Advertisement

Removal of Inorganic and Organic Contaminants from Terrestrial and Aquatic Ecosystems Through Phytoremediation and Biosorption

  • Dhananjay Kumar
  • Sangeeta Anand
  • Poonam
  • Jaya Tiwari
  • G. C. Kisku
  • Narendra Kumar
Chapter

Abstract

Escalated industrialization, inappropriate waste management practices, mining, landfill operations, and application of sewage sludge have caused excess contamination of aquatic and terrestrial ecosystems. As a consequence, human beings pose serious threats to life-supporting resources, i.e., air, soil, and water. Heavy metals and pesticides are a special class of contaminants having wide variety of effects. When the contaminated lands are used for agriculture practices, contaminants like heavy metals and pesticides get transferred from soil to food chain which leads to bioaccumulation and biomagnification. Phytoremediation (a technique that exploits plants ability to lessen, eradicate, degrade, or immobilize the environmental contaminants, with the aim of restoring the contaminated area) is gaining advantage over other conventional treatment techniques being economical, environmentally sound, and aesthetically acceptable. Conventional approaches for cleanup and restoration of heavy metals and pesticides from contaminated environment have some unavoidable precincts like high cost and creation of secondary pollutants. Many aquatic and terrestrial plants such as Eichhornia, Pistia, Lemna, Salvinia, Typha, Hydrilla, Ricinus, Brassica, Arabidopsis, Vetiver, Solanum, etc. are capable of accumulating heavy metals and can be used as agents for eco-restoration of degraded ecosystems. Further, biosorption has also emerged as an innovative, eco-friendly, cost-effective, and probable substitute for the removal and/or recovery of inorganic contaminants from aqueous medium. Biosorption can be applicable over wide range of temperature and pH, with rapid kinetics of adsorption and desorption and low capital and operation cost. Even, biological biomass can again be regenerated for reuse.

Keywords

Biosorption Heavy metals Macrophytes Pesticides Phytoremediation 

References

  1. Abas, S. N. A., Ismail, M. H. S., Kamal, L., & Izhar, S. (2013). Adsorption process of heavy metals by low-cost adsorbent: A review. World Applied Sciences Journal, 28, 1518–1530.Google Scholar
  2. Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2014). Biosorption of heavy metals: A review. Journal of Chemical Science and Technology, 3(4), 74–102.Google Scholar
  3. Abdel Salam, O. E., Reiad, N. A., & ElShafei, M. M. (2011). A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. Journal of Advanced Research, 2(4), 297–303.CrossRefGoogle Scholar
  4. Adhikari, T., Kumar, R., Singh, M. V., & Rao, A. S. (2010). Phytoaccumulation of lead by selected wetland plant species. Communications in Soil Science and Plant Analysis, 41, 2623–2632.CrossRefGoogle Scholar
  5. Afrous, A., Manshouri, M., Liaghat, A., Pazira, E., & Sedghi, H. (2011). Mercury and arsenic accumulation by three species of aquatic plants in Dezful, Iran. African Journal of Agricultural Research, 6(24), 5391–5397.Google Scholar
  6. Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, 71–78.Google Scholar
  7. Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2004). Biosorption of heavy metals. Journal of Chemistry and Environment, 7(4), 71–79.Google Scholar
  8. Ahemad, M., & Malik, A. (2011). Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriology Journal, 2, 12–21.CrossRefGoogle Scholar
  9. Ahmad, A., & Al-Othman, A. A. S. (2014). Remediation rates and translocation of heavymetals from contaminated soil through Parthenium hysterophorus. Chemistry and Ecology, 30(4), 317–327.CrossRefGoogle Scholar
  10. Ahmad, M. F., Haydar, S., Bhatti, A. A., & Baria, A. J. (2014). Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution. Biochemical Engineering Journal, 84, 83–90.CrossRefGoogle Scholar
  11. Ahmady-Asbchin, S., Andre’s, Y., Ge’rente, C., & Cloirec, P. L. (2008). Biosorption of Cu(II) from aqueous solution by Fucus serratus: Surface characterization and sorption mechanisms. Bioresource Technology, 99, 6150–6155.CrossRefGoogle Scholar
  12. Aktar, M. W., Paramasivam, M., Ganguly, M., Purkait, S., & Sengupta, D. (2010). Assessment and occurrence of various heavy metals in surface water of Ganga river around Kolkata: A study for toxicity and ecological impact. Environmental Monitoring and Assessment, 160, 207–213.CrossRefGoogle Scholar
  13. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals – Concepts and applications. Chemosphere, 91, 869–881.CrossRefGoogle Scholar
  14. Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Abu Foul, A. (2013). Application of response surface methodology (rsm) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon. Journal of Chemical Technology and Biotechnology, 88(12), 141–151.Google Scholar
  15. Aman, T., Kazi, A. A., Sabri, M. U., & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids and Surfaces, B: Biointerfaces, 63, 116–121.CrossRefGoogle Scholar
  16. Araujo, A. L. P., Bertagnolli, C., Silva, M. G. C., Gmenes, M. L., & Barros, M. A. S. D. (2013). Zinc adsorption in bentonite clay: Influence of pH and initial concentration. Acta Scientiarum – Technology, 35, 325–332.Google Scholar
  17. Arora, A., Sood, A., & Singh, P. K. (2004). Hyperaccumulation of cadmium and nickel by Azolla species. Indian Journal of Plant Physiology, 3, 302–304.Google Scholar
  18. Arora, A., Saxena, S., & Sharma, D. K. (2006). Tolerance and phytoaccumulation of chromium by three Azolla species. World Journal of Microbiology and Biotechnology, 22, 97–100.CrossRefGoogle Scholar
  19. Ashraf, M. A., Maah, M. J., & Yusof, I. (2011). Heavy metals accumulation in plants growing in tin mining catchment. International Journal of Environmental Science and Technology, 8(2), 401–416.CrossRefGoogle Scholar
  20. Ashworth, J., Barnes, C., Oates, P., & Schaw, A. (2005). Indicators for land contaminants science. Environment agency report SC030039/SR. Bristol Environment Agency.Google Scholar
  21. Babak, L., Šupinova, P., Zichova, M., Burdychova, R., & Vitova, E. (2012). Biosorption of Cu, Zn and Pb by thermophilic bacteria–effect of biomass concentration on biosorption capacity. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis LX (5).Google Scholar
  22. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126.Google Scholar
  23. Banerjee, K., Ramesh, S. T., Nidheesh, P. V., & Bharathi, K. S. (2012). A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions. Iranica Journal of Energy & Environment, 3, 143–156.Google Scholar
  24. Banuelos, G., Terry, N., Leduc, D. L., Pilon-Smits, E. A. H., & Mackey, B. (2005). Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environmental Science & Technology, 39, 1771–1777.CrossRefGoogle Scholar
  25. Bauddh, K., & Singh, R. P. (2012). Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicology and Environmental Safety, 85, 13–22.CrossRefGoogle Scholar
  26. Bennicelli, R., Stezpniewska, Z., Banach, A., Szajnocha, K., & Ostrowski, J. (2004). The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere, 55, 141–146.CrossRefGoogle Scholar
  27. Benyoucef, S., & Amrani, M. (2011). Adsorption of phosphate ions onto low cost Aleppo pine adsorbent. Desalination, 275, 231–236.CrossRefGoogle Scholar
  28. Bhatia, M., & Goyal, D. (2014). Analyzing remediation potential of wastewater through wetland plants: A review. Environmental Progress & Sustainable Energy, 33, 9–27.CrossRefGoogle Scholar
  29. Bouldin, J. L., Farris, J. L., Moore, M. T., Smith, J. S., & Cooper, C. M. (2006). Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere, 65, 1049–1057.CrossRefGoogle Scholar
  30. Boule, K. M., Vicente, J. A. F., Nabais, C., Prasad, M. N. V., & Freitas, H. (2009). Ecophysiological tolerance of duckweeds exposed to copper. Aquatic Toxicology, 91, 1–9.CrossRefGoogle Scholar
  31. Boyd, C. E. (1970). Vascular aquatic plants for mineral nutrient removal from polluted waters. Economic Botany, 24, 95–103.CrossRefGoogle Scholar
  32. Brooks, R. R. (1998). Phytochemistry of hyperaccumulators. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining (pp. 15–54). Wallingford: CAB International.Google Scholar
  33. Carvalho, W. S., Martins, D. F., Gomes, F. R., Leite, I. R., Gustavo da Silva, L., Ruggiero, R., & Richter, E. M. (2011). Phosphate adsorption on chemically modified sugarcane bagasse fibres. Biomass and Bioenergy, 35, 3913–3919.CrossRefGoogle Scholar
  34. Chandra, R., & Yadav, S. (2010). Potential of Typha angustifolia for phytoremediation of heavy metals from aqueous solution of phenol and melanoidin. Ecological Engineering, 36, 1277–1284.CrossRefGoogle Scholar
  35. Chandra, R., & Yadav, S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites communis, Typha angustifolia and Cyperus esculentus. International Journal of Phytoremediation, 13, 580–591.CrossRefGoogle Scholar
  36. Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429–1443.CrossRefGoogle Scholar
  37. Chatterjee, S., Kumar, A., Basu, S., & Dutta, S. (2012). Application of response surface methodology for methylene blue dye removal from aqueous solution using low cost adsorbent. Chemical Engineering Journal, 181–182, 289–299.CrossRefGoogle Scholar
  38. Chaudhry, Q., Schroder, P., Werck-Reichhart, D., Grajek, W., & Marecik, R. (2002). Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environmental Science and Pollution Research, 9, 4–17.CrossRefGoogle Scholar
  39. Chen, J. C., Wang, K. S., Chen, H., Lu, C. Y., Huang, L. C., Li, H. C., Peng, T. H., & Chang, S. H. (2009). Phytoremediation of Cr(III) by Ipomoea aquatica (water spinach) from water in the presence of EDTA and chloride: Effects of Cr speciation. Bioresource Technology, 101, 3033–3039.CrossRefGoogle Scholar
  40. Chen, J.-C., Wang, K.-S., Chen, H., Lu, C.-Y., Huang, L.-C., Li, L.-C., Peng, T.-H., & Chang, C.-H. (2010). Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: Effects of Cr speciation. Bioresource Technology, 101(9), 3033–3039.CrossRefGoogle Scholar
  41. Cho, D., Chon, C., Kim, Y., Jeon, B., Schwartz, F. W., Lee, E., & Song, H. (2011). Adsorption of nitrate and Cr (VI) by cationic polymer-modified granular activated carbon. Chemical Engineering Journal, 175, 298–305.CrossRefGoogle Scholar
  42. Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.CrossRefGoogle Scholar
  43. Cobbett, C. S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 123(3), 825–832.CrossRefGoogle Scholar
  44. Cowgill, V. M. (1974). The hydro geochemical of Linsley Pond, North Braford. Part 2. The chemical composition of the aquatic macrophytes. Archiv für Hydrobiologie, Supplement, 45, 1–119.Google Scholar
  45. Cronje, K. J., Chetty, K., Carsky, M., Sahu, J. N., & Meikap, B. C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination, 275, 276–284.CrossRefGoogle Scholar
  46. Dalcorso, G., Farinati, S., Maistri, S., & Furini, A. (2008). How plants cope with cadmium: Staking all on metabolism and gene expression. Journal of Integrative Plant Biology, 50(10), 1268–1280.CrossRefGoogle Scholar
  47. Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11, 664–691.CrossRefGoogle Scholar
  48. De Fillippis, L. F. (1979). The effect of sub-lethal concentrations of mercury and zinc in Chlorella: The counteraction of metal toxicity by selenium and sulphhydryl compounds. Zeitschrift für Pflanzenphysiologie, 93, 63–68.CrossRefGoogle Scholar
  49. Delgado, M., Bigeriego, M., & Guardiola, E. (1993). Uptake of Zn, Cr and Cd by water hyacinth. Water Research, 27, 269.CrossRefGoogle Scholar
  50. Denny, P. (1980). Solute movement in submerged angiosperms. Biological Reviews, 55, 65–92.CrossRefGoogle Scholar
  51. Denny, P. (1987). Mineral cycling by wetland plants a review. Archiv fur Hydrobiologie Beith, 27, 1–25.Google Scholar
  52. Dhir, B., Sharmila, P., & Saradhi, P. P. (2009). Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology, 39, 754–781.CrossRefGoogle Scholar
  53. Dixit, A., Dixit, S., & Goswami, S. (2011). Process and plants for wastewater remediation: A review. Scientific Reviews and Chemical Communications, 1(1), 71–77.Google Scholar
  54. El-Mekkawi, D., & Galal, H. R. (2013). Removal of a synthetic dye “Direct Fast Blue B2RL” via adsorption and photocatalytic degradation using low cost rutile and Degussa P25 titanium dioxide. Journal of Hydro-Environment Research, 7, 219–226.CrossRefGoogle Scholar
  55. Euliss, K., Ho, C. H., Schwab, A. P., Rock, S., & Banks, M. K. (2008). Greenhouse and field assessment of phytoremediation for petroleum contaminants in a Riparian zone. Bioresource Technology, 99, 1961–1971.CrossRefGoogle Scholar
  56. Feng, N., & Guo, X. (2012). Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Transactions of the Nonferrous Metals Society of China, 22, 1224–1231.CrossRefGoogle Scholar
  57. Fernandez, R. T., Whitwell, T., Riley, M. B., & Bernard, C. R. (1999). Evaluating semiaquatic herbaceous perennials for use in herbicide phytoremediation. Journal of the American Society for Horticultural Science, 124, 539.Google Scholar
  58. Flores-Garnica, J. G., Morales-Barrera, L., Pineda-Camacho, G., & Cristiani-Urbina, E. (2013). Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds. Bioresource Technology, 136, 635–643.CrossRefGoogle Scholar
  59. Fritioff, A., Kautsky, L., & Greger, M. (2005). Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 133, 265–274.CrossRefGoogle Scholar
  60. Gao, J., Garrison, A. W., Mazur, C. S., Wolfe, N. L., & Hoehamer, C. F. (2000). Uptake and phytotransformation of o, p′-DDT and p, p′-DDT by axenically cultivated aquatic plants. Journal of Agricultural and Food Chemistry, 48(12), 6121–6127.CrossRefGoogle Scholar
  61. Ghavri, S. V., Bauddh, K., Kumar, S., & Singh, R. P. (2013). Bioaccumulation and translocation potential of Na+ and K+ in native weeds grown on industrially contaminated soil. International Journal of ChemTech Research, 5(4), 1869–1875.Google Scholar
  62. Goncalves, C., & Alpendurada, M. F. (2005). Assessment of pesticide contamination in soil samples from an intensive horticulture area, using ultrasonic extraction and gas chromatography-mass spectrometry. Talanta, 65, 1179–1189.CrossRefGoogle Scholar
  63. Guo, J., Xu, W., & Ma, M. (2012). The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. Journal of Hazardous Materials, 199–200, 309–313.CrossRefGoogle Scholar
  64. Guo, W., Zhang, H., & Huo, S. (2014). Organochlorine pesticides in aquatic hydrophyte tissues and surrounding sediments in Baiyangdian wetland, China. Ecological Engineering, 67, 150–155.CrossRefGoogle Scholar
  65. Ha, H., Olson, J., Bian, L., & Rogerson, P. A. (2014). Analysis of heavy metals sources in soil using kriging interpolation on principal components. Environmental Science and Technology, 48, 4999–5007.CrossRefGoogle Scholar
  66. Haddad, M. E., Mamouni, R., Saffaj, N., & Lazar, S. (2014). Evaluation of performance of animal bone meal as a new low cost adsorbent for the removal of a cationic dye Rhodamine B from aqueous solutions. Journal of Saudi Chemical Society. in Press.Google Scholar
  67. Hashemian, S., & Salimi, M. (2012). Nano composite a potential low cost adsorbent for removal of cyanine acid. Chemical Engineering Journal, 188, 57–63.CrossRefGoogle Scholar
  68. Hemen, S. (2011). Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4(2), 118–138.CrossRefGoogle Scholar
  69. Hossain, M. A., & Fujita, M. (2009). Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Bioscience Biotechnology and Biochemistry, 73(9), 2007–2013.CrossRefGoogle Scholar
  70. Hossain, M. A., Hossain, M. Z., & Fujita, M. (2009). Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Australian Journal of Crop Science, 3(2), 53–64.Google Scholar
  71. Hossain, M. A., Piyatida, P., Teixeira da Silva, J. A., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 1–37.  https://doi.org/10.1155/2012/872875.CrossRefGoogle Scholar
  72. Hu, M. J., Wei, Y. L., Yang, Y. W., & Lee, J. F. (2003). Immobilization of chromium (VI) with debris of aquatic plants. Environmental Contamination and Toxicology, 71, 0840–0847.CrossRefGoogle Scholar
  73. Hu, C., Zhang, L., Hamilton, D., Zhou, W., Yang, T., & Zhu, D. (2007). Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia, 579(1), 211–218.CrossRefGoogle Scholar
  74. Hutchinson, G. E. (1975). A treatise on limnology. London: Wiley.Google Scholar
  75. Jadia, C. D., & Fulekar, M. H. (2009). Review on phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology, 8(6), 921.Google Scholar
  76. Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth (E. crassipes Mart Solms). Journal of Applied Sciences and Environmental Management, 14, 2.Google Scholar
  77. Jaison, S., & Muthukmar, T. (2016). Chromium accumulation in medicinal plants growing naturally on tannery contaminated and non-contaminated soils. Biological Trace Element Research.  https://doi.org/10.1007/s12011-016-0740-1.CrossRefGoogle Scholar
  78. Jiménez-Cedillo, M. J., Olguín, M. T., Fall, C., & Colin-Cruz, A. (2013). As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley). Journal of Environmental Management, 117, 242–252.CrossRefGoogle Scholar
  79. Kamal, M., Ghaly, A. E., Mahmoud, N., & Cote, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.CrossRefGoogle Scholar
  80. Kamel, A. K. (2013). Phytoremediation potentiality of aquatic macrophytes in heavy metal contaminated water of El-Temsah Lake, Ismailia, Egypt. Middle-East Journal of Scientific Research, 14(12), 1555–1568.Google Scholar
  81. Karakagh, R. M., Chorom, M., Motamedi, H., YuseKalkhajeh, Y. K., & Oustan, S. (2012). Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge. Ecohydrology and Hydrobiology, 12(3), 191–198.CrossRefGoogle Scholar
  82. Kasim, W. A. (2005). The correlation between physiological and structural alterations induced by copper and cadmium stress in broad beans (Vicia faba L.). Egyptian Journal of Biology, 7, 20–32.Google Scholar
  83. Kelly, M. G., & Whitton, B. A. (1989). Interspecific differences in Zn, Cd and Pb accumulation by freshwater algae and bryophytes. Hydrobiologia, 175(1), 12.CrossRefGoogle Scholar
  84. Kelly-Vargas, K., Cerro-Lopez, M., Reyna-Tellez, S., Bandala, E. R., & Sanchez-Salas, J. L. (2012). Biosorption of heavy metals in polluted water, using different waste fruit cortex. Physics and Chemistry of the Earth, 37–39, 26–29.CrossRefGoogle Scholar
  85. Kılıc, M., Kırbıyık, Ç., Çepelio˘gullar, Ö., & Pütüna, A. E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, aby-product of pyrolysis. Applied Surface Science, 283, 856–862.CrossRefGoogle Scholar
  86. Kiyono, M., Oka, Y., Sone, Y., Tanaka, M., Nakamura, R., Sato, M. H., Pan-Hou, H., Sakabe, K., & Inoue, K. (2012). Expression of bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121 in Arabidopsis thaliana increases cadmium accumulation and tolerance. Planta, 235, 841–850.CrossRefGoogle Scholar
  87. Kumar, D., & Kumar, N. (2016). Tannery effluent toxicity assessment on the growth and germination of phaseolus vulgaris L (Bean). International Journal of Green and Herbal Chemistry, 5(2), 139–144.Google Scholar
  88. Kumar, I. N., & Oommen, C. (2012). Removal of heavy metals by biosorption using freshwater algae Spirogyra hyaline. Journal of Environmental Biology, 33, 27–31.Google Scholar
  89. Kumar, J., Balomajumder, C., & Mondal, P. (2011). Application of agro-based biomasses for Zinc removal from wastewater–a review. Clean: Soil, Air, Water, 39, 641–652.Google Scholar
  90. Kumar, N., Bauddh, K., Barman, S. C., & Singh, D. P. (2012). Accumulation of metals in selected macrophytes grown in mixture of drain water and tannery effluent and their phytoremediation potential. Journal of Environmental Biology, 33, 323–327.Google Scholar
  91. Kumar, N., Bauddh, K., Kumar, S., Dwivedi, N., Singh, D. P., & Barman, S. C. (2013). Extractability and phytotoxicity of heavy metals present in petrochemical industry sludge. Clean Technologies and Environmental Policy, 15, 1033–1039.CrossRefGoogle Scholar
  92. Kumar, D., Singh, D. P., Barman, S. C., & Kumar, N. (2016). Heavy metal and their regulation in plant system: An overview. In Plant responses to xenobiotics (pp. 19–38). New York: Springer.CrossRefGoogle Scholar
  93. Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.CrossRefGoogle Scholar
  94. Leblebici, Z., & Aksoy, A. (2011). Growth and lead accumulation capacity of L. minor and Spirodela polyrhiza (Lemnaceae): Interactions with nutrient enrichment. Water, Air, and Soil Pollution, 214, 175–184.CrossRefGoogle Scholar
  95. Li, Q., Chen, B., lin, P., Zhou, J., Zhan, J., Shen, Q., & Pan, X. (2016). Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root E. crassipes. International Journal of Phytoremediation, 18, 103–109.CrossRefGoogle Scholar
  96. Liu, D., Zou, J., Wang, M., & Jiang, W. (2008). Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresource Technology, 99(7), 2628–2636.CrossRefGoogle Scholar
  97. Low, K. S., Lee, C. K., & Tai, C. H. (1994). Biosorption of copper by water hyacinth roots. Journal of Environmental Science and Health, Part A, 29(1), 171.Google Scholar
  98. Mahmood, Q., Zheng, P., Islam, E., Hayet, Y., Hassan, M. J., Jilani, G., & Jin, R. C. (2005). Lab scale studies on water Hyacinth (E. crassipes Marte Sloms) for biotreatment of textile waste water. Caspian Journal of Environmental Sciences, 3, 83–88.Google Scholar
  99. Malik, R. N., Husain, S. Z., & Nazir, I. (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad. Pakistan Journal of Botany, 42(1), 291–301.Google Scholar
  100. Mallick, N., Singh, A. K., & Rai, L. C. (1990). Impact of bimetallic combinations of Cu, Ni and Fe on growth rate, uptake of nitrate and ammonium, 14CO2 fixations, nitrate reductase and urease activity of Chlorella vulgaris. Biology of Metals, 2, 223–228.CrossRefGoogle Scholar
  101. Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R., & Ansari, T. M. (2013). Organic acids pre-treatment effect on Rosa bourboniaphyto biomass for removal of Pb(II) and Cu(II) from aqueous media. Bioresource Technology, 132, 446–452.CrossRefGoogle Scholar
  102. Mapanda, F., Mangwayana, E. N., Nyanangara, J., & Giller, K. E. (2005). The effect of long-term irrigation using wastewater on the heavymetal contents of soils under vegetables in Harare, Zimbabwe. Agriculture, Ecosystems & Environment, 107, 151–165.CrossRefGoogle Scholar
  103. Marin-Rangel, V. M., Cortes-Martines, R., Villanueva, R. A. C., Garnica-Romo, M. G., & Martinez-Flores, H. E. (2012). As(V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia Swingle) residues. Journal of Food Science, 71, 10–14.CrossRefGoogle Scholar
  104. Mazumdar, K., & Das, S. (2015). Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India. Environmental Science and Pollution Research, 22, 701–710.CrossRefGoogle Scholar
  105. Mejare, M., & Bulow, L. (2001). Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology, 19, 67–73.CrossRefGoogle Scholar
  106. Miglioranza, K. S. B., De Moreno, J. E. A., & Moreno, V. J. (2004). Organochlorine pesticides sequestered in the aquatic hydrophyte Schoenoplectus californicus (C. A. Meyer) Soják from a shallow lake in Argentina. Water Research, 38, 1765–1772.CrossRefGoogle Scholar
  107. Miretzky, P., Saralegui, A., & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57, 997–1005.CrossRefGoogle Scholar
  108. Mkandawire, M., Taubert, B., & Dude, E. G. (2004). Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. International Journal of Phytoremediation, 6(4), 347–362.CrossRefGoogle Scholar
  109. Mohamad, H. H., & Latif, P. A. (2010). Uptake of Cadmium and Zinc from synthetic effluent by water hyacinth (E. crassipes). Environment Asia, 3, 36–42.Google Scholar
  110. Molisani, M. M., Rocha, R., Machado, W., Barreto, R. C., & Lacerda, L. D. (2006). Mercury contents in aquatic macrophytes from two reservoirs in the paraiba do sul: Guandu river system, Se Brazil. Brazilian Journal of Biology, 66, 101–107.CrossRefGoogle Scholar
  111. Mukherjee, S., Bhattacharya, P., & Duttagupta, A. K. (2004). Heavy metal levels and esterase variations between metal-exposed and unexposed duckweed L. minor: Field and laboratory studies. Environment International, 30, 811–814.CrossRefGoogle Scholar
  112. Naeem, K., Yawar, W., Akhter, P., & Rehana, I. (2010). Atomic absorption spectrometric determination of cadmium and lead in soil after total digestion. Asia-Pacific Journal of Chemical Engineering, 7, 295–301.  https://doi.org/10.1002/apj.535.CrossRefGoogle Scholar
  113. Nedunuri, K. V., Lowell, C., Meade, W., Vonderheide, A. P., & Shann, J. R. (2009). Management practices and phytoremediation by native grasses. International Journal of Phytoremediation, 12(2), 200–214.CrossRefGoogle Scholar
  114. Nguyen, T. T. T., Davy, F. B., Rimmer, M., & De Silva, S. (2009). Use and exchange of genetic resources of emerging species for aquaculture and other purposes. FAO/ NACA expert meeting on the use and exchange of aquatic genetic resources relevant for food and agriculture, Chonburi, Thailand.CrossRefGoogle Scholar
  115. Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Yue, Q. Y., Li, Q., & Nguyen, T. V. (2013). Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater: Review. Bioresource Technology, 148, 574–585.CrossRefGoogle Scholar
  116. Ofomaja, A. E., Naidoo, E. B., & Modise, S. J. (2010). Biosorption of Cu(II) and Pb(II) onto potassium hydroxide treated pine cone powder. Journal of Environmental Management, 91, 1674–1685.CrossRefGoogle Scholar
  117. Olette, R., Couderchet, M., Biagianti, S., & Eullaffroy, P. (2008). Toxicity and removal of pesticides by selected aquatic plants. Chemosphere, 70, 1414–1421.CrossRefGoogle Scholar
  118. Olette, R., Couderchet, M., & Eullaffroy, P. (2009). Phytoremediation of fungicides by aquatic macrophytes: Toxicity and removal rate. Ecotoxicology and Environmental Safety, 72, 2096–2101.CrossRefGoogle Scholar
  119. Outridge, P. M., & Noller, B. N. (1991). Accumulation of toxic trace elements by freshwater vascular plants. In Reviews of environmental contamination and toxicology (pp. 1–63). New York: Springer.Google Scholar
  120. Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. M., & Park, S. (2013). Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 149, 383–389.CrossRefGoogle Scholar
  121. Parmar, S., & Singh, V. (2015). Phytoremediation approaches for heavy metal pollution: A review. Journal of Plant Science & Research, 2, 135.Google Scholar
  122. Pierre, V., Terry, M., & Madeleine, S. G. (2011). Compartmentation of metals in foliage of Populus tremula grown on soil with mixed contamination from the tree crown to leaf cell level. Environmental Pollution, 159, 324–336.CrossRefGoogle Scholar
  123. Prakash, B. S., & Kumar, S. V. (2013). Batch removal of heavy metals by biosorption onto marine algae-equilibrium and kinetic studies. International Journal of ChemTech Research, 5(3), 1254–1262.Google Scholar
  124. Prasertsup, P., & Ariyakanon, N. (2011). Removal of Chlorpyrifos by Water Lettuce (P. stratiotes L.) and Duckweed (L. minor L.). International Journal of Phytoremediation, 13(4), 383–395.CrossRefGoogle Scholar
  125. Priya, E. S., & Selvan, P. S. (2013). Water hyacinth (E. crassipes) – An efficient and economic adsorbent for textile effluent treatment – A review. Arabian Journal of Chemistry.  https://doi.org/10.1016/j.arabjc.2014.03.002 . CrossRefGoogle Scholar
  126. Qadir, S., Qureshi, M. I., Javed, S., & Abdin, M. Z. (2004). Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Science, 167, 1171–1181.CrossRefGoogle Scholar
  127. Rahman, S. M. B., Kumar, S., Sayeed, M. A. B., Sabbir, M. W., Hasanuzzaman, A. F. M., Alam, M. I., & Sarower, M. G. (2008). Ecological diversity and distribution of aquatic and semi-aquatic weeds in Khulna district, Bangladesh. South Asian Journal of Agriculture, 3(1&2), 163–168.Google Scholar
  128. Rai, P. K. (2008). Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. International Journal of Phytoremediation, 10, 430–439.CrossRefGoogle Scholar
  129. Rai, P. K. (2009). Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Environmental Science & Technology, 39, 697–753.CrossRefGoogle Scholar
  130. Rai, P. K. (2010). Microcosom investigation of phytoremediation of Cr using Azolla pinnata. International Journal of Phytoremediation, 12, 96–104.CrossRefGoogle Scholar
  131. Rai, L. C., Gaur, J. P., & Kumar, H. D. (1981). Phycology and heavy metal pollution. Biological Reviews of the Cambridge Philosophical Society, 56, 99–151.CrossRefGoogle Scholar
  132. Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Waste water treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecological Engineering, 5, 5–12.CrossRefGoogle Scholar
  133. Rajoriya, S., & Kaur, B. (2014). Adsorptive removal of Zinc from waste water by natural biosorbents. International Journal of Engineering and Science Invention, 3(6), 60–80.Google Scholar
  134. Reed, R. H., & Gadd, G. M. (1990). Metal tolerance in eukaryotic and prokaryotic algae. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 105–118). Boca Raton: CRC Press.Google Scholar
  135. Ren, Z., Xu, X., Gao, B., Yue, Q., & Song, W. (2015). Integration of adsorption and direct bio-reduction of perchlorate on surface of cotton stalk based resin. Journal of Colloid and Interface Science, 459, 127–135.CrossRefGoogle Scholar
  136. Rezania, S., Ponraj, M., Din, M. F. M., Chelliapan, S., & Sairan, F. M. (2016). Effectiveness of E. crassipes in nutrient removal from domestic wastewater based on its optimal growth rate. Desalination and Water Treatment, 57, 360–365.Google Scholar
  137. Rizwana, M., Darshan, M., & Nilesh, D. (2014). Phytoremediation of textile waste water using potential wetland plant: Eco sustainable approach. International Journal of Interdisciplinary and Multidisciplinary Studies, 1(4), 130–138.Google Scholar
  138. Ruiz, O. N., Alvarez, D., Gonzalez-Ruiz, G., & Torres, C. (2011). Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnology, 11, 82–89.CrossRefGoogle Scholar
  139. Sakakibara, M., Ohmoril, Y., Ha, N. T. H., Sano, S., & Sera, K. (2011). Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN – Soil, Air, Water, 39(8), 735–741.CrossRefGoogle Scholar
  140. Sanghamitra, K., Prasada, R. P. V. V., & Naidu, G. R. K. (2011). Heavy metal tolerance of weed species and their accumulations by phytoextraction. Indian Journal of Science and Technology, 4(3), 285–290.Google Scholar
  141. Sasmaz, A., Obek, E., & Hasar, H. (2008). The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecological Engineering, 33, 278–284.CrossRefGoogle Scholar
  142. Sasmaz, M., Topal, E. I. A., Obek, E., & Sasmaz, A. (2015). The potential of Lemna gibba L. and L. minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. Journal of Environmental Management, 163, 246–253.CrossRefGoogle Scholar
  143. Sasmaza, A., Obekb, E., & Hasarb, H. (2009). The accumulation of heavy metals in Typha latifolia L. Grown in a stream carrying secondary effluent. Ecological Engineering, 33, 278–284.CrossRefGoogle Scholar
  144. Sharma, H. (2011). Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4(2), 118–138.CrossRefGoogle Scholar
  145. Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14(1), 43–50.CrossRefGoogle Scholar
  146. Sharma, S. S., & Gaur, J. P. (1995). Potential of Lemna polyrrhiza for removal of heavy metals. Ecological Engineering, 4, 37–43.CrossRefGoogle Scholar
  147. Sharma, S., Singh, B., & Manchanda, V. K. (2015). Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946–962.CrossRefGoogle Scholar
  148. Silveira, M. L., Vendramini, J. M. B., Sui, X. L., Sollenberger, L., & O’Connor, G. A. (2013). Screening perennial warm-season bioenergy crops as an alternative for phytoremediation of excess soil P. Bioenergy Research, 6, 469–475.CrossRefGoogle Scholar
  149. Singh, R., Singh, D. P., Kumar, N., Bhargava, S. K., & Barman, S. C. (2010). Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. Journal of Environmental Biology, 31, 421–430.Google Scholar
  150. Song, W., Xu, X., Tan, X., Wang, Y., Ling, J., Gao, B., & Yue, Q. (2015). Column adsorption of perchlorate by amine-crosslinked biopolymer based resin and its biological, chemical regeneration properties. Carbohydrate Polymers, 115, 432–438.CrossRefGoogle Scholar
  151. Sood, A., Uniyal, P. L., Prasanna, R., & Ahluwalia, S. A. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio, 41, 122–137.CrossRefGoogle Scholar
  152. Srivastava, S., Mishra, S., Dwivedi, S., & Tripathi, R. (2010). Role of thio-metabolism in arsenic detoxification in Hydrilla verticillata (L.f.) Royle. Water, Air, and Soil Pollution, 212, 155–165.CrossRefGoogle Scholar
  153. Srivastava, S., Srivastava, M., Suprasanna, S., & D’Souza, F. (2011). Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecological Engineering, 37, 1937–1941.CrossRefGoogle Scholar
  154. Suksabye, P., & Thiravetyan, P. (2012). Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith. Journal of Environmental Management, 102, 1–8.CrossRefGoogle Scholar
  155. Susselan, K. N., Salskar, D. A., Suvarna, S., Udas, A., & Bhagawat, A. (2006). Uptake of mercury, cadmium, uranium and zinc by Mimosa pudica. Indian Journal of Plant Physiology, 11, 432–436.Google Scholar
  156. Thayaparan, M., Iqbal, S. S., Chathuranga, P. K. D., & Iqbal, M. C. M. (2013). Rhizofiltration of Pb by Azolla pinnata. International Journal of Environmental Sciences, 3, 6.Google Scholar
  157. Tomar, V., Prasad, S., & Kumar, D. (2014). Adsorptive removal of fluoride from water samples using Zr–Mn composite material. Microchemical Journal, 111, 116–124.CrossRefGoogle Scholar
  158. Trevors, J. T., Stratton, G. W., & Gadd, G. M. (1986). Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Journal of Microbiology, 32, 447–464.Google Scholar
  159. Tuzen, M., & Sarı, A. (2010). Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies. Chemical Engineering Journal, 158, 200–206.CrossRefGoogle Scholar
  160. Uçar, S., Erdem, M., Tay, T., & Karagöz, S. (2014). Removal of lead (II) and nickel (II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2CO3 activation. Clean Technologies and Environmental Policy, 17, 747–756.CrossRefGoogle Scholar
  161. Unnikannan, P., Baskaran, L., Chidambaram, A. L. A., & Sundaramoorthy, P. (2013). Chromium phytotoxicity in tree species and its role on phytoremediation. Insight Botany, 3, 15–25.CrossRefGoogle Scholar
  162. Upadhyay, A. R., Mishra, V. K., Pandey, S. K., & Tripathi, B. D. (2007). Biofiltration of secondary treated municipal wastewater in a tropical city. Ecological Engineering, 30, 9–15.CrossRefGoogle Scholar
  163. Valipour, A., & Ahn, Y. H. (2016). Constructed wetlands as sustainable ecotechnologies in decentralization practices: A review. Environmental Science and Pollution Research, 23, 180–197.CrossRefGoogle Scholar
  164. Varun, M., D’Souza, P. J., & Paul, M. S. (2012). Metal contamination of soils and plants associated with the glass industry in North Central India: Prospects of phytoremediation. Environmental Science and Pollution Research, 19, 269–281.CrossRefGoogle Scholar
  165. Vázquez, G., Mosquera, O., Freire, M. S., Antorrena, G., & González-álvarez, J. (2012). Alkaline pre-treatment of waste chestnut shell from a food industry to enhance cadmium, copper, lead and zinc ions removal. Chemical Engineering Journal, 184, 147–155.CrossRefGoogle Scholar
  166. Verma, V. K., Gupta, R. K., & Rai, J. P. N. (2005). Biosorption of Pb and Zn from pulp and paper industry effluent by water hyacinth. Journal of Scientific and Industrial Research, 64, 778–781.Google Scholar
  167. Vesely, T., Tlustos, P., & Szakova, J. (2011). The use of water lettuce (P. stratiotes) for rhizofiltration of a highly polluted solution by cadmium and lead. International Journal of Phytoremediation, 13, 859–872.CrossRefGoogle Scholar
  168. Wallen, D. G. (1990). The toxicity of chromium (VI) to photosynthesis of the phytoplankton assemblage of Lake Erie and the diatom Fragilaria crotonensis. Aquatic Botany, 38, 331–340.CrossRefGoogle Scholar
  169. Wasewar, K. L., Mohammad, A., Prasad, B., & Mishra, I. M. (2008). Adsorption of Zn using factory tea waste: Kinetics, equilibrium and thermodynamics. Clean: Soil, Air, Water, 36(3), 320–329.Google Scholar
  170. Whitton, B. A., Burrows, I. G., & Kelly, M. G. (1989). Use of Cladophora glomerata to monitor heavy metals in rivers. Journal of Applied Phycology, 1, 293–299.CrossRefGoogle Scholar
  171. Witek-Krowiak, A., Szafran, R. G., & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265(1–3), 126–134.CrossRefGoogle Scholar
  172. Wolverton, B. C. A. (1975). Water hyacinth for removal of phenols from polluted waters, NASA Tech. Memo. (TM-X-72722), 18p. Science Technology Aerospace Report 13(7), 79.Google Scholar
  173. Wong, P. T. S., & Chau, Y. K. (1990). Zinc toxicity to fresh water algae. Toxicity Assess, 5, 167–177.CrossRefGoogle Scholar
  174. Xia, H., & Ma, X. (2006). Phytoremediation of ethion by water hyacinth (E. crassipes) from water. Bioresource Technology, 97, 1050–1054.CrossRefGoogle Scholar
  175. Xu, X., Gao, B., Tan, X., Zhang, X., Yue, D., & Yue, Q. (2013a). Uptake of perchlorate from aqueous solutions by amine-crosslinked cotton stalk. Carbohydrate Polymers, 98, 132–138.CrossRefGoogle Scholar
  176. Xu, X., Gao, B., Yue, Q., Li, Q., & Wang, Y. (2013b). Nitrate adsorption by multiple biomaterial based resins: Application of pilot-scale and lab-scale products. Chemical Engineering Journal, 234, 397–405.CrossRefGoogle Scholar
  177. Xu, X., Gao, B., Huang, X., Ling, J., Song, W., & Yue, Q. (2015). Physicochemical characteristics of epichlorohydrin, pyridine and trimethylamine functionalized cotton stalk and its adsorption/desorption properties for perchlorate. Journal of Colloid and Interface Science, 440, 219–228.CrossRefGoogle Scholar
  178. Yuan, Y., Yu, S., Banuelos, G. S., & He, Y. (2016). Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: Opportunities for contamination bioindication and phytoremediation. Environmental Science and Pollution Research, 23, 22477–22487.CrossRefGoogle Scholar
  179. Zhang, X., Lin, A. J., Zhao, F. J., Xu, G. Z., Duan, G. L., & Zhu, Y. G. (2008). Arsenic accumulation by aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution, 156, 1149–1155.CrossRefGoogle Scholar
  180. Zhang, X., Zhao, F. J., Huang, Q., Williams, P. N., Sun, G. X., & Zhu, Y. G. (2009). Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist, 182, 421–428.CrossRefGoogle Scholar
  181. Zhu, Y. L., Zayed, A. M., Quian, J.-H., de Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II Water hyacinth. Journal of environmental quality, 28, 339–344.CrossRefGoogle Scholar
  182. Zhu, Y.-G., Ralf, K., & Tong, Y.-P. (2004). Vacuolar compartmentalization: A second-generation approach to engineering plants for phytoremediation. Trends in Plant Science, 9(1), 7–9.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dhananjay Kumar
    • 1
  • Sangeeta Anand
    • 1
  • Poonam
    • 1
  • Jaya Tiwari
    • 2
  • G. C. Kisku
    • 3
  • Narendra Kumar
    • 1
  1. 1.Department of Environmental ScienceBabasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia
  2. 2.School of Biological SciencesAIPH UniversityBhubaneswarIndia
  3. 3.Environmental Monitoring Division CSIR-Indian Institute of Toxicology Research Vishvigyan BhavanLucknowIndia

Personalised recommendations