Influence Evaluation for Image Tampering Using Saliency Mechanism

  • Kui Ye
  • Xiaobo Sun
  • Jindong Xu
  • Jing Dong
  • Tieniu Tan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 771)


Due to the immediacy and the easy way to understand the image content, the applications of digital image have brought great opportunity to the development of social networks. However, there exist some serious problems. Some visual content has been maliciously tampered to achieve illegal purpose, while some modifications are benign, just for fun, for enhancing artistic value, or effectiveness of news dissemination. So beyond the tampering detection, how to evaluate the influence of image tampering is on schedule. In this paper, with the help of forensic tools, we study the problem of automatically assessing the influence of image tampering by examining whether the modification affects the dominant visual content, and utilize saliency mechanism to assess how harmful the tampering is. The experimental results demonstrate the effectiveness of our method.


Influence evaluation Image tampering Saliency Image forensics 



This work is supported by China Postdoctoral Science Foundation funded project (No. 2016M601168), Science and technology research project of Heilongjiang Education Department (No. 12521092), NSFC (No. U1536120, U1636201, 61502496) and the National Key Research, Development Program of China (No. 2016YFB1001003).


  1. 1.
    Farid, H.: Digital doctoring: how to tell the real from the fake. Significance 3(4), 162–166 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  3. 3.
    Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)CrossRefGoogle Scholar
  4. 4. Accessed 9 May 2017
  5. 5. Accessed 9 May 2017
  6. 6. Accessed 9 May 2017
  7. 7.
    Kumar, S., Morstatter, F., Zafarani, R., Liu, H.: Whom should I follow?: identifying relevant users during crises. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media, pp. 139–147. ACM (2013)Google Scholar
  8. 8.
    Alrubaian, M., Alqurishi, M., Hassan, M., Alamri, A.: A credibility analysis system for assessing information on twitter. IEEE Trans. Dependable Secure Comput. (2016). Google Scholar
  9. 9.
    Jin, Z., Cao, J., Zhang, Y., Luo, J.: News verification by exploiting conflicting social view-points in microblogs. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 2972–2978. AAAI (2016)Google Scholar
  10. 10.
    Sikdar, S., Kang, B., Odonovan, J., Höllerer, T., Adalı, S.: Understanding information credi-bility on Twitter. In: International Conference on Social Computing, pp. 19–24. IEEE (2013)Google Scholar
  11. 11.
    Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking Sandy: characterizing and identifying fake images on Twitter during Hurricane Sandy. In: International Conference on World Wide Web, pp. 729–736 (2013)Google Scholar
  12. 12.
    Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)CrossRefGoogle Scholar
  13. 13.
    Ardizzone, E., Bruno, A., Mazzola, G.: Copy-Move forgery detection by matching triangles of keypoints. IEEE Trans. Inf. Forensics Secur. 10(10), 2084–2094 (2015)CrossRefGoogle Scholar
  14. 14.
    Cozzolino, D., Poggi, G., Verdoliva, L.: Copy-move forgery detection based on PatchMatch. In: International Conference on Image Processing, pp. 5312–5316. IEEE (2014)Google Scholar
  15. 15.
    Oikawa, M.A., Dias, Z., Rocha, A.R., Goldenstein, S.: Manifold learning and spectral clus-tering for image phylogeny forests. IEEE Trans. Inf. Forensics Secur. 11(1), 5–18 (2016)CrossRefGoogle Scholar
  16. 16.
    Fan, W., Wang, K., Cayre, F., Xiong, Z.: Median filtered image quality enhancement and anti-forensics via variational deconvolution. IEEE Trans. Inf. Forensics Secur. 10(5), 1076–1091 (2015)CrossRefGoogle Scholar
  17. 17.
    Wang, W., Dong, J., Tan, T.N.: Exploring DCT coefficient quantization effects for local tampering detection. IEEE Trans. Inf. Forensics Secur. 9(10), 1653–1666 (2014)CrossRefGoogle Scholar
  18. 18.
    Peng, B., Wang, W., Dong, J., Tan, T.N.: Optimized 3D lighting environment estimation for image forgery detection. IEEE Trans. Inf. Forensics Secur. 12(2), 479–494 (2017)CrossRefGoogle Scholar
  19. 19.
  20. 20.
  21. 21.
    Schölkopf, B., Platt, J., Hofmann, T.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems (NIPS), pp. 545–552 (2006)Google Scholar
  22. 22.
    Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 433–440 (2011)Google Scholar
  23. 23.
    Zhang, L., Tong, M., Marks, T., Shan, H., Cottrell, G.: SUN: a Bayesian framework for sali-ency using natural statistics. J. Vis. 8(7), 1–20 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Kui Ye
    • 1
    • 2
  • Xiaobo Sun
    • 1
  • Jindong Xu
    • 2
  • Jing Dong
    • 2
    • 3
  • Tieniu Tan
    • 2
  1. 1.School of AutomationHarbin University of Science and TechnologyHarbinChina
  2. 2.Center for Research on Intelligent Perception and ComputingChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Information SecurityInstitute of Information Engineering, Chinese Academy of SciencesBeijingChina

Personalised recommendations