Silvana Regina Rockenbach Marin
    • 5
  • Kazuo Shinozaki
    • 2
  • Kazuko Yamaguchi-Shinozaki
    • 4
  • Alexandre Lima Nepomuceno
    • 5
  1. 1.Japan International Research Center for Agricultural Sciences (JIRCAS)TsukubaJapan
  2. 2.RIKEN Center for Sustainable Resource ScienceTsukubaJapan
  3. 3.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  4. 4.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  5. 5.Embrapa SoybeanLondrinaBrazil

Personalised recommendations