Advertisement

Plant Growth-Promoting Rhizobacteria: Diversity and Applications

  • Maya Verma
  • Jitendra Mishra
  • Naveen Kumar Arora
Chapter

Abstract

The rhizosphere is the region around plant roots where maximum microbial activities occur. In the rhizosphere both beneficial and harmful activities of microorganisms affect plant growth and development. The mutualistic rhizospheric bacteria which improve the plant growth and health are known as plant growth-promoting rhizobacteria (PGPR). They are of much importance due to their ability to help the plant in diverse manners. PGPR such as Pseudomonas, Bacillus, Azospirillum, Azotobacter, Arthrobacter, Achromobacter, Micrococcus, Enterobacter, Rhizobium, Agrobacterium, Pantoea, and Serratia are now very well known. Application of PGPR as bioinoculants/bioformulations is found to be very effective in enhancing crop productivity in a sustainable way. The use of PGPR in agriculture is also ecologically important as the synthetic chemicals used in agriculture are a severe threat to agroecosystems.

Keywords

Rhizosphere PGPR Bioinoculants Agriculture Agroecosystem 

References

  1. Abd-Alla, M. H., Elenany, A. E., Ramadan, T., Zohri, E. M., & Nafady, I. M. (2017). Nodulation and nitrogen fixation of some wild legumes from differing habitats in Egypt. European Journal of Biological Research, 7(1), 9–21.Google Scholar
  2. Abdel Ghany, T. M., Alawlaqi, M. M., & Al Abboud, M. A. (2013). Role of biofertilizers in agriculture: A brief review. Mycopathology, 11(2), 95–101.Google Scholar
  3. Abeles, F. B., Morgan, P. W., & Saltveit, M. E. J. (1992). Ethylene in plant biology (pp. 26–55). San Diego: Academic.CrossRefGoogle Scholar
  4. Abou-Shanab, R. A. I., Angle, J. S., & Chaney, R. L. (2006). Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry, 38, 2882–2889.CrossRefGoogle Scholar
  5. Adesemoye, A. O., Obini, M., & Ugoji, E. O. (2008). Comparison of plant growth promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian Journal of Microbiology, 39, 423–442.CrossRefGoogle Scholar
  6. Aeron, A., Pandey, P., Kumar, S., & Maheshwari, D. K. (2011). Emerging role of plant growth promoting rhizobacteria. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystem (pp. 1–26). Berlin/Heidelberg: Springer.Google Scholar
  7. AgriInfo.in. (2015). Role of biofertilizers in soil fertility and agriculture. http://agriinfo.in/?page=topic&superid=5&topicid=176
  8. Ahemad, M., & Khan, M. S. (2012). Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiologiae Plantarum, 34, 245–254.CrossRefGoogle Scholar
  9. Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University, 26(1), 1–20.CrossRefGoogle Scholar
  10. Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163, 173–181.CrossRefGoogle Scholar
  11. Ahmad, M., Zahir, Z. A., Khalid, M., Nazli, F., & Arshad, M. (2013). Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of Mung bean under salt-affected conditions on farmer’s fields. Plant Physiology and Biochemistry, 63, 170–176.CrossRefGoogle Scholar
  12. Ali, S. S., & Vidhale, N. N. (2013). Bacterial siderophore and their application: A review. International Journal of Current Microbiology and Applied Sciences, 2, 303–312.Google Scholar
  13. Ali, S. Z., Sandhya, V., Grover, M., Linga, V. R., & Bandi, V. (2011). Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions, 6(4), 239–246.CrossRefGoogle Scholar
  14. Amora-Lazcano, E., Guerrero-Zúñiga, L. A., Rodriguez-Tovar, A., Rodriguez-Dorantes, A., & Vasquez-Murrieta, M. S. (2010). Rhizospheric plant-microbe interactions that enhance the remediation of contaminated soils. In A. Méndez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (pp. 251–256). Badajoz: FORMATEX.Google Scholar
  15. Anandham, R., Janahiraman, V., Gandhi, P. I., Kwon, S. W., Chung, K. Y., Han, G. H., Choi, J. H., & Sa, T. M. (2014). Early plant growth promotion of maize by various sulfur oxidizing bacteria that uses different thiosulfate oxidation pathway. African Journal of Microbiology Research, 8(1), 19–27.CrossRefGoogle Scholar
  16. Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s earth system models. Endeavour, 40, 178–187.CrossRefGoogle Scholar
  17. Antoun, H., & Kloepper, J. W. (2001). Plant growth promoting rhizobacteria. In S. Brenner & J. F. Miller (Eds.), Encyclopedia of genetics (pp. 1477–1480). New York: Academic.CrossRefGoogle Scholar
  18. Arora, N. K. (Ed.). (2013). Plant microbe symbiosis: Fundamental and advances (Vol. 459). New Delhi: Springer.Google Scholar
  19. Arora, N. K. (Ed.). (2015). Plant microbe symbiosis: Applied facets (p. 381). New Delhi: Springer.Google Scholar
  20. Arora, N. K., & Mishra, J. (2016). Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Applied Soil Ecology, 107, 405–407.CrossRefGoogle Scholar
  21. Arora, N. K., & Verma, M. (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech, 7, 381.CrossRefGoogle Scholar
  22. Arora, N. K., Kang, S. C., & Maheshwari, D. K. (2001). Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81, 673–677.Google Scholar
  23. Arora, N. K., Kim, M. J., Kang, S. C., & Maheshwari, D. K. (2007). Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Canadian Journal of Microbiology, 53, 207–212.CrossRefGoogle Scholar
  24. Arora, N. K., Khare, E., Verma, A., & Sahu, R. K. (2008). In vivo control of Macrophomina phaseolina by a chitinase and β-1,3-glucanase-producing pseudomonad NDN1. Symbiosis, 46, 129–135.Google Scholar
  25. Arora, N. K., Tewari, S., Singh, S., & Lal, N. (2012). PGPR for protection of plant health under saline conditions. In D. K. Maheshwari (Ed.), Bacteria in agrobiology (pp. 239–258). Dordrecht: Springer.CrossRefGoogle Scholar
  26. Arora, N. K., Tewari, S., & Singh, R. (2013). Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In N. K. Arora (Ed.), Plant microbe symbiosis: Fundamentals and advances (pp. 411–449). New Delhi: Springer.CrossRefGoogle Scholar
  27. Arora, N. K., Mehnaz, S., & Balestrini, R. (Eds.). (2016a). Bioformulations: For sustainable agriculture (p. 299). Lucknow: Springer.Google Scholar
  28. Arora, N. K., Verma, M., Prakash, J., & Mishra, J. (2016b). Regulation of biopesticides: Global concerns and policies. In N. K. Arora, S. Mehnaz, & R. Balestrini (Eds.), Bioformulations: For sustainable agriculture (pp. 283–299). New Delhi: Springer.Google Scholar
  29. Arora, N. K., Verma, M., & Mishra, J. (2017). Rhizobial bioformulation: Past, present and future. In S. Mehnaz (Ed.), Rhizotrophs: Plant growth promotion to bioremediation (pp. 69–99). Singapore: Springer.CrossRefGoogle Scholar
  30. Arzanesh, M. H., Alikhani, H. A., Khavazi, K., Rahimian, H. A., & Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27, 197–205.CrossRefGoogle Scholar
  31. Asaf, S., Khan, M. A., Khan, A. L., Waqas, M., Shahzad, R., Kim, A. Y., Kang, S. M., & Lee, I. J. (2017). Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: An example of Sphingomonas sp. and Serratia marcescens. Journal of Plant Interactions, 12, 31–38.CrossRefGoogle Scholar
  32. Asari, S. Y. (2015). Studies on plant-microbe interaction to improve stress tolerance in plants for sustainable agriculture. Diss. (sammanfattning/summary) Uppsala: Sveriges lantbruksuniv, Acta Universitatis agriculturae Sueciae, 76, 1652–6880.Google Scholar
  33. Asghar, H. N., Zahir, Z. A., Arshad, M., & Khaliq, A. (2004). Relationship between in-vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils, 35, 231–237.Google Scholar
  34. Awad, N. M., Abd El-Kader, M. A., Alva, A. K., & Narale, S. H. (2011). Effects of nitrogen fertilization and soil inoculation of sulfur oxidizing or nitrogen-fixing bacteria on onion plant growth and yield. International Journal of Agronomy, 2011, 1–6.CrossRefGoogle Scholar
  35. Aznar, A., & Dellagi, A. (2015). New insights into the role of siderophores as triggers of plant immunity: What can we learn from animals? Journal of Experimental Botany, 66(11), 3001–3010.CrossRefGoogle Scholar
  36. Bagyalakshmi, T. A., Ramesh, V., Arivudainambi, U. S. E., & Rajendran, A. (2012). A novel endophytic fungus Pestalotiopsis sp. inhibiting Pinus canariensis with antibacterial and antifungal potential. International Journal of Advanced Life Sciences, 1, 1–7.CrossRefGoogle Scholar
  37. Bahadur, I., Maurya, B. R., Kumar, A., Meena, V. S., & Raghuwanshi, R. (2016). Towards the soil sustainability and potassium-solubilizing microorganisms. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 255–266). New Delhi: Springer.CrossRefGoogle Scholar
  38. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.CrossRefGoogle Scholar
  39. Bakker, P. A. H. M., Doornbos, R. F., Zamioudis, C., Berendsen, R. L., & Pieterse, C. M. J. (2013). Induced systemic resistance and the rhizosphere microbiome. Plant Pathology Journal, 29, 136–143.CrossRefGoogle Scholar
  40. Bakshi, A., Shemansky, J. M., Chang, C., & Binder, B. M. (2015). History of research on the plant hormone ethylene. Journal of Plant Growth Regulation, 34, 809–827.CrossRefGoogle Scholar
  41. Ballhorn, D. J., Elias, J. D., Balkan, M. A., Fordyce, R. F., & Kennedy, P. G. (2017). Colonization by nitrogen-fixing Frankia bacteria causes short-term increases in herbivore susceptibility in red alder (Alnus rubra) seedlings. Oecologia, 184(2), 497–506.CrossRefGoogle Scholar
  42. Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances, 16(4), 729–770.CrossRefGoogle Scholar
  43. Batjes, N. H. A. (1997). World data set of derived soil properties by FAO UNESCO soil unit for global modeling. Soil Use and Management, 13, 9–16.CrossRefGoogle Scholar
  44. Batool, N., Ilyas, N., & Shahzad, A. (2014). Role of plant growth promoting rhizobacteria as ameliorating agent in saline soil. Pure and Applied Biology, 3(4), 167.CrossRefGoogle Scholar
  45. BCC Research. (2010). Biopesticides: The global market. Available at: http://www.bccresearch.com/market-research/chemicals/biopesticides-marketchm029c.html
  46. BCC Research. (2014). Global market for biopesticides. Wellesley: Market Research Reports. Available at: https://www.bccresearch.com/market-research/chemicals/biopesticides-market-chm029c.html
  47. Begon, M., Harper, J. L., & Townsend, C. R. (1990). Ecology: Individuals, populations and communities (2nd ed.p. 945). Boston: Blackwell Scientific Publications.Google Scholar
  48. Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044–1051.CrossRefGoogle Scholar
  49. Bergman, B., Rai, A. N., Rasmussen, U., Elmerich, C., & Newton, W. E. (2007). Cyanobacterial associations, associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations (pp. 257–301). Dordrecht: Springer.CrossRefGoogle Scholar
  50. Berrada, H., & Fikri-Benbrahim, K. (2014). Taxonomy of the rhizobia: Current perspectives. British Microbiology Research Journal, 4, 616–639.CrossRefGoogle Scholar
  51. Bhalerao, T. S. (2012). Bioremediation of endosulfan-contaminated soil by using bioaugmentation treatment of fungal inoculant Aspergillus niger. Turkish Journal of Biology, 36(5), 561–567.Google Scholar
  52. Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 66.CrossRefGoogle Scholar
  53. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.CrossRefGoogle Scholar
  54. Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7–21.CrossRefGoogle Scholar
  55. Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassan, F., & Luna, V. (2007). Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology, 74(4), 874–880.CrossRefGoogle Scholar
  56. Boiteau, R. M., Mende, D. R., Hawco, N. J., McIlvin, M. R., Fitzsimmons, J. N., Saito, M. A., Sedwick, P. N., DeLong, E. F., & Repeta, D. J. (2016). Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proceedings of the National Academy of Science, 113(50), 14237–14242.CrossRefGoogle Scholar
  57. Bömke, C., & Tudzynski, B. (2009). Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry, 70(15), 1876–1893.CrossRefGoogle Scholar
  58. Bottini, R., Cassán, F., & Piccoli, P. (2004). Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 65, 497–503.CrossRefGoogle Scholar
  59. Boukerma, L., Benchabane, M., Charif, A., & Khélifi, L. (2017). Activity of plant growth promoting rhizobacteria (PGPRs) in the biocontrol of tomato Fusarium wilt. Plant Protection Science, 53, 78–84.CrossRefGoogle Scholar
  60. Bradford, M. A., Davies, C. A., Frey, S. D., Maddox, T. R., Melillo, J. M., Mohan, J. E., Reynolds, J. F., Treseder, K. K., & Wallenstein, M. D. (2008). Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11, 1316–1327.CrossRefGoogle Scholar
  61. Bravo, A., Likitvivatanavong, S., Gill, S., & Soberon, M. (2011). Bacillus thuringiensis: A story of a successful bio-insecticide. Insect Biochemistry and Molecular Biology, 41, 423–431.CrossRefGoogle Scholar
  62. Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237–245.CrossRefGoogle Scholar
  63. Campbell, R. (1985). Plant microbiology (p. 191). Baltimore: Edward Amold.Google Scholar
  64. Cassán, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., & Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45, 28–35.CrossRefGoogle Scholar
  65. Cassán, F., Vanderleyden, J., & Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33, 440–459.CrossRefGoogle Scholar
  66. Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus based biological control of plant diseases. In M. Stoytcheva (Ed.), Pesticides in the modern world-pesticides use and management (pp. 273–302). Rijeka: InTech.Google Scholar
  67. Chakraborty, U., Chakraborty, B. N., Chakraborty, A. P., & Dey, P. L. (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29(5), 789–803.CrossRefGoogle Scholar
  68. Choudhary, D. K., & Johri, B. N. (2008). Interactions of Bacillus spp. and plants -with special reference to induced systemic resistance (ISR). Microbiological Research, 164, 493–513.CrossRefGoogle Scholar
  69. Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H., & Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37, 1970–1974.CrossRefGoogle Scholar
  70. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.CrossRefGoogle Scholar
  71. Corbineau, F., Xia, Q., Bailly, C., & El-Maarouf-Bouteau, H. (2014). Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science, 5, 539.CrossRefGoogle Scholar
  72. Coutinho, F. P., Felix, W. P., & Yano-Melo, A. M. (2012). Solubilization of phosphates in vitro by Aspergillus spp. and Penicillium spp. Ecological Engineering, 42, 85–89.CrossRefGoogle Scholar
  73. Coutinho, B. G., Licastro, D., Mendonça-Previato, L., Cámara, M., & Venturi, V. (2015). Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Molecular Plant-Microbe Interactions, 28, 10–21.CrossRefGoogle Scholar
  74. CPL Business Consultants. (2010). The 2010 worldwide biopesticides market summary (Vol. 1). Wallingford: CAB International Centre.Google Scholar
  75. Crannell, W. K., Tanaka, Y., & Myrold, D. D. (1994). Calcium and pH interaction on root nodulation of nursery-grown red alder (Alnus rubra Bong.) seedlings by Frankia. Soil Biology and Biochemistry, 26, 607–614.CrossRefGoogle Scholar
  76. Da Mota, F. F., Gomes, E. A., & Seldin, L. (2008). Auxin production and detection of the gene coding for the auxin efflux carrier (AEC) protein in Paenibacillus polymyxa. The Journal of Microbiology, 56, 275–264.Google Scholar
  77. Dardanelli, M. S., Carletti, S. M., Paulucci, N. S., Medeot, D. B., Rodriguez Caceres, E. A., Vita, F. A., Bueno, M., Fumero, M. V., & Garcia, M. B. (2010). Benefits of plant growth-promoting rhizobacteria and rhizobia in agriculture. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria, Microbiology monographs (Vol. 18, pp. 1–20). Berlin: Springer.CrossRefGoogle Scholar
  78. Dary, M., Perez, M. A. C., Palomares, A. J., & Pajuelo, E. (2010). In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177, 323–330.CrossRefGoogle Scholar
  79. de Bruijn, I., de Kock, M. J. D., Yang, M., de Waard, P., van Beek, T. A., & Raaijmakers, J. M. (2007). Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Molecular Microbiology, 63, 417–428.CrossRefGoogle Scholar
  80. De Souza, J. T. A., Arnould, C., Deulvot, C., Lemanceau, P., Gianinazzi-Pearson, V., & Raaijmakers, J. M. (2003). Effect of 2,4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology, 93, 966–975.CrossRefGoogle Scholar
  81. De Souza, R., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419.CrossRefGoogle Scholar
  82. Delvasto, P., Ballester, A., Muñoz, J. A., González, F., Blázquez, M. L., Igual, J. M., & Valverde, A. (2009). Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Minerals Engineering, 22(1), 1–9.CrossRefGoogle Scholar
  83. Demissie, S., Muleta, D., & Berecha, G. (2013). Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia fabae L.). International Journal of Agricultural Research, 8, 123–136.CrossRefGoogle Scholar
  84. Dhanya, R. P., & Adeline, C. S. (2014). A study on the biocontrol of phytopathogens of Vigna radiata using Pseudomonas fluorescence in sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 3(10), 114–120.Google Scholar
  85. Diagne, N., Arumugam, K., Ngom, M., Nambiar-Veetil, M., Franche, C., Narayanan, K. K., & Laplaze, L. (2013). Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed Research International, 2013, 948258.CrossRefGoogle Scholar
  86. Dimkpa, C. O., Merten, D., Svatos, A., Büchel, G., & Kothe, E. (2009). Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. Journal of Applied Microbiology, 107, 1687–1696.CrossRefGoogle Scholar
  87. Dixon, R., & Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews. Microbiology, 2, 621–631.CrossRefGoogle Scholar
  88. Dorjey, S., Dolkar, D., & Sharma, R. (2017). Plant growth promoting rhizobacteria Pseudomonas: A review. International Journal of Current Microbiology and Applied Sciences, 6(7), 1335–1344.CrossRefGoogle Scholar
  89. du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14.CrossRefGoogle Scholar
  90. Duc, L., Noll, M., Meier, E., Burgmann, H., & Zeyer, J. (2009). High diversity of diazotrophs in the forefield of a receding alpine glacier. Microbial Ecology, 57, 179–190.CrossRefGoogle Scholar
  91. Dutta, S. (2015). Biopesticides: An ecofriendly approach for pest control. World Journal of Pharmacy and Pharmaceutical Sciences, 4(6), 250–265.Google Scholar
  92. Egamberdieva, D. (2012). Pseudomonas chlororaphis: A salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiologiae Plantarum, 34(2), 751–756.CrossRefGoogle Scholar
  93. Eslamyan, L., Alipour, Z. T., Beidokhty, S. R., & Sobhanipour, A. (2013). Pseudomonas fluorescens and sulfur application affect rapeseed growth and nutrient uptake in calcareous soil. International Journal of Agriculture and Crop Sciences, 5(1), 39–43.Google Scholar
  94. Etesami, H., Alikhani, H. A., & Hosseini, H. M. (2015). Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. Methods X, 2, 72–78.Google Scholar
  95. Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects – A review. Journal of Soil Science and Plant Nutrition, 17(4).CrossRefGoogle Scholar
  96. FAO WHO. (2002). Human vitamin and mineral requirements. Food and agriculture organization of the United Nations, Bangkok, Thailand. ISBN:1014–9228.Google Scholar
  97. Fatima, Z., Saleemi, M., Zia, M., Sultan, T., Aslam, M., & Riaz-ur-Rehman, C. M. F. (2009). Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. African Journal of Biotechnology, 8, 219–225.Google Scholar
  98. Figueiredo, M. V. B., Seldin, L., Araujo, F. F., & Mariano, R. L. R. (2011). Plant growth promoting rhizobacteria: Fundamentals and applications. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 21–42). Berlin/Heidelberg: Springer.Google Scholar
  99. Figueroa-López, A. M., Cordero-Ramírez, J. D., Martínez-Álvarez, J. C., López-Meyer, M., Lizárraga-Sánchez, G. J., Félix-Gastélum, R., Castro-Martínez, C., & Maldonado-Mendoza, I. E. (2016). Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springer Plus, 5(1), 330.CrossRefGoogle Scholar
  100. Franche, C., Bogusz, D., Perotto, S., & Baluska, F. (2011). Signalling and communication in actinorhizal symbiosis, Signalling and communication in plant symbiosis (pp. 73–92). Berlin: Springer.Google Scholar
  101. Franco-Correa, M., Quintanaa, A., Duquea, C., Suarez, C., Rodríguez, M. X., & Barea, J. (2010). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45, 209–217.CrossRefGoogle Scholar
  102. Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359.CrossRefGoogle Scholar
  103. Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156(3), 609–643.CrossRefGoogle Scholar
  104. Gahan, J., & Schmalenberger, A. (2014). The role of bacteria and mycorrhiza in plant sulfur supply. Frontiers in Plant Science, 5, 723.CrossRefGoogle Scholar
  105. Gamalero, E., Lingua, G., Caprì, F. G., Fusconi, A., Berta, G., & Lemanceau, P. (2004). Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiology Ecology, 48, 79–87.CrossRefGoogle Scholar
  106. Gamit, D. A., & Tank, S. K. (2014). Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). International Journal of Pure and Applied Microbiology, 4(1), 20–27.Google Scholar
  107. Ganeshan, G., & Kumar, M. A. (2006). Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions, 1(3), 123–134.CrossRefGoogle Scholar
  108. García-Fraile, P., Menéndez, E., & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering, 2(3), 183–205.CrossRefGoogle Scholar
  109. García-Gutiérrez, L., Zeriouh, H., Romero, D., Cubero, J., Vicente, A., & Pérez-García, A. (2013). The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microbial Biotechnology, 6(3), 264–274.CrossRefGoogle Scholar
  110. Glick, B. R. (2004). Bacterial ACC deaminase and the alleviation of plant stress. Advances in Applied Microbiology, 56, 291–312.CrossRefGoogle Scholar
  111. Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28, 367–374.CrossRefGoogle Scholar
  112. Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica (Cairo), 2012, 963401.Google Scholar
  113. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39.CrossRefGoogle Scholar
  114. Glick, B. R., Karaturovic, D. M., & Newell, P. C. (1995). A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian Journal of Microbiology, 41, 533–536.CrossRefGoogle Scholar
  115. Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63–68.CrossRefGoogle Scholar
  116. Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-containing soil bacteria. European Journal of Plant Pathology, 119, 329–339.CrossRefGoogle Scholar
  117. Gontia-Mishra, I., Sapre, S., Sharma, A., & Tiwari, S. (2016). Amelioration of drought tolerance in wheat by the interaction of plant growth promoting rhizobacteria. Plant Biology, 18(6), 992–1000.CrossRefGoogle Scholar
  118. Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L., & Krishnamurthy, L. (2015). Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech, 5, 355–377.CrossRefGoogle Scholar
  119. Goteti, P. K., Leo, D. A. E., Desai, S., & Ahmed, S. M. H. (2013). Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in Maize (Zea mays L.). International Journal of Microbiology, 2013, 1–7.CrossRefGoogle Scholar
  120. Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, S. H., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140.CrossRefGoogle Scholar
  121. Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry, 37, 395–412.CrossRefGoogle Scholar
  122. Grayson, M. (2013). Agriculture and drought. Nature, 501, S1.CrossRefGoogle Scholar
  123. Grayston, S. J., & Germida, J. J. (1991). Sulfur-oxidizing bacteria as plant growth promoting rhizobacteria for canola. Canadian Journal of Microbiology, 37, 521–529.CrossRefGoogle Scholar
  124. Griffiths, B. S., & Philippot, L. (2012). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37, 112–129.CrossRefGoogle Scholar
  125. Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., & Venkateswarlu, B. (2010). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27, 1231–1240.CrossRefGoogle Scholar
  126. Guo, Q., Dong, W., Li, S., Lu, X., Wang, P., Zhang, X., Wang, Y., & Ma, P. (2013). Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiological Research, 169, 533–540.CrossRefGoogle Scholar
  127. Gupta, S., & Dikshit, A. K. (2010). Biopesticides: An eco-friendly approach for pest control. Journal of Biopesticides, 3(1), 186–188.Google Scholar
  128. Gusain, Y. S., Kamal, R., Mehta, C. M., Singh, U. S., & Sharma, A. K. (2015). Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. Journal of Environmental Biology, 36, 301–307.Google Scholar
  129. Gutierrez-Luna, F. M., Lopez-Bucio, J., Tamirano-Hernandez, J., Valencia-Cantero, E., de la Cruz, H. R., & Ias-Rodriguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51, 75–83.CrossRefGoogle Scholar
  130. Gutiérrez-Mañero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F. R., & Talon, M. (2001). The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111, 206–211.CrossRefGoogle Scholar
  131. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews. Microbiology, 3, 307–319.CrossRefGoogle Scholar
  132. Habib, S. H., Kausar, H., & Saud, H. M. (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Research International, 2016, 6284547.CrossRefGoogle Scholar
  133. Haghighi, B. J., Alizadeh, O., & Firoozabadi, A. H. (2011). The role of plant growth promoting rhizobacteria (PGPR) in sustainable agriculture. Advances in Environmental Biology, 5, 3079–3083.Google Scholar
  134. Haidar, R., Fermaud, M., Calvo-Garrido, C., Roudet, J., & Deschamps, A. (2016). Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathologia Mediterranea, 55, 301–322.Google Scholar
  135. Han, H. S., & Lee, K. D. (2005). Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability, and growth of eggplant. Research Journal of Agriculture and Biological Sciences, 1, 176–180.Google Scholar
  136. Hansda, A., Kumar, V., Anshumali, A., & Usmani, Z. (2014). Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Research in Science and Technology, 6(1), 131–134.Google Scholar
  137. Hansda, A., Kumar, V., & Anshumali. (2017). Cu-resistant Kocuria sp. CRB15: A potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech, 7(2), 132.CrossRefGoogle Scholar
  138. Hassan, T. U., Bano, A., & Naz, I. (2016). Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. International Journal of Phytoremediation, 19(6), 522–529.CrossRefGoogle Scholar
  139. Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25.CrossRefGoogle Scholar
  140. He, L. Y., Zhang, Y. F., Ma, H. Y., Su, L. N., Chen, Z. J., Wang, Q. Y., Qian, M., & Sheng, X. F. (2010). Characterization of copper resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Applied Soil Ecology, 44, 49–55.CrossRefGoogle Scholar
  141. Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1–18.CrossRefGoogle Scholar
  142. Hill, D. S., Stein, J. I., Torkewitz, N. R., Morse, A. M., Howell, C. R., Pachlatko, J. P., Becker, J. O., & Ligon, J. M. (1994). Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Applied and Environmental Microbiology, 60(1), 78–85.Google Scholar
  143. Hiltner, L. (1904). Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arb Dtsch Landwirtsch Ges, 98, 59–78.Google Scholar
  144. Hoflich, G., & Kuhn, G. (1996). Forderung das Wachstums und der Nährstoffaufnahme bei kurziferen Ö l- und Zwischenfruhten durch inokulierte Rhizospherenmikroorganismen. Zeischrift für Pflanzenernährung und Bodenkunde, 159, 575–578.CrossRefGoogle Scholar
  145. Hofte, M., Boelens, J., & Verstraete, W. (1992). Survival and root colonization of mutants of plant growth promoting pseudomonads affected in siderophore biosynthesis or regulation of siderophore production. Journal of Plant Nutrition, 15, 2253–2262.CrossRefGoogle Scholar
  146. Hrynkiewicz, K., & Baum, C. (2011). The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In A. Malik & E. Grohmann (Eds.), Environmental protection strategies for sustainable development (pp. 35–64). Berlin: Springer.Google Scholar
  147. Huang, X. D., El-Alawi, Y., Gurska, J., Glick, B. R., & Greenberg, B. M. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 8, 139–147.CrossRefGoogle Scholar
  148. Hussain, A., & Hasnain, S. (2009). Cytokinin production by some bacteria: Its impact on cell division in cucumber cotyledons. African Journal of Microbiology Research, 3, 704–712.Google Scholar
  149. Hussain, A., Arshad, M., Zahir, Z. A., & Asghar, M. (2015). Prospectus of zinc solubilizing bacteria for improving growth and physiology of maize. Pakistan Journal of Agricultural Sciences, 52(4), 915–922.Google Scholar
  150. Ilangumaran, G., & Smith, D. L. (2017). Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Frontiers in Plant Science, 8, 1768.CrossRefGoogle Scholar
  151. Iqbal, U., Jamil, N., Ali, I., & Hasnain, S. (2010). Effect of zinc-phosphate-solubilizing bacterial isolates on growth of Vigna radiata. Annales de Microbiologie, 60, 243–248.CrossRefGoogle Scholar
  152. Islam, M., Sultana, T., Joe, M. M., Yim, W., Cho, J. C., & Sa, T. (2013). Nitrogen-fixing bacteria with multiple plant growth promoting activities enhances growth of tomato and red pepper. Journal of Basic Microbiology, 53(12), 1004–1015.CrossRefGoogle Scholar
  153. Islam, S., Akanda, A. M., Prova, A., Islam, M. T., & Hossain, M. M. (2015). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6, 1360.Google Scholar
  154. Jadhav, H. P., & Sayyed, R. J. (2016). Hydrolytic enzymes of rhizospheric microbes in crop protection. MedCrave Online Journal of Cell Science & Report, 3(5), 00070.Google Scholar
  155. Jha, Y., Subramanian, R. B., & Patel, S. (2011). Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiologiae Plantarum, 33, 797–802.CrossRefGoogle Scholar
  156. Kageyama, K., & Nelson, E. B. (2003). Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Applied and Environmental Microbiology, 69(2), 1114–1120.CrossRefGoogle Scholar
  157. Kang, S. M., Khan, A. L., You, Y. H., Kim, J. G., Kamran, M., & Lee, I. J. (2014). Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. Journal of Microbiology and Biotechnology, 24, 106–112.CrossRefGoogle Scholar
  158. Karnwal, A. (2017). Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L.) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.). Journal of Plant Protection Research, 57(2), 144–151.CrossRefGoogle Scholar
  159. Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Annales de Microbiologie, 66(1), 35–42.CrossRefGoogle Scholar
  160. Keel, C., Voisard, C., Berling, C. H., Kahir, G., & Defago, G. (1989). Iron sufficiency is a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology, 79, 584–589.CrossRefGoogle Scholar
  161. Kejela, T., Thakkar, V. R., & Thakor, P. (2016). Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiology, 16(1), 277.CrossRefGoogle Scholar
  162. Kertesz, M. A., & Mirleau, P. (2004). The role of microbes in plant sulphur supply. Journal of Experimental Botany, 55, 1939–1945.CrossRefGoogle Scholar
  163. Khalid, A., Tahir, S., Arshad, M., & Zahir, Z. A. (2004). Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Australian Journal of Soil Research, 42, 921–926.CrossRefGoogle Scholar
  164. Khalid, S., Akhtar, M. J., Mahmood, M. H., & Arshad, M. (2006). Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology, 75, 231–236.CrossRefGoogle Scholar
  165. Khan, A. G. (2005). Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355–364.CrossRefGoogle Scholar
  166. Khan, N., & Bano, A. (2016). Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 18(3), 211–221.CrossRefGoogle Scholar
  167. Khan, M. H., & Panda, S. K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl salinity stress. Acta Physiologiae Plantarum, 30, 89–91.Google Scholar
  168. Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate solubilizing microorganisms in sustainable agriculture – A review. Agronomy for Sustainable Development, 27, 29–43.CrossRefGoogle Scholar
  169. Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S., & Rasheed, M. (2009). Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. Journal of Agricultural and Biological Science, 1(1), 48–58.Google Scholar
  170. Khare, E., & Arora, N. K. (2010). Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Current Microbiology, 61, 64–68.CrossRefGoogle Scholar
  171. Khare, E., & Arora, N. K. (2011). Physiochemical and structural characterization of biosurfactant from fluorescent Pseudomonas with biocontrol activity against Macrophomina phaseolina. Proceedings of the 2nd Asian PGPR conference (pp. 104–109), China.Google Scholar
  172. Khare, E., Kumar, S., & Kim, K. (2018). Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusarium oxysporum and chickpea wilt. Environmental Sustainability, 1(1), 39–47.CrossRefGoogle Scholar
  173. Khatibi, R. (2011). Using sulfur oxidizing bacteria and P solubilizing for enhancing phosphorous availability to Raphanus sativus. African Journal of Plant Science, 5(8), 430–435.Google Scholar
  174. Kishore, G. K., Pande, S., & Podile, A. R. (2005). Biological control of collar rot disease with broad spectrum antifungal bacteria associated with groundnut. Canadian Journal of Microbiology, 51, 122–132.CrossRefGoogle Scholar
  175. Kloepper, J. W., & Schroth, M. N. (1978). Plant growth promoting rhizobacteria on radish. In Station de pathologie végétale et phyto-bacteriologie (Ed.), Proceedings of the 4th conference plant pathogenic bacteria (pp. 879–882). Angers: INRA.Google Scholar
  176. Kong, Z., & Glick, B. R. (2017). The role of bacteria in phytoremediation. Applied Bioengineering, 327–353.Google Scholar
  177. Kong, J., Dong, Y., Xu, L., Liu, S., & Bai, X. (2014). Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Botanical Studies, 55, 9.CrossRefGoogle Scholar
  178. Korir, H., Mungai, N. W., Thuita, M., Hamba, Y., & Masso, C. (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science, 8, 141.CrossRefGoogle Scholar
  179. Kotasthane, A. S., Agrawal, T., Zaidi, N. W., & Singh, U. S. (2017). Identification of siderophore producing and cynogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential bio-control agent for collar rot of chickpea. 3 Biotech, 7, 137.CrossRefGoogle Scholar
  180. Krapp, A., Berthomé, R., Orsel, M., Mercey-Boutet, S., Yu, A., Castaings, L., Elftieh, S., Major, H., Renou, J. P., & Daniel-Vedele, F. (2011). Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiology, 157, 1255–1282.CrossRefGoogle Scholar
  181. Kravchenko, L. V., Azarova, T. S., Makarova, N. M., & Tikhonovich, I. A. (2004). The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology, 73(2), 156–158.CrossRefGoogle Scholar
  182. Kucera, B., Cohn, M. A., & Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15, 281–307.CrossRefGoogle Scholar
  183. Kudoyarova, G. R., Arkhipova, T. N., & Melent’ev, A. I. (2015). Role of bacterial phytohormones in plant growth regulation and their development. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 69–86). Cham: Springer.CrossRefGoogle Scholar
  184. Kumar, S., & Singh, A. (2015). Biopesticides: Present status and the future prospects. J Fertil Pestic, 6(2), 100–129.Google Scholar
  185. Kumar, A., Prakash, A., & Johri, B. N. (2011). Bacillus as PGPR in Crop Ecosystem. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystems (pp. 37–59). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  186. Kumari, M. E. R., Gopal, A. V., & Lakshmipathy, R. (2018). Effect of stress tolerant plant growth promoting rhizobacteria on growth of blackgram under stress condition. International Journal of Current Microbiology and Applied Sciences, 7(1), 1479–1487.CrossRefGoogle Scholar
  187. Kundan, R., Pant, G., Jadon, N., & Agrawal, P. K. (2015). Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Fertilizers & Pesticides, 6, 155.CrossRefGoogle Scholar
  188. Ladau, J., Shi, Y., Jing, X., He, J. S., Chen, L., Lin, X., Fierer, N., Gilbert, J. A., Pollard, K. S., & Chu, H. (2017). Climate change will lead to pronounced shifts in the diversity of soil microbial communities. bioRxiv, 180174.Google Scholar
  189. Laranjo, M., Alexandre, A., & Oliveira, S. (2014). Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiological Research, 169(1), 2–17.CrossRefGoogle Scholar
  190. Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90, 575–587.CrossRefGoogle Scholar
  191. Lata, S. A. K., & Tilak, K. V. B. R. (2002). Biofertilizers to augment soil fertility and crop production. In K. R. Krishna (Ed.), Soil fertility and crop production (pp. 279–312). Madison: Science Publishers.Google Scholar
  192. Leigh, G. J. (2002). Nitrogen fixation at the millennium (p. 470). Amsterdam: Elsevier Science.Google Scholar
  193. Li, F. C., Li, S., Yang, Y. Z., & Cheng, L. J. (2006). Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrologica et Mineralogica, 25, 440–448.Google Scholar
  194. Li, Y., Liu, X., Hao, T., & Chen, S. (2017). Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. International Journal of Molecular Sciences, 18(7), 1253.CrossRefGoogle Scholar
  195. Liu, P., Luoa, L., & Long, C. (2013). Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biological Control, 67, 157–162.CrossRefGoogle Scholar
  196. Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C. M. J., & Schenk, P. M. (2017). Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 8, 1–17.Google Scholar
  197. Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697.CrossRefGoogle Scholar
  198. Loganathan, M., Garg, R., Venkataravanappa, V., Saha, S., & Rai, A. B. (2014). Plant growth promoting rhizobacteria (PGPR) induces resistance against Fusarium wilt and improves lycopene content and texture in tomato. African Journal of Microbiology Research, 8(11), 1105–1111.CrossRefGoogle Scholar
  199. Long, X. X., Yang, X. E., & Ni, W. Z. (2002). Current status, and prospective on phytoremediation of heavy metal polluted soils. Journal of Applied Ecology, 13, 757–762.Google Scholar
  200. Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29, 315–330.CrossRefGoogle Scholar
  201. Loper, J. E., & Buyer, J. S. (1991). Siderophores in microbial interactions of plant surfaces. Molecular Plant-Microbe Interactions, 4, 5–13.CrossRefGoogle Scholar
  202. Lucas, J. A., Ramos-Solano, B., Montes, F., Ojeda, J., Megias, M., & Gutierrez Mañero, F. J. (2009). Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa L.) in Southern Spain. Field Crops Research, 114, 404–410.CrossRefGoogle Scholar
  203. Lucas-Garcia, J., Probanza, A., Ramos, B., Barriuso, J., & Gutierrez-Mañero, F. (2004). Effects of inoculation with plant growth rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant and Soil, 267, 143–153.CrossRefGoogle Scholar
  204. Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek, 86, 1–25.CrossRefGoogle Scholar
  205. Lugtenberg, B. J. J. (2015). Introduction to plant-microbe interactions. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 1–2). Cham: Springer.Google Scholar
  206. Lugtenberg, B. J. J., & Dekkers, L. C. (1999). What makes Pseudomonas bacteria rhizosphere competent? Environmental Microbiology, 1, 9–13.CrossRefGoogle Scholar
  207. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.CrossRefGoogle Scholar
  208. Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology, 39, 461–490.CrossRefGoogle Scholar
  209. Lugtenberg, B. J. J., Chin-A-Woeng, T. F. C., & Bloemberg, G. V. (2002). Microbe-plant interactions: Principles and mechanisms. Antonie Van Leeuwenhoek, 81, 373–383.CrossRefGoogle Scholar
  210. Lukkani, N. J., & Reddy, E. S. (2014). Evaluation of plant growth promoting attributes and biocontrol potential of native fluorescent Pseudomonas spp. against Aspergillus niger causing collar rot of ground nut. International Journal of Plant, Animal and Environmental Sciences, 4(4), 256–262.Google Scholar
  211. Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29, 248–258.CrossRefGoogle Scholar
  212. Ma, Y., Oliveira, R. S., Wu, L., Luo, Y., Rajkumar, M., Rocha, I., & Freitas, H. (2015). Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. Journal of Toxicology and Environmental Health, 78, 931–944.CrossRefGoogle Scholar
  213. Ma, Y., Oliveira, R. S., Freitas, H., & Zhang, C. (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Frontiers in Plant Science, 7, 918.Google Scholar
  214. Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2016). Biofertilizers: A potential approach for sustainable agriculture development. Environmental Science and Pollution Research International, 24, 3315–3335.CrossRefGoogle Scholar
  215. Maheshwari, D. K., Kumar, S., Maheshwari, N. K., Patel, D., & Saraf, M. (2012a). Nutrient availability and management in the rhizosphere by microorganisms. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management (pp. 301–325). Berlin: Springer.CrossRefGoogle Scholar
  216. Maheshwari, D. K., Dubey, R. C., Aeron, A., Kumar, B., Kumar, S., Tewari, S., & Arora, N. (2012b). Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World Journal of Microbiology and Biotechnology, 28(10), 3015–3024.CrossRefGoogle Scholar
  217. Maheshwari, D. K., Dheeman, S., & Agarwal, M. (2015). Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 159–182). Cham: Springer.CrossRefGoogle Scholar
  218. Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: A review. FEMS Microbiology Ecology, 92(8), 1–14.CrossRefGoogle Scholar
  219. Majeed, A., Abbasi, M. K., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6, 198.CrossRefGoogle Scholar
  220. Maksimov, I. V., Abizgil’dina, R. R., & Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Applied Biochemistry and Microbiology, 47, 333–345.CrossRefGoogle Scholar
  221. Malusá, E., & Vassilev, N. (2014). A contribution to set a legal framework for biofertilisers. Applied Microbiology and Biotechnology, 98, 6599–6607.CrossRefGoogle Scholar
  222. Mamta, R. P., Pathania, V., Gulati, A., Singhd, B., Bhanwra, R. K., & Tewari, R. (2010). Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 46, 222–229.CrossRefGoogle Scholar
  223. Marketsandmarkets. (2014). Biopesticides market by active ingredient, by types, by application, by formulation, by crop type and by geography. Pune: Marketsandmarkets Available at: MarketResearch.com.Google Scholar
  224. Marketsandmarkets.com. (2016). Biofertilizers market by type (nitrogen-fixing, phosphate-solubilizing, potash-mobilizing), microorganism (Rhizobium, Azotobacter, Azospirillum, Cyanobacteria, P-Solubilizer), mode of application, crop type, form, and region – Global forecast to 2022. Available at: www.marketsandmarkets.com.Google Scholar
  225. Marschner, H. (2012). Marschner’s mineral nutrition of higher plants (3rd ed., p. 672). London: Academic.CrossRefGoogle Scholar
  226. Martinez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G. M. L. M., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10(3), 293–319.CrossRefGoogle Scholar
  227. Meena, H., Ahmed, M. A., & Prakash, P. (2015). Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Bioscience Biotechnology Research Communications, 8(2), 171–174.Google Scholar
  228. Merzaeva, O. V., & Shirokikh, I. G. (2006). Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology, 75, 226–230.CrossRefGoogle Scholar
  229. Meyer, S. L. F., Everts, K. L., Gardener, B. M., Masler, E. P., Abdelnabby, H. M. E., & Skantar, A. M. (2016). Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon. Journal of Nematology, 48(1), 43–53.CrossRefGoogle Scholar
  230. Meziane, H., Vander, S. I., van Loon, L. C., Höfte, M., & Bakker, P. A. H. M. (2005). Determinants of P. putida WCS 358 involved in induced systemic resistance in plants. Molecular Plant Pathology, 6, 177–185.CrossRefGoogle Scholar
  231. Mia, M. A. B., & Shamsuddin, Z. H. (2010). Rhizobium as a crop enhancer and biofertilizer for increased cereal production. African Journal of Biotechnology, 9(37), 6001–6009.Google Scholar
  232. Miethke, M., & Marahiel, M. A. (2007). Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71(3), 413–451.CrossRefGoogle Scholar
  233. Mishra, S., & Arora, N. K. (2011). Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris. World Journal of Microbiology and Biotechnology, 28(2), 693–702.CrossRefGoogle Scholar
  234. Mishra, S., & Arora, N. K. (2012). Management of black rot in cabbage by rhizospheric Pseudomonas sp. and analysis of 2, 4-diacetylphloroglucinol by qRT-PCR. Biological Control, 61, 29–32.CrossRefGoogle Scholar
  235. Mishra, J., & Arora, N. K. (2018). Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Applied Soil Ecology, 125, 35–45.CrossRefGoogle Scholar
  236. Mishra, P., & Das, D. (2014). Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience: J Sustain Develop, 11(1), 41–61.Google Scholar
  237. Mishra, P. K., Bisht, S. C., Bisht, J. K., & Bhatt, J. C. (2012). Cold tolerant PGPRs as bioinoculants for stress management. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management (pp. 95–118). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  238. Mishra, J., Tewari, S., Singh, S., & Arora, N. K. (2015). Biopesticides: Where we stand? In N. K. Arora (Ed.), Plant microbes symbiosis: Applied facets (pp. 37–75). New Delhi: Springer.Google Scholar
  239. Mishra, J., Singh, R., & Arora, N. K. (2017a). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 8, 1706.CrossRefGoogle Scholar
  240. Mishra, J., Singh, R., & Arora, N. K. (2017b). Plant growth-promoting microbes: Diverse roles in agriculture and environmental sustainability. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics and plant health (pp. 71–111). Singapore: Springer.CrossRefGoogle Scholar
  241. Mitter, E. K., de Freitas, J. R., & Germida, J. J. (2017). Bacterial root microbiome of plants growing in oil sands reclamation covers. Frontiers in Microbiology, 8, 70.Google Scholar
  242. Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 638–649.Google Scholar
  243. Moustaine, M., Elkahkahi, R., Benbouazza, A., Benkirane, R., & Achbani, E. (2017). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Agriculture Environment & Biotechnology, 2, 590–595.CrossRefGoogle Scholar
  244. Mus, F., Crook, M. B., Garcia, K., Costas, A. G., Geddes, B. A., Kouri, E. D., Paramasivan, P., Ryu, M. H., Oldroyd, G. E., Poole, P. S., & Udvardi, M. K. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 82(13), 3698–3710.CrossRefGoogle Scholar
  245. Nadeem, S. M., Zahir, Z. A., Naveed, M., Asghar, H. N., & Arshad, M. (2010). Rhizobacteria capable of producing ACC deaminase may mitigate salt stress in wheat. Soil Science Society of America Journal, 74, 533–542.CrossRefGoogle Scholar
  246. Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429–448.CrossRefGoogle Scholar
  247. Nahas, E. (1996). Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology, 12(6), 567–572.CrossRefGoogle Scholar
  248. Nakkeeran, S., Dilantha Fernando, W. G., & Siddiqui, A. (2005). Plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 257–296). Dordrecht: Springer.Google Scholar
  249. Nandi, M., Selin, C., Brassinga, A. K. C., Belmonte, M. F., Fernando, W. G. D., Loewen, P. C., & de Kievit, T. R. (2015). Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One, 10, e0123184.CrossRefGoogle Scholar
  250. Narula, N., Deubel, A., Gans, W., Behl, R. K., & Merbach, W. (2006). Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant, Soil and Environment, 52(3), 119–129.CrossRefGoogle Scholar
  251. Naz, I., Ahmad, H., Khokhar, S. N., Khan, K., & Shah, A. H. (2016). Impact of zinc solubilizing bacteria on zinc contents of wheat. American-Eurasian Journal of Agricultural & Environmental Sciences, 16(3), 449–454.Google Scholar
  252. Nazir, Q., Akhtar, M. J., Imran, M., Arshad, M., Hussain, A., Mahmood, S., & Hussain, S. (2017). Simultaneous use of plant growth promoting rhizobacterium and nitrogenous fertilizers may help in promoting growth, yield, and nutritional quality of okra. Journal of Plant Nutrition, 40(9), 1339–1350.CrossRefGoogle Scholar
  253. Nie, M., Bell, C., Wallenstein, M. D., & Pendall, E. (2015). Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2. Scientific Reports, 5, 9212.CrossRefGoogle Scholar
  254. Nobbe, F., & Hiltner, L. (1896). Inoculation of the soil for cultivating leguminous plants. U.S. Patent 570 813.Google Scholar
  255. Normile, D. (2008). Reinventing rice to feed the world. Science, 321, 330–333.CrossRefGoogle Scholar
  256. Noumavo, P. A., Agbodjato, N. A., Baba-Moussa, F., Adjanohoun, A., & Baba-Moussa, L. (2016). Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. African Journal of Biotechnology, 15, 1452–1463.CrossRefGoogle Scholar
  257. Okon, G., Okon, E., & Glory, I. (2014). Effect of bioremediation on early seedling growth of Amaranthus hybridus L. grown on palm oil mill effluent polluted soil. International Journal of Biological Research, 2(2), 84–86.Google Scholar
  258. Omidvari, M., Sharifi, R. A., Ahmadzadeh, M., & Dahaji, P. A. (2010). Role of fluorescent pseudomonads siderophore to increase bean growth factors. The Journal of Agricultural Science, 2(3), 242–247.Google Scholar
  259. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125.CrossRefGoogle Scholar
  260. Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(8), 701–712.CrossRefGoogle Scholar
  261. Oteino, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J., & Dowling, D. N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745.CrossRefGoogle Scholar
  262. Owen, D., Williams, A. P., Griffith, G. W., & Withers, P. J. A. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Applied Soil Ecology, 86, 41–54.CrossRefGoogle Scholar
  263. Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. Plant Health Instructor, 2, 1117–1142.Google Scholar
  264. Pandya, N. D., & Desai, P. V. (2014). Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. International Journal of Current Microbiology and Applied Sciences, 3(5), 110–115.Google Scholar
  265. Parmar, P., & Sindhu, S. S. (2013). Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. Journal of Microbiology Research, 3(1), 25–31.Google Scholar
  266. Parnell, J. J., Berka, R., Young, H. A., Sturino, J. M., Kang, Y., Barnhart, D. M., & Dileo, M. V. (2016). From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science, 7, 1110.CrossRefGoogle Scholar
  267. Patten, C., & Glick, B. (2002). Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.CrossRefGoogle Scholar
  268. Paul, D., & Lade, H. (2014). Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A review. Agronomy for Sustainable Development, 34, 737–752.CrossRefGoogle Scholar
  269. Peix, A., Mateos, P. F., Rodríguez-Barrueco, C., Martínez-Molina, E., & Velázquez, E. (2001). Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology and Biochemistry, 33, 1927–1935.CrossRefGoogle Scholar
  270. Pendall, E., Mosier, A. R., & Morgan, J. A. (2004). Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. The New Phytologist, 162, 447–458.CrossRefGoogle Scholar
  271. Penuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., & Schnitzler, J. P. (2014). Biogenic volatile emissions from the soil. Plant, Cell & Environment, 37, 1866–1891.CrossRefGoogle Scholar
  272. Perez-Fernández, M., & Alexander, V. (2017). Enhanced plant performance in Cicer arietinum L. due to the addition of a combination of plant growth-promoting bacteria. Agriculture, 7(5), 40.CrossRefGoogle Scholar
  273. Pérez-Montaño, F., Jiménez-Guerrero, I., Contreras Sánchez-Matamoros, R., López-Baena, F. J., Ollero, F. J., Rodríguez-Carvajal, M. A., Bellogín, R. A., & Espuny, M. R. (2013). Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Microbiological Research, 164, 749–760.Google Scholar
  274. Pérez-Montaño, F., Cynthia, A., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169(5), 325–336.CrossRefGoogle Scholar
  275. Piccoli, P., Lucangeli, C. D., Schneider, G., & Bottini, R. (1997). Hydrolysis of gibberellin A20-glucoside and gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin based chemically-defined medium. Plant Growth Regulation, 23, 179–182.CrossRefGoogle Scholar
  276. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.CrossRefGoogle Scholar
  277. Ping, L., & Boland, W. (2004). Signals from the underground: Bacterial volatiles promote growth in Arabidopsis. Trends in Plant Science, 9, 263–266.CrossRefGoogle Scholar
  278. Pinter, I. F., Salomon, M. V., Berli, F., Bottini, R., & Piccoli, P. (2017). Characterization of the As (III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Applied Soil Ecology, 109, 60–68.CrossRefGoogle Scholar
  279. Pires, C., Franco, A. R., Pereira, S. I. A., Henriques, I., Correia, A., Magan, N., & Castro, P. M. L. (2017). Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiology J, 1–9.Google Scholar
  280. Podile, A. R., & Kishore, G. K. (2006). Plant growth-promoting rhizobacteria. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 195–230). Dordrecht: Springer.CrossRefGoogle Scholar
  281. Postgate, J. R. (1998). Nitrogen fixation (p. 252). Cambridge: Cambridge University Press.Google Scholar
  282. PR Newswire. (2017). Global markets for biopesticides. Available at: https://www.prnewswire.com/news-releases/global-markets-forbiopesticides300385145
  283. Prajapati, K., & Modi, H. A. (2016). Growth promoting effect of potassium solubilizing Enterobacter hormaechei (KSB-8) on Cucumber (Cucumis sativus) under hydroponic conditions. International Journal of Advanced Research in Biological Sciences, 3(5), 168–173.Google Scholar
  284. Press, C. M., Wilson, M., Tuzun, S., & Kloepper, J. W. (1997). SA produced by S. marcescens 90–166 is not the primary determinant of ISR in cucumber/tobacco. Molecular Plant-Microbe Interactions, 10, 761–768.CrossRefGoogle Scholar
  285. Prithiviraj, B., Zhou, X., Souleimanov, A., Kahn, W. M., & Smith, D. L. (2003). A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta, 21, 437–445.Google Scholar
  286. Qaisrani, M. M., Mirza, M. S., Zaheer, A., & Malik, K. A. (2014). Isolation and identification by 16s rRNA sequence analysis of Achromobacter, Azospirillum and Rhodococcus strains from the rhizosphere of maize and screening for the beneficial effect on plant growth. Pakistan Journal of Agricultural Sciences, 51, 91–99.Google Scholar
  287. Qurashi, A. W., & Sabri, A. N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 43, 1183–1191.CrossRefGoogle Scholar
  288. Raaijmakers, J. M., & Weller, D. M. (2001). Exploiting genotype diversity of 2, 4-diacetylphloroglucinol producing Pseudomonas spp.: Characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Applied and Environmental Microbiology, 67, 2545–2554.CrossRefGoogle Scholar
  289. Raaijmakers, J. M., de Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34, 1037–1062.CrossRefGoogle Scholar
  290. Rabie, G. H., & Almadini, A. M. (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology, 4, 210–222.Google Scholar
  291. Rabosto, X., Garrau, M., Paz, A., Boido, E., Dellacassa, E., & Carrau, F. (2006). Grapes and vineyard soils as source of microorganisms for biological control of Botrytis cinerea. American Journal of Enology and Viticulture, 57, 332–338.Google Scholar
  292. Raghavendra, A. S., Gonugunta, V. K., Christmann, A., & Grill, E. (2010). ABA perception and signalling. Trends in Plant Science, 15(7), 395–401.CrossRefGoogle Scholar
  293. Rais, A., Jabeen, Z., Shair, F., Hafeez, F. Y., & Hassan, M. N. (2017). Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One, 12(11), e0187412.CrossRefGoogle Scholar
  294. Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28, 142–149.CrossRefGoogle Scholar
  295. Rajwar, A., Sahgal, M., & Johri, B. N. (2013). Legume-rhizobia symbiosis and interactions in agroecosystems. In N. K. Arora (Ed.), Plant microbe symbiosis-fundamentals and advances (pp. 233–265). New Delhi: Springer.CrossRefGoogle Scholar
  296. Ramadan, E. M., AbdelHafez, A. A., Hassan, E. A., & Saber, F. M. (2016). Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. African Journal of Microbiology Research, 10(15), 486–504.CrossRefGoogle Scholar
  297. Ramos-Solano, B., Barriuso-Maicas, J., de la Iglesia, M. T. P., Domenech, J., & Gutiérrez Mañero, F. J. (2008). Systemic disease protection elicited by plant growth promoting rhizobacteria strains: Relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology, 98, 451–457.CrossRefGoogle Scholar
  298. Ramyasmruthi, S., Pallavi, O., Pallavi, S., Tilak, K., & Srividya, S. (2012). Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian Journal of Plant Science & Research, 2, 16–24.Google Scholar
  299. Rana, A., Kabi, S. R., Verma, S., Adak, A., Pal, M., Shivay, Y. S., Prasanna, R., & Nain, L. (2015). Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro and micronutrients in grains in rice wheat cropping sequence. Cogent Food & Agriculture, 1, 10373–10379.CrossRefGoogle Scholar
  300. Rangel, W. M., Thijs, S., Janssen, J., Oliveira Longatti, S. M., Bonaldi, D. S., Ribeiro, P. R., Jambon, I., Eevers, N., Weyens, N., Vangronsveld, J., & Moreira, F. M. S. (2017). Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. International Journal of Phytoremediation, 19, 142–156.CrossRefGoogle Scholar
  301. Rao, D. L. N., Mohanty, S. R., Acharya, C., & Atoliya, N. (2018). Rhizobial taxonomy-current status (Newsletter No. 3, pp. 1–4). Indo-UK Nitrogen Fixation Centre (IUNFC).Google Scholar
  302. Reddy, M. S., Ilao, R. I., Faylon, P. S., Dar, W. D., Batchelor, W. D., Sayyed, R., Sudini, H., Vijay Krishna Kumar, K., Armanda, A., & Gopalkrishnan, S. (Eds.). (2014). Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture (p. 510). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
  303. Reetha, S., Bhuvaneswari, G., Thamizhiniyan, P., & Mycin, T. R. (2014). Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa. L). International Journal of Current Microbiology and Applied Sciences, 3(2), 568–574.Google Scholar
  304. Reitz, M., Oger, P., Meyer, A., Niehaus, K., Farrand, S. K., Hallmann, J., & Sikora, R. A. (2002). Importance of the O-antigen, core-region and lipid A of rhizobial LPS for the induction of SR in potato to Globodera pallida. Nematology, 4, 73–79.CrossRefGoogle Scholar
  305. Research Nester. (2018). Biofertilizers market: global demand analysis & opportunity outlook 2023. Available at: https://www.researchnester.com/reports/biofertilizers-market-global-demand-analysis-opportunity-outlook-2023/193.
  306. Review, M. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1), 1–17.Google Scholar
  307. Riadh, K., Wided, M., Hans-Werner, K., & Chedly, A. (2010). Responses of halophytes to environmental stresses with special emphasis to salinity. Advances in Botanical Research, 53, 117–145.CrossRefGoogle Scholar
  308. Ribaudo, C. M., Krumpholz, E. M., Cassán, F. D., Bottini, R., Cantore, M. L., & Cura, J. A. (2006). Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. Journal of Plant Growth Regulation, 25, 175–185.CrossRefGoogle Scholar
  309. Roberson, E. B., & Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Applied and Environmental Microbiology, 58, 1284–1291.Google Scholar
  310. Rodriguez, H., Gonzalez, T., Goire, I., & Bashan, Y. (2004). Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften, 91(11), 552–555.CrossRefGoogle Scholar
  311. Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287, 15–21.CrossRefGoogle Scholar
  312. Rogers, J. R., Bennett, P. C., & Choi, W. J. (1998). Feldspars as a source of nutrients for microorganisms. American Mineralogist, 83, 1532–1540.CrossRefGoogle Scholar
  313. Romeh, A. A., & Hendawi, M. Y. (2014). Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). Journal of Agricultural Science and Technology, 16(2), 265–276.Google Scholar
  314. Roper, M. M., & Gupta, V. S. R. (2016). Enhancing non-symbiotic N2 fixation in agriculture. Open Agriculture Journal, 10, 7–27.CrossRefGoogle Scholar
  315. Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19, 827–837.CrossRefGoogle Scholar
  316. Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters, 278(1), 1–9.CrossRefGoogle Scholar
  317. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927–4932.CrossRefGoogle Scholar
  318. Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research, 23, 3984–3999.CrossRefGoogle Scholar
  319. Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res, 21, 1–30.Google Scholar
  320. Sahgal, M., & Johri, B. N. (2003). The changing face of rhizobial systematic. Current Science, 84(1), 43–48.Google Scholar
  321. Sahoo, R. K., Bhardwaj, D., & Tuteja, N. (2013). Biofertilizers: A sustainable eco-friendly agricultural approach to crop improvement. In N. Tuteja & S. S. Gill (Eds.), Plant acclimation to environmental stress (pp. 403–432). New York: Springer.CrossRefGoogle Scholar
  322. Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., & Saikia, R. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8, 35–60.CrossRefGoogle Scholar
  323. Salam, M. A., & Noguchi, T. (2005). Impact of human activities on carbon dioxide (CO2) emissions: A statistical analysis. Environmentalist, 25, 19.CrossRefGoogle Scholar
  324. Salamone, I. E. G., Hynes, R. K., & Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47, 404–411.CrossRefGoogle Scholar
  325. Salamone, I. E. G., Hynes, R. K., & Nelson, L. M. (2005). Role of cytokinins in plant growth promotion by rhizosphere bacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 173–195). Dordrecht: Springer.CrossRefGoogle Scholar
  326. Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34, 635–648.CrossRefGoogle Scholar
  327. Salimpour, S., Khavazi, K., Nadian, H., Besharati, H., & Miransari, M. (2010). Enhancing phosphorus availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science, 4, 330–334.Google Scholar
  328. Salisbury, F. B. (1994). The role of plant hormones. In R. E. Wilkinson (Ed.), Plant-environment interactions (pp. 39–81). New York: USA.Google Scholar
  329. Sanchis, V., & Bourguet, D. (2008). Bacillus thuringiensis: Applications in agriculture and insect resistance management: A review. Agronomy for Sustainable Development, 28(1), 11–20.CrossRefGoogle Scholar
  330. Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46, 17–26.CrossRefGoogle Scholar
  331. Santi, C., Bogusz, D., & Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany, 111(5), 743–767.CrossRefGoogle Scholar
  332. Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99.CrossRefGoogle Scholar
  333. Saraf, M., Pandya, U., & Thakkar, A. (2014). Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological Research, 169(1), 18–29.CrossRefGoogle Scholar
  334. Sarr, P. S., Fujimoto, S., & Yamakawa, T. (2015). Nodulation, nitrogen fixation and growth of rhizobia-inoculated cowpea (Vigna unguiculata L. Walp) in relation with external nitrogen and light intensity. International Journal of Plant Biology & Research, 3(1), 1025.Google Scholar
  335. Sathya, A., Vijayabharathi, R., Srinivas, V., & Gopalakrishnan, S. (2016). Plant growth-promoting actinobacteria on chickpea seed mineral density: An upcoming complementary tool for sustainable biofortification strategy. 3 Biotech, 6(2), 1–6.CrossRefGoogle Scholar
  336. Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: A new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7, 102.CrossRefGoogle Scholar
  337. Sayyed, R. Z., Badgujar, M. D., Sonawane, H. M., Mhaske, M. M., & Chincholkar, S. B. (2005). Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian Journal of Biotechnology, 4(4), 484–490.Google Scholar
  338. Sayyed, R. Z., Patil, A. S., Gangurde, N. S., Bhamare, H. M., SA, J., & Fulpagare, U. G. (2008). Siderophore producing A. faecalis: A potent biofungicide for the control of ground phytopathogens. Research Journal of Biotechnology, 411–413.Google Scholar
  339. Schallmey, M., Singh, A., & Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50, 1–17.CrossRefGoogle Scholar
  340. Schoebitz, M., Osman, J., & Ciampi, L. (2013). Effect of immobilized Serratia sp. by spray-drying technology on plant growth and phosphate uptake. Chilean Journal of Agricultural & Animal Sciences, 29, 111–119.Google Scholar
  341. Schulz, B., & Boyle, C. (2006). What are endophytes? In B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (Eds.), Microbial root endophytes (pp. 1–13). Berlin: Springer.CrossRefGoogle Scholar
  342. Schwachtje, J., Karojet, S., Kunz, S., Brouwer, S., & Van Dongen, J. T. (2012). Plant-growth promoting effect of newly isolated rhizobacteria varies between two Arabidopsis ecotypes. Plant Signaling & Behavior, 7(6), 623–627.CrossRefGoogle Scholar
  343. Sellstedt, A., & Richau, K. H. (2013). Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiology Letters, 342, 179–186.CrossRefGoogle Scholar
  344. Selvakumar, G., Bindu, G. H., Bhatt, R. M., Upreti, K. K., Paul, A. M., Asha, A., Shweta, K., & Sharma, M. (2016). Osmotolerant cytokinin producing microbes enhance tomato growth in deficit irrigation conditions. In Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences.CrossRefGoogle Scholar
  345. Seshadre, S., Muthukumarasamy, R., Lakshminarasimhan, C., & Ignaacimuthu, S. (2002). Solubilization of inorganic phosphates by Azospirillum halopraeferans. Current Science, 79(5), 565–567.Google Scholar
  346. Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology and Biotechnological Equipment, 31, 1–14.CrossRefGoogle Scholar
  347. Shahid, M., Hameed, S., Imran, A., Ali, S., & Van Elsas, J. D. (2012). Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World Journal of Microbiology and Biotechnology, 28, 2749–2758.CrossRefGoogle Scholar
  348. Shahid, I., Malik, K. A., & Mehnaz, S. (2018). A decade of understanding secondary metabolism in Pseudomonas spp. for sustainable agriculture and pharmaceutical applications. Environmental Sustainability, 1(1), 3–17.CrossRefGoogle Scholar
  349. Shaikh, S., & Saraf, M. (2017). Zinc biofortification: Strategy to conquer zinc malnutrition through zinc solubilizing PGPR’s. Biomedical Journal of Scientific & Technical Research, 1(1).Google Scholar
  350. Shakeel, M., Rais, A., Hassan, M. N., & Hafeez, F. Y. (2015). Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Frontiers in Microbiology, 6, 1286.CrossRefGoogle Scholar
  351. Shamseldin, A., Abdelkhalek, A., & Sadowsky, M. J. (2017). Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: A review. Symbiosis, 71, 91–109.CrossRefGoogle Scholar
  352. Shanware, A. S., Kalkar, S. A., & Trivedi, M. M. (2014). Potassium solubilisers: Occurrence, mechanism and their role as competent biofertilizers. International Journal of Current Microbiology and Applied Sciences, 3, 622–629.Google Scholar
  353. Shariatmadari, Z., Riahi, H., Seyed Hashtroudi, M., Ghassempour, A., & Aghashariatmadary, Z. (2013). Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Science & Plant Nutrition, 59(4), 535–547.CrossRefGoogle Scholar
  354. Sharifi, P. (2017). The effect of plant growth promoting rhizobacteria (PGPR), salicylic acid and drought stress on growth indices, the chlorophyll and essential oil of hyssop (Hyssopus officinalis). Biosciences, Biotechnology Research Asia, 14(3).CrossRefGoogle Scholar
  355. Sharma, A., Shankhdar, D., & Shankhdhar, S. C. (2013). Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant, Soil and Environment, 59, 89–94.CrossRefGoogle Scholar
  356. Siddiqui, Z. A. (2006). PGPR: Prospective biocontrol agents of plant pathogens. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 111–142). Dordrecht: Springer.CrossRefGoogle Scholar
  357. Singh, P. P., Shin, Y. C., Park, C. S., & Chung, Y. R. (1999). Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology, 89, 92–99.CrossRefGoogle Scholar
  358. Sivasakthi, S., Usharani, G., & Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. African Journal of Agricultural Research, 9, 1265–1277.Google Scholar
  359. Someya, N., Tsuchiya, K., Yoshida, T., Noguchi, M. T., Akutsu, K., & Sawada, H. (2007). Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme-producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. Biocontrol Science, 12, 1–6.CrossRefGoogle Scholar
  360. Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4), 1438.CrossRefGoogle Scholar
  361. Spaepen, S., Das, F., Luyten, E., Michiels, J., & Vanderleyden, J. (2009). Indole-3-acetic acid- regulated genes in Rhizobium etli CNPAF512. FEMS Microbiology Letters, 291, 195–200.CrossRefGoogle Scholar
  362. Steenhoudt, O., & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetics, biochemical and ecological aspects. FEMS Microbiology Reviews, 24, 487–506.CrossRefGoogle Scholar
  363. Suman, A., Yadav, A. N., & Verma, P. (2016). Endophytic microbes in crops: Diversity and beneficial impact for sustainable agriculture. In D. P. Singh, P. C. Abhilash, & P. Ratna (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 117–143). Dordrecht: Springer.CrossRefGoogle Scholar
  364. Sunithakumari, K., Devi, S. N. P., & Vasandha, S. (2016). Zinc solubilizing bacterial isolates from the agricultural fields of Coimbatore, Tamil Nadu, India. Current Science, 110, 196–205.CrossRefGoogle Scholar
  365. Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8, 171.CrossRefGoogle Scholar
  366. Tailor, J. A., & Joshi, B. H. (2014). Harnessing plant growth promoting rhizobacteria beyond nature: A review. Journal of Plant Nutrition, 37, 1534–1571.CrossRefGoogle Scholar
  367. Tak, A., Gehlot, P., Pathak, R., & Singh, S. K. (2017). Species diversity of rhizobia. In A. Hansen, D. Choudhary, P. Agrawal, & A. Varma (Eds.), Rhizobium biology and biotechnology. Soil biology (pp. 215–245). Cham: Springer.CrossRefGoogle Scholar
  368. Tang, J. C., Wang, R. G., Niu, X. W., Wang, M., Chu, H. R., & Zhou, Q. X. (2010). Characterisation of the rhizoremediation of petroleum-contaminated soil: Effect of different influencing factors. Biogeosciences, 7(12), 3961–3969.CrossRefGoogle Scholar
  369. Tewari, S., & Arora, N. K. (2013). Plant growth promoting rhizobacteria for ameliorating abiotic stresses triggered due to climatic variability. Climate Change Environ Sustain, 1(2), 95–103.CrossRefGoogle Scholar
  370. Tewari, S., & Arora, N. K. (2014). Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under stress conditions. Current Microbiology, 69, 484–494.CrossRefGoogle Scholar
  371. Tewari, S., & Arora, N. K. (2015). Plant growth promoting fluorescent pseudomonads enhancing growth of sunflower crop. International Journal of Science and Technology, 1(1), 51–53.Google Scholar
  372. Tewari, S., & Arora, N. K. (2016). Soybean production under flooding stress and its mitigation using plant growth-promoting microbes. In M. Miransari (Ed.), Environmental stresses in soybean production (pp. 23–40). New York: Academic/Elsevier.CrossRefGoogle Scholar
  373. Tewari, S., & Arora, N. K. (2018). Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environmental Sustainability, 1(1), 49–59.CrossRefGoogle Scholar
  374. Thakore, Y. (2006). The biopesticide market for global agricultural use. Industrial Biotechnology, 2, 192–208.CrossRefGoogle Scholar
  375. Tilak, K. V. B. R., Ranganayaki, N., Pal, K. K., De, R., Saxena, A. K., Nautiyal, C. S., Mittal, S., Tripathi, A. K., & Johri, B. N. (2005). Diversity of plant growth and soil health supporting bacteria. Current Science, 89, 136–150.Google Scholar
  376. Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49.CrossRefGoogle Scholar
  377. Transparency Market Research. (2017). Biofertilizers market (Nitrogen fixing, phosphate solubilizing and others) for seed treatment and soil treatment applications – Global industry analysis, size, share, growth, trends and forecast, 2013–2019. Available at: https://www.transparencymarketresearch.com/pressrelease/globalbiofertilizersmarket.htm.
  378. Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21, 214–222.CrossRefGoogle Scholar
  379. Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 356.CrossRefGoogle Scholar
  380. Vaid, S., Kumar, B., Sharma, A., Shukla, A., & Srivastava, P. (2014). Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. Journal of Soil Science and Plant Nutrition, 14, 889–910.Google Scholar
  381. Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–354.CrossRefGoogle Scholar
  382. Van Loon, L. C., Bakker, P. A., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.CrossRefGoogle Scholar
  383. Vandenberghe, L. P. S., Garcia, L. M. B., Rodrigues, C., Camara, M. C., Pereira, G. V. M., Oliveira, J., & Soccol, C. R. (2017). Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS Microbiology, 3(3), 629–648.CrossRefGoogle Scholar
  384. Vargas, R., Detto, M., Baldocchi, D. D., & Allen, M. F. (2010). Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology, 16(5), 1589–1605.CrossRefGoogle Scholar
  385. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Boyce, A. N. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability –A review. Molecules, 21(5), 573.CrossRefGoogle Scholar
  386. Verma, V. C., Singh, S. K., & Prakash, S. (2011). Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. Journal of Basic Microbiology, 51(5), 550–556.CrossRefGoogle Scholar
  387. Verma, P., Yadav, A. N., Kazy, S. K., Saxena, A. K., & Suman, A. (2013). Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. National Journal of Life Sciences, 10(2), 219–226.Google Scholar
  388. Vessey, J. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.CrossRefGoogle Scholar
  389. Vidhyasekaran, P. (2015). Auxin signaling system in plant innate immunity. In P. Vidhyasekaran (Ed.), Plant hormone signaling systems in plant innate immunity, signaling and communication in plants (pp. 311–357). Dordrecht: Springer.Google Scholar
  390. Vijayabharathi, R., Sathya, A., & Gopalakrishnan, S. (2016). A renaissance in plant growth-promoting and biocontrol agents by endophytes. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 37–61). New Delhi: Springer.CrossRefGoogle Scholar
  391. Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & Ali, S. Z. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24.CrossRefGoogle Scholar
  392. Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.CrossRefGoogle Scholar
  393. Wang, J., Zhou, C., Xiao, X., Xie, Y., Zhu, L., & Ma, Z. (2017). Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Applied Sciences, 7(1), 85.CrossRefGoogle Scholar
  394. Wani, P. A., & Khan, M. S. (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48, 3262–3267.CrossRefGoogle Scholar
  395. Wani, P. A., Khan, M. S., & Zaidi, A. (2007). Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Archives of Environmental Contamination and Toxicology, 55, 33–42.CrossRefGoogle Scholar
  396. WDR. (2003). World disaster report: Focus on ethics in aid (p. 240). Geneva: International Federation of Red Cross and Red Crescent Societies.Google Scholar
  397. Weller, D. M., & Thomashow, L. S. (1994). Current challenges in introducing beneficial microorganisms into the rhizosphere. In F. O’Gara, D. N. Dowling, & B. Boesten (Eds.), Molecular ecology of rhizosphere microorganisms biotechnology and the release of GMOs (pp. 1–18). Weinheim: VCH Verlagsgesellschaft.Google Scholar
  398. Weller, D. M., Raaijmakers, J. M., Gardner, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 308–348.CrossRefGoogle Scholar
  399. Welsh, A. K., Dawson, J. O., Gottfried, G. J., & Hahn, D. (2009). Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States). Applied and Environmental Microbiology, 75(21), 6913–6918.CrossRefGoogle Scholar
  400. Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321, 385–408.CrossRefGoogle Scholar
  401. Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., & Schmülling, T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 15, 2532–2550.CrossRefGoogle Scholar
  402. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.CrossRefGoogle Scholar
  403. Wilson, H., Epton, H. A. S., & Sigee, D. C. (1992). Biological control of fire blight of Hawthorn with fluorescent Pseudomonas spp. under protected conditions. Journal of Phytopathology, 136, 16–26.CrossRefGoogle Scholar
  404. Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma, 125, 155–166.CrossRefGoogle Scholar
  405. Yadav, A. N., Sachan, S. G., Verma, P., & Saxena, A. K. (2016). Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian Journal of Experimental Biology, 54(2), 142–150.Google Scholar
  406. Yadav, A. N., Verma, P., Kumar, V., Sachan, S. G., & Saxena, A. K. (2017). Extreme cold environments: A suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Advances in Biotechnology and Microbiology, 2, 1–4.CrossRefGoogle Scholar
  407. Yadegari, M., Asadi Rahmani, H., Noormohammadi, G., & Ayneband, A. (2010). Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. Journal of Plant Nutrition, 33(12), 1733–1743.CrossRefGoogle Scholar
  408. Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1), 1–4.CrossRefGoogle Scholar
  409. Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138–145.CrossRefGoogle Scholar
  410. Zahir, Z. A., Arshad, M., & Frankenberger, W. T. (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81, 97–168.CrossRefGoogle Scholar
  411. Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56, 263–284.CrossRefGoogle Scholar
  412. Zhan, J., & Sun, Q. (2012). Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiological Research, 167(3), 157–165.CrossRefGoogle Scholar
  413. Zhang, S., Moyne, A. L., Reddy, M. S., & Kloepper, J. W. (2002). The role of salicylic acid in induced systemic resistance elicited by plant growth promoting rhizobacteria against blue mould of tobacco. Biological Control, 25, 288–296.CrossRefGoogle Scholar
  414. Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33(3), 406–413.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Maya Verma
    • 1
  • Jitendra Mishra
    • 1
  • Naveen Kumar Arora
    • 1
  1. 1.Department of Environmental Microbiology, School for Environmental SciencesBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations