Advertisement

Plausible Role of Plant Growth-Promoting Rhizobacteria in Future Climatic Scenario

  • R. Z. Sayyed
  • N. Ilyas
  • B. Tabassum
  • A. Hashem
  • E. F. Abd_Allah
  • H. P. Jadhav
Chapter

Abstract

Increasing agro-productivity for feeding growing world population under present climatic scenario requires optimizing the use of resources and adopting the sustainable agriculture methods. This can be achieved by using plant-beneficial bacteria. Target of achieving sustainable agriculture implies the use of varieties that are resistant to disease and tolerant to stress and having desired nutrition value. This can be effectively achieved through the use of rhizospheric microflora including bacteria, fungi, algae, etc. Among these, plant growth-promoting rhizobacteria (PGPR) have been seen as reliable and most promising bioinoculants for promoting plant growth and controlling phytopathogen without causing environmental deterioration. Application of PGPR as bioinoculants can help in achieving the target of global agricultural productivity to feed the world’s booming population, which is expected to become 9 billion by 2050. However, to be useful and effective bioinoculants, PGPR strains should be competent in their habitat, safe to the environment, helpful in plant nutrition and biocontrol, compatible with useful soil rhizobacteria, and tolerant to a variety of stress factors and show broad spectrum activity. In the context of the above scenario, this chapter focusses on the use of PGPR to increase agro-productivity and as one of the vital drivers of the agro-economy. In this review we focus on the modes of action of PGPR and their role in environmental protection and agricultural sustainability under increasing climatic variations.

Keywords

PGPR Plant growth promotion Biocontrol Abiotic stress Mechanisms 

References

  1. Alarcon, M. V., Lloret, P. G., Iglesias, D. J., Talon, M., & Salguero, J. (2012). Comparison of growth responses to auxin 1-naphthaleneacetic acid and the ethylene precursor 1-aminocyclopropane-1-carboxilic acid in maize seedling root. Acta Biologica Cracoviensia Series Botanica, 54, 16–23.Google Scholar
  2. Aloni, R., Aloni, E., Langhans, M., & Ullrich, C. I. (2006). Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany, 97, 883–893.CrossRefGoogle Scholar
  3. Ashraf, M. (1994). Organic substances responsible for salt tolerance in Eruca sativa. Biologia Plantarum, 36, 255–259.CrossRefGoogle Scholar
  4. Ashraf, M., Hasnain, S., Berge, O., & Mahmood, T. (2004). Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils, 40, 157–162.Google Scholar
  5. Ashrafuzzaman, M., Hossen, F. A., Ismail, M. R., Hoque, A., Islam, M. Z., Shahidullah, S. M., & Meon, S. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8(7), 1247–1252.Google Scholar
  6. Babalola, O. O., Osir, E. O., Sanni, A. I., Odhiambo, G. D., & Bulimo, W. D. (2003). Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in striga-infested soil. African Journal of Biotechnology, 2, 157–160.CrossRefGoogle Scholar
  7. Barka, E. A., Nowak, J., & Clément, C. (2006). Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Applied and Environmental Microbiology, 72, 7246–7252.CrossRefGoogle Scholar
  8. Barnawal, D., Bharti, N., Maji, D., Chanotiya, C. S., & Kalra, A. (2012). 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiology and Biochemistry, 58, 227–235.CrossRefGoogle Scholar
  9. Bartel, B. (1997). Auxin biosynthesis. Annual Review of Plant Biology, 48, 51–66.CrossRefGoogle Scholar
  10. Belimov, A. A., Safronova, V. I., & Mimura, T. (2002). Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Canadian Journal of Microbiology, 48, 189–199.CrossRefGoogle Scholar
  11. Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., & Glick, B. R. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37, 241–250.CrossRefGoogle Scholar
  12. Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 1044–1051.CrossRefGoogle Scholar
  13. Bensalim, S., Nowak, J., & Asiedu, S. K. (1998). A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. American Journal of Potato Research, 75, 145–152.CrossRefGoogle Scholar
  14. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.CrossRefGoogle Scholar
  15. Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173, 170–177.CrossRefGoogle Scholar
  16. Boughammoura, S., Chemek, M., Mimouna, S. B., Banni, M., & Messaoudi, I. (2017). Involvement of Zn depletion in cd-induced toxicity on prenatal bone formation in rat. Biology of Trace Elements Research in Press, 180(1), 70–80.  https://doi.org/10.1007/s12011-017-0981-7.CrossRefGoogle Scholar
  17. Burdman, S., Jurkevitch, E., & Okon, Y. (2000). Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In Microbial interactions in agriculture and forestry (Vol. 2, pp. 229–250).Google Scholar
  18. Castric, P. A. (1977). Glycine metabolism by Pseudomonas aeruginosa: Hydrogen cyanide biosynthesis. Journal of Bactriology, 130, 826–831.Google Scholar
  19. Castric, P. (1994). Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase. Current Microbiology, 29, 19–21.CrossRefGoogle Scholar
  20. Cattelan, A. M., Aversa, S. M. L., Zanchetta, M., Meneghetti, F., De Rossi, A., & Chieco-Bianchi, L. (1999). Regression of AIDS-related Kaposi’s sarcoma following antiretroviral therapy with protease inhibitors: Biological correlates of clinical outcome. European Journal of Cancer, 35, 1809–1815.CrossRefGoogle Scholar
  21. Cazorla, F. M., Duckett, S. B., Bergström, E. T., Noreen, S., Odijk, R., Lugtenberg, B. J., Thomas-Oates, J. E., & Bloemberg, G. V. (2006). Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Molecular Plant-Microbe Interactions, 19, 418–428.CrossRefGoogle Scholar
  22. Chaiharn, M., & Lumyong, S. (2009). Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in northern Thailand. World Journal of Microbiology and Biotechnology, 25, 305–314.CrossRefGoogle Scholar
  23. Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., & Guo, J. H. (2013). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15, 848–864.CrossRefGoogle Scholar
  24. Cheng, Z., Park, E., & Glick, B. R. (2007). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Canadian Journal of Microbiology, 53(7), 912–918.CrossRefGoogle Scholar
  25. Chin-A-Woeng, T. F., Bloemberg, G. V., & Lugtenberg, B. J. (2003). Phenazines and their role in biocontrol by Pseudomonas bacteria. The New Phytologist, 157, 503–523.CrossRefGoogle Scholar
  26. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005a). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.CrossRefGoogle Scholar
  27. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clément, C., & Barka, E. A. (2005b). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology, 71, 1685–1693.CrossRefGoogle Scholar
  28. Davies, W. J., & Hartung, W. (2004). Has extrapolation from biochemistry to crop functioning worked to sustain plant production under water scarcity. In Proceeding of the fourth International crop Science Congress (Vol. 26).Google Scholar
  29. de Souza, J. T., Weller, D. M., & Raaijmakers, J. M. (2003). Frequency, diversity and activity of 2, 4-diacetylphloroglucinol producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology, 93, 54–63.CrossRefGoogle Scholar
  30. Dell’Amico, E., Cavalca, L., & Andreoni, V. (2008). Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology and Biochemistry, 40, 74–84.CrossRefGoogle Scholar
  31. Dunne, C., Crowley, J. J., Moënne-Loccoz, Y., Dowling, D. N., & O’Gara, F. (1997). Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology, 143, 3921–3931.CrossRefGoogle Scholar
  32. Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In Use of microbes for the alleviation of soil stresses (Vol. 1, pp. 73–96). New York: Springer.Google Scholar
  33. Ezziyyani, M., Requena, M. E., Egea-Gilabert, C., & Candela, M. E. (2007). Biological control of phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Journal of Phytopathology, 155, 342–349.CrossRefGoogle Scholar
  34. Figueiredo, M. V. B., Martinez, C. R., Burity, H. A., & Chanway, C. P. (2008). Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World Journal of Microbiology and Biotechnology, 24, 1187–1193.CrossRefGoogle Scholar
  35. Fu, Q., Liu, C., Ding, N., Lin, Y., & Guo, B. (2010). Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, 97, 1994–2000.CrossRefGoogle Scholar
  36. Gamalero, E., Lingua, G., Berta, G., & Glick, B. R. (2009). Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Canadian Journal of Microbiology, 55, 501–514.CrossRefGoogle Scholar
  37. Geddie, J. L., & Sutherland, I. W. (1993). Uptake of metals by bacterial polysaccharides. Journal of Applied Microbiology, 74, 467–472.Google Scholar
  38. Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.CrossRefGoogle Scholar
  39. Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190, 63–68.CrossRefGoogle Scholar
  40. Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119, 329–339.CrossRefGoogle Scholar
  41. Gomah, H. H., Mahmoud, S. M., El-Rewainy, H. M., & Abdrabou, M. R. (2014). Soil solarization and inoculation with Sulphur oxidizing bacteria and their effects on some soil properties. Journal of Microbial Biochemistry and Technology, S3, 2.Google Scholar
  42. Gontia-Mishra, I., Sapre, S., & Tiwari, S. (2017). Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere, 3, 185–190.CrossRefGoogle Scholar
  43. Goteti, P. K., Emmanuel, L. D. A., Desai, S., & Shaik, M. H. A. (2013). Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). International Journal of Microbiology.  https://doi.org/10.1155/2013/869697.CrossRefGoogle Scholar
  44. Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37, 395–412.CrossRefGoogle Scholar
  45. Grichko, V. P., & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39, 11–17.CrossRefGoogle Scholar
  46. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews. Microbiology, 3, 307–319.CrossRefGoogle Scholar
  47. Hadiarto, T., & Tran, L. S. P. (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports, 30, 297–310.CrossRefGoogle Scholar
  48. Hamdia, M. A. E. S., Shaddad, M. A. K., & Doaa, M. M. (2004). Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation, 44, 165–174.CrossRefGoogle Scholar
  49. Han, H. S., & Lee, K. D. (2005). Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Research Journal of Agriculture and Biological Sciences, 1, 176–180.Google Scholar
  50. Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soil-borne plant pathogens. The Plant Cell, 8, 1855–1869.CrossRefGoogle Scholar
  51. Hariprasad, P., Divakara, S. T., & Niranjana, S. R. (2011). Isolation and characterization of chitinolytic rhizobacteria for the management of Fusarium wilt in tomato. Crop Protection, 30, 1606–1612.CrossRefGoogle Scholar
  52. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.CrossRefGoogle Scholar
  53. Heidari, M., Mousavinik, S. M., & Golpayegani, A. (2011). Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ocimum basilicum L.) under water stress. ARPN Journal of Agricultural Biological Science, 6, 6–11.Google Scholar
  54. Hernandez, M. E., Kappler, A., & Newman, D. K. (2004). Phenazines and other redox-active antibiotics promote microbial mineral reduction. Applied and Environmental Microbiology, 70, 921–928.CrossRefGoogle Scholar
  55. Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10, 273–290.CrossRefGoogle Scholar
  56. Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20, 619–626.CrossRefGoogle Scholar
  57. Iqbal, H. M. N., Asgher, M., & Bhatti, H. N. (2011). Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes versicolor. BioResources, 6, 1273–1287.Google Scholar
  58. Jadhav, H. P., & Sayyed, R. Z. (2016). Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Science and Report, 3(5), 00070.  https://doi.org/10.15406/mojcsr.2016.03.00070.CrossRefGoogle Scholar
  59. Jadhav, H. P., Shaikh, S. S., & Sayyed, R. Z. (2017). Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: An overview. In Rhizotrophs: Plant growth promotion to bioremediation (pp. 183–203). Springer.Google Scholar
  60. Jaleel, C. A., Manivannan, P. M., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11, 100–105.Google Scholar
  61. Jalili, F., Khavazi, K., Pazira, E., Nejati, A., Rahmani, H. A., Sadaghiani, H. R., & Miransari, M. (2009). Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. Journal of Plant Physiology, 166, 667–674.CrossRefGoogle Scholar
  62. Jung, W. J., Kuk, J. H., Kim, K. Y., Kim, T. H., & Park, R. D. (2005). Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. Journal of Microbiology and Biotechnology, 15, 274–280.Google Scholar
  63. Kamilova, F., Validov, S., Azarova, T., Mulders, I., & Lugtenberg, B. (2005). Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, 7, 1809–1817.CrossRefGoogle Scholar
  64. Kang, J. G., Shin, S. Y., Kim, M. J., Bajpai, V., Maheshwari, D. K., & Kang, S. C. (2004). Isolation and antifungal activities of 2-hydroxymethyl-chroman-4-one produced by Burkholderia sp. MSSP. The Journal of Antibiotics, 57, 726–731.CrossRefGoogle Scholar
  65. Kang, S. M., Joo, G. J., Hamayun, M., Na, C. I., Shin, D. H., Kim, H. Y., Hong, J. K., & Lee, I. J. (2009). Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31, 277–281.CrossRefGoogle Scholar
  66. Karnawal, A. (2009). Production of indole acetic acid by fluorescent Pseudomonas in the presence of L-tryptophan and rice root exudates. Journal of Plant Pathology, 61–63.Google Scholar
  67. Kaur, R., Macleod, J., Foley, W., & Nayudu, M. (2006). Gluconic acid: An antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry, 67, 595–604.CrossRefGoogle Scholar
  68. Kaymak, H. C., Guvenc, I., & Gurol, A. (2010). Elemental analysis of different radish (Raphanus sativus L.) cultivars by using wavelength-dispersive x-ray fluorescence spectrometry (wdxrf). Bulgaraian Journal of Agricultural Science, 16, 769–774.Google Scholar
  69. Khalid, A., Arshad, M., & Zahir, Z. A. (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, 96, 473–480.CrossRefGoogle Scholar
  70. Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi-current perspective. Archieves in Agronomy Soil Science, 56, 73–98.CrossRefGoogle Scholar
  71. Khodair, T. A., Galal, G. F., & El-Tayeb, T. S. (2008). Effect of inoculating wheat seedlings with exopolysaccharide-producing bacteria in saline soil. Journal of Applied Sciences Research, 4, 2065–2070.Google Scholar
  72. Kloepper, J. W., & Schroth, M. N. (1978). Plant growth-promoting rhizobacteria on radishes. In Proceedings of the 4th international conference on plant pathogenic bacteria (Vol. 2, pp. 879–882).Google Scholar
  73. Kotan, R., Cakir, A., Dadasoglu, F., Aydin, T., Cakmakci, R., Ozer, H., Kordali, S., Mete, E., & Dikbas, N. (2010). Antibacterial activities of essential oils and extracts of turkish achillea, satureja and thymus species against plant pathogenic bacteria. Journal of the Science of Food and Agriculture, 90, 145–160.CrossRefGoogle Scholar
  74. Labuschagne, N., Pretorius, T., & Idris, A. H. (2010). Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. In Plant growth and health promoting bacteria (pp. 211–230). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  75. Lanteigne, C., Gadkar, V. J., Wallon, T., Novinscak, A., & Filion, M. (2012). Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology, 102, 967–973.CrossRefGoogle Scholar
  76. Laville, J., Blumer, C., Von Schroetter, C., Gaia, V., Défago, G., Keel, C., & Haas, D. (1998). Characterization of the hcn ABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Journal of Bacteriology, 180, 3187–3196.Google Scholar
  77. Loper, J. E., & Gross, H. (2007). Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. European Journal of Plant Pathology, 119, 265–278.CrossRefGoogle Scholar
  78. Lorck, H. (1948). Production of hydrocyanic acid by bacteria. Physiologia Plantarum, 1, 142–146.CrossRefGoogle Scholar
  79. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.CrossRefGoogle Scholar
  80. Lugtenberg, B. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytology, 39, 461–490.CrossRefGoogle Scholar
  81. Mabood, F., Zhou, X., & Smith, D. L. (2014). Microbial signaling and plant growth promotion. Canadian Journal of Plant Science, 94, 1051–1063.CrossRefGoogle Scholar
  82. Maggio, A., Barbieri, G., Raimondi, G., & De Pascale, S. (2010). Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. Journal of Plant Growth Regulation, 29, 63–72.CrossRefGoogle Scholar
  83. Maksimov, I. V., Abizgil’Dina, R. R., & Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Applied Biochemistry and Microbiology, 47(4), 333–345.CrossRefGoogle Scholar
  84. Mansour, F., Aldesuquy, H., & Hamedo, H. (1994). Studies on plant growth regulators and enzymes production by some bacteria. Qatar University Science Journal, 14, 281–288.Google Scholar
  85. Markovich, N. A., & Kononova, G. L. (2003). Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: A review. Applied Biochemistry Microbiology, 39, 341–351.CrossRefGoogle Scholar
  86. Mattoo, A., & Suttle, J. C. (1991). The plant hormone ethylene (pp. 352–361). Boca Raton: CRC Press.Google Scholar
  87. Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572.CrossRefGoogle Scholar
  88. Merchan, F., de Lorenzo, L., González-Rizzo, S., Niebel, A., Megías, M., Frugier, F., Sousa, C., & Crespi, M. (2007). Analysis of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. The Plant Journal, 51, 1–17.CrossRefGoogle Scholar
  89. Minuto, A., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2006). Control of soil borne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protection, 25, 468–475.CrossRefGoogle Scholar
  90. Nadeem, S. M., Zahir, Z. A., Naveed, M., Arshad, M., & Shahzad, S. M. (2006a). Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil & Environment, 25, 78–84.Google Scholar
  91. Nadeem, S. M., Hussain, I., Naveed, M., Asghar, H. N., Zahir, Z. A., & Arshad, M. (2006b). Performance of plant growth promoting rhizobacteria containing ACC-deaminase activity for improving growth of maize under salt-stressed conditions. Pakistan Journal of Agricultural Sciences, 43, 114–121.Google Scholar
  92. Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2007). Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology, 53, 1141–1149.CrossRefGoogle Scholar
  93. Nayani, S., Mayak, S., & Glick, B. R. (1998). Effect of plant growth-promoting rhizobacteria on senescence of flower petals. Indian Journal Experimental Biology, 36, 836–839.Google Scholar
  94. Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy Society and Environment, 15, 327.Google Scholar
  95. Noumavo, P. A., Agbodjato, N. A., Baba-Moussa, F., Adjanohoun, A., & Baba-Moussa, L. (2016). Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. African Journal of Biotechnology, 15, 1452–1463.CrossRefGoogle Scholar
  96. O’sullivan, D. J., & O’Gara, F. (1992). Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiological Reviews, 56, 662–676.Google Scholar
  97. Palumbo, J. D., Yuen, G. Y., Jochum, C. C., Tatum, K., & Kobayashi, D. Y. (2005). Mutagenesis of β-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward bipolaris leaf spot of tall fescue and pythium damping-off of sugar beet. Phytopathology, 95, 701–707.CrossRefGoogle Scholar
  98. Patel, S., Sayyed, R., & Saraf, M. (2016). Bacterial determinants and plant defense induction: Their role as bio-control agent in agriculture. In K. Hakeem (Ed.), Plant soil-microbes (pp. 187–204). Cham: Springer.Google Scholar
  99. Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42, 207–220.CrossRefGoogle Scholar
  100. Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.CrossRefGoogle Scholar
  101. Perneel, M., D'hondt, L., De Maeyer, K., Adiobo, A., Rabaey, K., & Höfte, M. (2008). Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environmental Microbiology, 10, 778–788.CrossRefGoogle Scholar
  102. Pierik, R., Tholen, D., Poorter, H., Visser, E. J., & Voesenek, L. A. (2006). The janus face of ethylene: Growth inhibition and stimulation. Trends in Plant Science, 11, 176–183.CrossRefGoogle Scholar
  103. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytology, 52, 347–375.CrossRefGoogle Scholar
  104. Pospíšilová, J. (2003). Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica, 41, 49–56.CrossRefGoogle Scholar
  105. Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008). Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, 4, 330.CrossRefGoogle Scholar
  106. Qualhato, T. F., Lopes, F. A. C., Steindorff, A. S., Brandao, R. S., Jesuino, R. S. A., & Ulhoa, C. J. (2013). Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: Evaluation of antagonism and hydrolytic enzyme production. Biotechnology Letters, 35(9), 1461–1468.CrossRefGoogle Scholar
  107. Qurashi, A. W., & Sabri, A. N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 43, 1183–1191.CrossRefGoogle Scholar
  108. Radi, A. E., Acero Sánchez, J. L., Baldrich, E., & O’Sullivan, C. K. (2006). Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society, 28, 117–124.CrossRefGoogle Scholar
  109. Raghavendra, M. P., Nayaka, S. C., & Nuthan, B. R. (2016). Role of Rhizosphere microflora in potassium solubilization. In Potassium solubilizing microorganisms for sustainable agriculture (pp. 43–59). New Delhi: Springer.CrossRefGoogle Scholar
  110. Ramos Solano, B., Barriuso Maicas, J., Pereyra De La Iglesia, M. T., Domenech, J., & Gutiérrez Mañero, F. J. (2008). Systemic disease protection elicited by plant growth promoting rhizobacteria strains: Relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology, 98, 451–457.CrossRefGoogle Scholar
  111. Reshma, P., Naik, M. K., Aiyaz, M., Niranjana, S. R., Chennappa, G., Shaikh, S. S., & Sayyed, R. Z. (2018). Induced systemic resistance by 2, 4-diacetylphloroglucinol positive fluorescent pseudomonas strains against rice sheath blight. Indian Journal of Experimental Biology, 56, 207–212.Google Scholar
  112. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., & Pérez-García, A. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20, 430–440.CrossRefGoogle Scholar
  113. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. Plant Cell, 8, 1809.CrossRefGoogle Scholar
  114. Saber, H. F., Torang, A., Mobaleghi, M., Dehpouri, A., & Saber, H. Z. (2013). Study of nitrogen and potash fertilizers on crop yield, soluble and non soluble sugar in stevia plant (Stevia Rebaudiana Bertoni). New Findings In Agriculture, 7(2), 127–135.Google Scholar
  115. Sacherer, P., Défago, G., & Haas, D. (1994). Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiology Letters, 116, 155–160.CrossRefGoogle Scholar
  116. Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medicine Research, 21, 1–30.Google Scholar
  117. Saravanakumar, D., Vijayakumar, C., Kumar, N., & Samiyappan, R. (2007). PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protection, 26, 556–565.CrossRefGoogle Scholar
  118. Sayyed, R. Z., & Chincholkar, S. B. (2006). Purification of siderophores of Alcaligenes feacalis on XAD. Bioresource Technology, 97, 1026–1029.CrossRefGoogle Scholar
  119. Sayyed, R. Z., Patel, D. C., & Patel, P. R. (2007). Plant growth promoting potential of P solubilizing Pseudomonas sp. occurring in acidic soil of Jalgaon. Asian Journal of Microbiology, Biotechnology and Environment Science, 4, 925–928.Google Scholar
  120. Sayyed, R. Z., Naphade, B. S., Joshi, S. A., Gangurde, N. S., Bhamare, H. M., & Chincholkar, S. B. (2009). Consortium of a. Feacalis and P. fluorescens promoted the growth of Arachis hypogea (groundnut). Asian Journal of Microbiology, Biotechnology and Environment Science, 1, 48–51.Google Scholar
  121. Sayyed, R. Z., & Chincholkar, S. B. (2010). Growth and siderophore production in A. faecalis is influenced by metal ions. Indian Journal of Microbiology, 50, 179–182.CrossRefGoogle Scholar
  122. Sayyed, R. Z., & Patel, P. R. (2011). Soil microbes & environmental health. International Journal of Biotechnology & Bioscience, 1, 41–66.Google Scholar
  123. Sayyed, R. Z., Naphade, B. S., & Chincholkar, S. B. (2004). Ecologically competent rhizobacteria for plant growth promotion and disease management. In M. K. Rai, N. J. Chikhale, P. V. Thakare, P. A. Wadegaonkar, & A. P. Ramteke (Eds.), Recent trends in biotechnology (pp. 1–16). Jodhpur: Scientific Publisher.Google Scholar
  124. Sayyed, R. Z., Chincholkar, S. B., Meyer, J. M., & Kale, S. P. (2011). Chemical characterization, crossfeeding and uptake studies on hydroxamate siderophore of Alcaligenes faecalis. Indian Journal of Microbiology, 51, 176–181.CrossRefGoogle Scholar
  125. Sayyed, R. Z., Reddy, M. S., Deshmukh, A. M., Pate, A. S., & Gangurde, N. S. (2012). Potential of plant growth promoting rhizobacteria for sustainable agriculture bacteria. In D. K. Maheshwari (Ed.), Agrobiology: Plant probiotics (pp. 287–314). Berlin: Springer.CrossRefGoogle Scholar
  126. Sayyed, R. Z., Chincholkar, S. B., Reddy, M. S., Gangurde, N. S., & Patel, P. R. (2013). Siderophore producing PGPR for crop nutrition and phytopathogen suppression bacteria. In D. K. Maheshwari (Ed.), Agrobiology: Disease management (pp. 449–471). Dordrecht: Springer.CrossRefGoogle Scholar
  127. Sayyed, R. Z., Patel, P. R., & Shaikh, S. S. (2015). Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil. Indian Journal of Experimental Biology, 53, 116–123.Google Scholar
  128. Shaikh, S. S., & Sayyed, R. Z. (2015). Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In N. K. Arora (Ed.), Plant microbes symbiosis: Applied facets (pp. 337–351). New Delhi: Springer.Google Scholar
  129. Shaikh, S. S., Patel, P. R., Patel, S. S., Nikam, S. D., Rane, T. U., & Sayyed, R. Z. (2014). Production of biocontrol traits by banana field fluorescent Pseudomonads and comparison with chemical fungicide. Indian Journal of Experimental Biology, 52, 917–920.Google Scholar
  130. Shaikh, S. S., Reddy, M. S., & Sayyed, R. Z. (2016). Plant growth promoting rhizobacteria: An eco-friendly approach for sustainable agroecosystem. In K. Hakeem (Ed.), Plant soil-microbes (pp. 182–201). Cham: Springer.Google Scholar
  131. Shaikh, S. S., & Saraf, M. S. (2017). Optimization of growth conditions for zinc solubilizing plant growth associated Bacteria and Fungi. Journal of Advanced Research in Biotechnology, 2(1), 9.CrossRefGoogle Scholar
  132. Sharma, A., Shankhdhar, D., & Shankhdhar, S. C. (2013). Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environment, 59(2), 89–94.CrossRefGoogle Scholar
  133. Shobha, G., & Kumudini, B. S. (2012). Antagonistic effect of the newly isolated PGPR Bacillus spp. on Fusarium oxysporum. International Journal of Applied Science and Engineering Research, 1, 463–474.CrossRefGoogle Scholar
  134. Shuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A., & Langebartels, C. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant, Cell & Environment, 29, 909–918.CrossRefGoogle Scholar
  135. Siddikee, M. A., Chauhan, P. S., & Sa, T. (2012). Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. Journal of Plant Growth Regulation, 31, 265–272.CrossRefGoogle Scholar
  136. Singh, B. B., Mai-Kodomi, Y., & Terao, T. (1999). A simple screening method for drought tolerance in cowpea. The Indian Journal of Genetics and Plant and Breeding, 59, 211–220.Google Scholar
  137. Soltani, A., Khodarahmpour, Z., Jafari, A. A., & Nakhjavan, S. (2012). Selection of alfalfa (Medicago sativa L.) cultivars for salt stress tolerance using germination indices. African Journal of Biotechnology, 11, 7899–7905.Google Scholar
  138. Tank, N., & Saraf, M. (2010). Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. Journal of Plant Interactions, 5, 51–58.CrossRefGoogle Scholar
  139. Ten Hoopen, G. M., & Krauss, U. (2006). Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: A review. Crop Protection, 25, 89–107.CrossRefGoogle Scholar
  140. Tewari, S., & Arora, N. K. (2018). Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environmental Sustainability, 1(1), 49–59.CrossRefGoogle Scholar
  141. Upadhyaya, C. P., Akula, N., Kim, H. S., Jeon, J. H., Ho, O. M., Chun, S. C., Kim, D. H., & Park, S. W. (2011). Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing d-galacturonic acid reductase gene in response to various abiotic stresses. Molecular Breeding, 28, 105–115.CrossRefGoogle Scholar
  142. Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.CrossRefGoogle Scholar
  143. Vettakkorumakankav, N. N., Falk, D., Saxena, P., & Fletcher, R. A. (1999). A crucial role for gibberellins in stress protection of plants. Plant & Cell Physiology, 40, 542–548.CrossRefGoogle Scholar
  144. Vinay, J. U., Naik, M. K., Rangeshwaran, R., Chennappa, G., Sohel, S. S., & Sayyed, R. Z. (2016). Detection of antimicrobial traits in fluorescent pseudomonads and molecular characterization of an antibiotic pyoluteorin. 3 Biotech, 6, 1–11.CrossRefGoogle Scholar
  145. Voisard, C., Keel, C., Haas, D., & Dèfago, G. (1989). Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. The EMBO Journal, 8, 351–358.CrossRefGoogle Scholar
  146. Walsh, U. F., Morrissey, J. P., & O'Gara, F. (2001). Pseudomonas for biocontrol of phytopathogens: From functional genomics to commercial exploitation. Current Opinion in Biotechnology, 12, 289–295.CrossRefGoogle Scholar
  147. Weller, D. M. (2007). Pseudomonas biocontrol agents of soil borne pathogens: Looking back over 30 years. Phytopathology, 97, 250–256.CrossRefGoogle Scholar
  148. Weller, D. M., & Thomashow, L. S. (1993). Use of rhizobacteria for biocontrol. Current Opinion in Biotechnology, 4, 306–311.CrossRefGoogle Scholar
  149. Whipps, J. M. (1990). Carbon utilization. In J. M. Lynch (Ed.), The rhizosphere (pp. 59–97). Chichester: Wiley Interscience.Google Scholar
  150. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.CrossRefGoogle Scholar
  151. Yamaguchi, S. (2008). Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 59, 225–251.CrossRefGoogle Scholar
  152. Yaxley, J. R., Ross, J. J., Sherriff, L. J., & Reid, J. B. (2001). Gibberellin biosynthesis mutations and root development in pea. Plant Physiology, 125, 627–633.CrossRefGoogle Scholar
  153. Yue, H., Mo, W., Li, C., Zheng, Y., & Li, H. (2007). The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant and Soil, 297, 139–145.CrossRefGoogle Scholar
  154. Zahedi, H. (2016). Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In Potassium solubilizing microorganisms for sustainable agriculture (pp. 31–42). New Delhi: Springer.CrossRefGoogle Scholar
  155. Zahir, Z. A., Munir, A., Asghar, H. N., Shaharoona, B., & Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18, 958–963.Google Scholar
  156. Zahir, Z. A., Ghani, U., Naveed, M., Nadeem, S. M., & Asghar, H. N. (2009). Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives of Microbiology, 191, 415–424.CrossRefGoogle Scholar
  157. Zahir, Z. A., Shah, M. K., Naveed, M., & Akhter, M. J. (2010). Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. Journal of Microbiology and Biotechnology, 20, 1288–1294.CrossRefGoogle Scholar
  158. Zapata, P. J., Serrano, M., Pretel, M. T., Amoros, A., & Botella, M. A. (2004). Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science, 167, 781–788.CrossRefGoogle Scholar
  159. Zehnder, G. W., Murphy, J. F., Sikora, E. J., & Kloepper, J. W. (2001). Application of rhizobacteria for induced resistance. European Journal of Plant Pathology, 107, 39–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. Z. Sayyed
    • 1
  • N. Ilyas
    • 2
  • B. Tabassum
    • 3
  • A. Hashem
    • 4
  • E. F. Abd_Allah
    • 5
  • H. P. Jadhav
    • 1
  1. 1.Department of MicrobiologyPSGVP Mandal’s Arts, Science & Commerce CollegeShahadaIndia
  2. 2.Botany DepartmentPMAS University of Arid AgricultureRawalpindiPakistan
  3. 3.Department of ZoologyGovernment Raza PG CollegeRampurIndia
  4. 4.Faculty of Science, Department of Botany and MicrobiologyKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of Plant ProductionCollege of Food and Agriculture Sciences, King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations