Advertisement

Thermophiles vs. Psychrophiles: Cues from Microbes for Sustainable Industries

  • Monica Sharma
Chapter

Abstract

Though cellular architecture and functions show vast array of adaptive features to combat extreme temperature regime, enzymes are the key determinants of thermal adaption in both extremes of life, i.e., psychrophily or thermophily, as they drive the metabolism and cell cycle. Psychrophilic enzymes exhibit high specific activity at lower temperature range by disappearance of non-covalent stabilizing interactions (H bonding, hydrophobic interactions, salt bridges, etc.) and proline and arginine residues which cause improved flexibility (local/global) in conformation of enzymes. These enzymes have devised diverse ways to achieve the feat to live in extremity. Thermophilic enzymes work totally opposite to psychrophiles, i.e., by increasing proline number that causes proline isomerization which renders them to be more rigid and have higher arginine content which leads to increased salt bridge formation and extensive H bonding, etc. Oligomerization and heat shock proteins further give microbes stability against temperature.

Keywords

Psychrophiles Thermophiles Oligomerization Proline isomerization 

References

  1. Aghajari, N., Feller, G., Gerday, C., & Haser, R. (1998). Structures of the psychrophilic Alteromonas haloplanctis [alpha]-amylase give insights into cold adaptation at a molecular level. Structure, 6, 1503–1516.CrossRefGoogle Scholar
  2. Andrade, C. M. M. C., Pereira, N., Jr., & Antranikian, G. (1999). Extremely thermophilic microorganisms and their polymer-hydrolytic enzymes. Revista de Microbiologia, 30(4), 287–298.CrossRefGoogle Scholar
  3. Armstrong, B. D., Choi, J., López, C., Wesener, D. A., Hubbell, W., Cavagnero, S., & Han, S. (2011). Site-specific hydration dynamics in the nonpolar Core of a molten globule by dynamic nuclear polarization of water. Journal of the American Chemical Society, 133, 5987–5995.CrossRefGoogle Scholar
  4. Arpigny, J. L., Feller, G., Davail, S., Genicot, S., Narmx, E., Zekhnini, Z., & Gerday, C. (1994). Molecular adaptations of enzymes from thermophilic and psychrophilic organisms. In R. Gilles (Ed.), Advances in comparative and environmental physiology (Vol. 20, pp. 269–295). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  5. Barzegar, A., Moosavi-Movahedi, A. A., Pedersen, J. Z., & Miroliaei, M. (2009). Comparative thermostability of mesophilic and thermophilic alcohol dehydrogenases: Stability-determining roles of proline residues and loop conformations. Enzyme and Microbial Technology, 45(2), 73–79.CrossRefGoogle Scholar
  6. Berezovsky, I. N., & Shakhnovich, E. I. (2005). Physics and evolution of thermophilic adaptation. Proceedings of the National Academy of Sciences of the United States of America, 102, 12742–12747.CrossRefGoogle Scholar
  7. Borders, C. L., Jr., Broadwater, J. A., Bekeny, P. A., Salmon, J. E., Lee, A. S., Eldridge, A. M., & Pett, V. B. (1994). A structural role for arginine in proteins: Multiple hydrogen bonds to backbone carbonyl oxygens. Protein Science, 4(3), 541–548.Google Scholar
  8. Brandsdal, B. O., Smalås, A. O., & Åqvist, J. (2001). Electrostatic effects play a central role in cold adaptation of trypsin. FEBS Letters, 499, 171–175.CrossRefGoogle Scholar
  9. Burley, S. K., & Petskn, G. A. (1988). Weakly polar interactions in proteins. Advances in Protein Chemistry, 39, 125–189.CrossRefGoogle Scholar
  10. Chiuri, R., Maiorano, G., Rizzello, A., del Mercato, L. L., Cingolani, R., Rinaldi, R., Maffia, M., & Pompa, P. P. (2009). Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases. Biophysical Journal, 96, 1586–1596.CrossRefGoogle Scholar
  11. Collins, T., Meuwis, M. A., Gerday, C., & Feller, G. (2003). Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. Journal of Molecular Biology, 328, 419–428.CrossRefGoogle Scholar
  12. Creighton, T. E. (1991). Stability of folded conformations. Current Opinion in Structural Biology, 1, 5–16.CrossRefGoogle Scholar
  13. D’Amico, S., Marx, J. C., Gerday, C., & Feller, G. (2003). Activity–stability relationships in extremophilic enzymes. The Journal of Biological Chemistry, 278, 7891–7896.CrossRefGoogle Scholar
  14. Dams, T., & Jaenicke, R. (1999). Stability and folding of dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima. Biochemistry, 38, 9169–9178.CrossRefGoogle Scholar
  15. Davail, S., Feller, G., Narinx, E., & Gerday, C. (1994). Cold adaptation of proteins. Purification, characterization and sequence of the heat-labile subtilisin from the Antarctic psychrophilic Bacillus TA41. The Journal of Biological Chemistry, 269, 17448–17453.Google Scholar
  16. Deming, J. W. (2002). Coping with our cold planet. Applied and Environmental Microbiology, 74(6), 1677–1686.Google Scholar
  17. Dewan, S. S. (2014). Global Markets for Enzymes in industrial applications. Wellesley: BCC Research.Google Scholar
  18. Fedoy, A. E., Yang, N., Martinez, A., Leiros, H. K., & Steen, I. H. (2007). Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. Journal of Molecular Biology, 372, 130–149.CrossRefGoogle Scholar
  19. Feller, G. (2010). Protein stability and enzyme activity at extreme biological temperatures. Journal of Physics. Condensed Matter, 22(32), 323101.CrossRefGoogle Scholar
  20. Feller, G., & Gerday, C. (1997). Psychrophilic enzymes: Molecular basis of cold adaptation. Cellular and Molecular Life Sciences, 53, 830–841.CrossRefGoogle Scholar
  21. Feller, G., Thiry, M., & Gerday, C. (1991). Nucleotide sequence of the lipase gene lip2 from the. antarctic psychrotroph Moraxella TA144 and site-specific. Mutagenesis of the conserved serine and histidine residues. DNA and Cell Biology, 10, 381–388.CrossRefGoogle Scholar
  22. Feller, G., Payan, F., Theys, F., Qian, M., Haser, R., & Gerday, C. (1994). Stability and structural analysis of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. European Journal of Biochemistry, 222, 441–447.CrossRefGoogle Scholar
  23. Feller, G., D’Amico, D., & Gerday, C. (1999). Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry, 38, 4613–4619.CrossRefGoogle Scholar
  24. Ferrer, M., Chernikova, T. N., Yakimov, M. M., Golyshin, P. N., & Timmis, K. N. (2003). Chaperonins govern growth of Escherichia coli at low temperatures. Nature Biotechnology, 21(11), 1266–1267.CrossRefGoogle Scholar
  25. Ferrer, M., Lünsdorf, H., Chernikova, T. N., Yakimov, M., Timmis, K. N., & Golyshin, P. N. (2004). Functional consequences of single: Double ring transitions in chaperonins: Life in the cold. Molecular Microbiology, 53(1), 167–182.CrossRefGoogle Scholar
  26. Fontana, A. (1991). How nature engineers protein (thermo) stability. In G. di Prisco (Ed.), Life under extreme conditions: Biochemical adaptations (pp. 89–113). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  27. Gaseidnes, S., Synstad, B., Nielsen, J. E., & Eijsink, V. G. H. (2003). Rational engineering of the stability and the catalytic performance of enzymes. Journal of Molecular Catalysis B: Enzymatic, 21, 3–8.CrossRefGoogle Scholar
  28. Georlette, D., Damien, B., Blaise, V., Depiereux, E., Uversky, V. N., Gerday, C., & Feller, G. (2003). Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. The Journal of Biological Chemistry, 278, 37015–37023.CrossRefGoogle Scholar
  29. Gerday, C., Aittaleb, M., Arpigny, J. L., Baise, E., Chessa, J. P., Garsoux, G., Petrescu, I., & Feller, G. (1997). Psychrophilic enzymes: A thermodynamic challenge. Biochimica et Biophysica Acta, 1342, 119–131.CrossRefGoogle Scholar
  30. Gianese, G., Argos, P., & Pascarella, S. (2001). Structural adaptation of enzymes to low temperatures. Protein Engineering, 14, 141–148.CrossRefGoogle Scholar
  31. Gianese, G., Bossa, F., & Pascarella, S. (2002). Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins, 47, 236–249.CrossRefGoogle Scholar
  32. Goldstein, R. A. (2007). Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: Insights from the quasi-chemical approximation. Protein Science : A Publication of the Protein Society, 16(9), 1887–1895.  https://doi.org/10.1110/ps.072947007.CrossRefGoogle Scholar
  33. Gomes, E., de Souza, A. R., Orjuela, G. L., Da Silva, R., de Oliveira, T. B., & Rodrigues, A. (2016). Applications and benefits of thermophilic microorganisms and their enzymes for industrial biotechnology. In M. Schmoll & C. Dattenböck (Eds.), Gene expression systems in fungi: Advancements and applications. Fungal biology (pp. 459–492). Cham: Springer.CrossRefGoogle Scholar
  34. Goodchild, A., Raftery, M., Saunders, N. F. W., Guilliaus, M., & Cavicchioli, R. (2005). Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT. Journal of Proteome Research, 4(2), 473–480.CrossRefGoogle Scholar
  35. Gorfe, A. A., Brandsdal, B. O., Leiros, H. K., Helland, R., & Smalas, A. O. (2000). Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: Qualitative evaluation of electrostatic differences at the substrate binding site. Proteins, 40, 207–217.CrossRefGoogle Scholar
  36. Hartl, F. U., & Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nature Structural & Molecular Biology, 16(6), 574–581.CrossRefGoogle Scholar
  37. Horikoshi, K. (1999). Alkaliphiles: Some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews, 63, 735–750.Google Scholar
  38. Igarashi, K., Hatada, Y., Hagihara, H., Saeki, K., Takaiwa, M., Eumura, T., Ara, K., Ozaki, K., Kawai, S., Kobayashi, T., & Ito, S. (1998). Enzymatic properties amylase from an alkaliphilic Bacillus isolate of a novel liquefying and entire nucleotide and amino acid. Journal of Microbiology, 33, 57–61.Google Scholar
  39. Igarashi, K., Ozawa, T., Ikawa-Kitayama, K., Hayashi, Y., Araki, H., Endo, K., Hagihara, H., Ozaki, K., Kawai, S., & Ito, S. (1999). Thermostabilization by proline substitution in an alkaline, liquefying α-amylase from Bacillus sp. strain KSM-1378. Bioscience, Biotechnology, and Biochemistry, 63, 1535–1540.CrossRefGoogle Scholar
  40. Jaenicke, R. (1991). Protein stability and molecular adaptations to extreme conditions. European Journal of Biochemistry, 202, 715–728.CrossRefGoogle Scholar
  41. Jaenicke, R., & Bohm, G. (1998). Stability of proteins in extreme environments. Current Opinion in Structural Biology, 8, 738–748.CrossRefGoogle Scholar
  42. Jaenicke, R., Schurig, H., Beaucamp, N., & Ostendorp, R. (1996). Structure and stability of hyperstable proteins: Glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Advances in Protein Chemistry, 48, 181–269.CrossRefGoogle Scholar
  43. Johns, G. C., & Somero, G. N. (2004). Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Molecular Biology and Evolution, 21, 314–320.CrossRefGoogle Scholar
  44. Junge, K., Eicken, H., & Deming, J. W. (2004). Bacterial activity at −2 to −20°C in arctic winter time sea ice. Applied and Environmental Microbiology, 70(1), 550–557.CrossRefGoogle Scholar
  45. Kandror, O., & Goldberg, A. L. (1997). Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 4978–4981.CrossRefGoogle Scholar
  46. Kawamoto, J., Kurihara, T., Kitagawa, M., Kato, I., & Esaki, N. (2007). Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles, 11(6), 819–826.CrossRefGoogle Scholar
  47. Kim, S. Y., Hwang, K. Y., Kim, S. H., Sung, H. C., Han, Y. S., & Cho, Y. (1999). Structural basis for coldadaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenasefrom a psychrophile Aquaspirillium arcticum. Journal of Biological Chemistry, 274, 11761–11767.CrossRefGoogle Scholar
  48. Koga, Y. (2012). Thermal adaptation of the archaeal and bacterial lipid membrane. Archaea, 2012, 789652.CrossRefGoogle Scholar
  49. Kumar, S., & Nussinov, R. (2001). How do thermophilic proteins deal with heat? Cellular and Molecular Life Sciences, 58, 1216–1233.CrossRefGoogle Scholar
  50. Ladenstein, R., & Antranikian, G. (1998). Proteins from hyperthermophiles: Stability and enzymatic catalysis close to the boiling point of water. Advances in Biochemical Engineering/Biotechnology, 61, 37–85.CrossRefGoogle Scholar
  51. Leiros, I., Moe, E., Lanes, O., Smalas, A. O., & Willassen, N. P. (2003). The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features. Acta Crystallographica. Section D, Biological Crystallography, 59, 1357–1365.CrossRefGoogle Scholar
  52. Li, M., Zhu, L., & Wang, W. (2016). Improving the thermostability and stress tolerance of an archaeon hyperthermophilic superoxide dismutase by fusion with a unique N-terminal domain. Springer plus, 5, 241.CrossRefGoogle Scholar
  53. Low, P. S., Bada, J. L., & Somero, G. N. (1973). Temperature adaptations of enzymes: Roles of the free energy, the enthalpy and the entropy of activation. Proceedings of the National Academy of Sciences of the United States of America, 70, 430–432.CrossRefGoogle Scholar
  54. Maras, B., Valiante, S., Chiaraluce, R., Consalvi, V., Politi, L., de Rosa, M., Bossa, F., Scandurra, R., & Barra, D. (1994). The amino acid sequence of glutamate dehydrogenase from Pyrococcus furiosus, a hyperthermophilic archaebacterium. Journal of Protein Chemistry, 13, 253–259.CrossRefGoogle Scholar
  55. Matthews, C. R. (1991). The mechanism of protein folding. Current Opinion in Structural Biology, 1, 28–35.CrossRefGoogle Scholar
  56. Menendez-Arias, L., & Argos, P. (1989). Engineering protein thermal stability. Sequence statistics point to residue substitutions in α-helices. Journal of Molecular Biology, 206, 397–406.CrossRefGoogle Scholar
  57. Merlino, A., Russo Krauss, I., Castellano, I., de Vendittis, E., Rossi, B., Conte, M., Vergara, A., & Sica, F. (2010). Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis. Journal of Structural Biology, 172, 343–352.CrossRefGoogle Scholar
  58. Mrabet, N. T., Van den Broeck, A., Van den Brande, I., Stanssen, P., Laroche, Y., Lambeir, A., Matthijssens, G., Jenkins, J., Chiadmi, M., van Tilbeurgh, H., Rey, F., Janin, J., Quax, W. J., Lasters, I., De Maeyer, M., & Wodak, S. J. (1992). Arginine residues as stabilizing elements in proteins. Biochemistry, 31, 2239–2253.CrossRefGoogle Scholar
  59. Muñoz, P. A., Márquez Sebastián, L., Gonzalez-Nilo Fernando, D., Marquez-Miranda, V., & Blamey Jenny, M. (2017). Structure and application of antifreeze proteins from Antarctic bacteria. Microbial Cell Factories, 16, 138.  https://doi.org/10.1186/s12934-017-0737-2.CrossRefGoogle Scholar
  60. Mykytczuk, N. C. S., Trevors, J. T., Foote, S. J., Leduc, L. G., Ferroni, G. D., & Twine, S. M. (2011). Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains. Antonie van Leeuwenhoek, 100(2), 259–277.CrossRefGoogle Scholar
  61. Olufsen, M., Smals, A., Moe, E., & Brandsdal, B. (2005). Increased flexibility as a strategy for cold adaptation a comparative molecular dynamics study of cold and warm-active uracil DNA glycosylase. Journal of Biological Chemistry, 280, 18042–18048.CrossRefGoogle Scholar
  62. Papaleo, E., Pasi, M., Riccardi, L., Sambi, I., Fantucci, P., & Gioia, L. (2008). Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Letters, 582, 1008–1010.CrossRefGoogle Scholar
  63. Paredes, D. I., Watters, K., Pitman, D. J., Bystroff, C., & Dordick, J. S. (2011). Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Structural Biology, 11, 42.CrossRefGoogle Scholar
  64. Payen, A., & Persoz, J. F. (1833). Memoir on diastase, the principal products of its reactions, and their applications to the industrial arts. Annales de Chimie Physique, 53, 73–92.Google Scholar
  65. Piette, F., D’Amico, S., Struvay, C., Mazzucchelli, G., Renaut, J., Tutino, M. L., Danchin, A., Leprince, P., & Feller, G. (2010). Proteomics of life at low temperatures: Trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Molecular Microbiology, 76(1), 120–132.CrossRefGoogle Scholar
  66. Piette, F., D’Amico, S., Mazzucchelli, G., Danchin, A., Leprince, P., & Feller, G. (2011). Life in the cold: A proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Applied and Environmental Microbiology, 77(11), 3881–3883.CrossRefGoogle Scholar
  67. Pulicherla, K. K., Mrinmoy, G., Kumar, S., & Sambasiva Rao, K. R. (2011). Psychrozymes–the next generation industrial enzymes. Journal of Marine Science: Research and Development, 1, 102.  https://doi.org/10.4172/2155-9910.1000102.CrossRefGoogle Scholar
  68. Qiu, Y., Kathariou, S., & Lubman, D. M. (2006). Proteomic analysis of cold adaptation in a Siberian permafrost bacterium—Exiguobacterium sibiricum 255-15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics, 6(19), 5221–5233.CrossRefGoogle Scholar
  69. Razvi, A., & Scholtz, J. M. (2006). Lessons in stability from thermophilic proteins. Protein Science: A Publication of the Protein Society, 15(7), 1569–1578.CrossRefGoogle Scholar
  70. Rice, D. W., Yip, K. S., Stillman, T. J., Britton, K. L., Fuentes, A., Connerton, I., Pasquo, A., Scandurra, R., & Engel, P. C. (1996). Insights into the molecular basis of thermal stability from the structure determination of Pyrococcus furiosus glutamate dehydrogenase. FEMS Microbiology Reviews, 18, 105–117.  https://doi.org/10.1111/j.1574-6976.1996.tb00230.x.CrossRefGoogle Scholar
  71. Rina, M., Pozidis, C., Mavromatis, K., Tzanodaskalaki, M., Kokkinidis, M., & Bouriotis, V. (2000). Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. European Journal of Biochemistry, 267, 1230–1238.CrossRefGoogle Scholar
  72. Rodrigues, D. F., & Tiedje, J. M. (2008). Coping with our cold planet. Applied and Environmental Microbiology, 74(6), 1677–1686.  https://doi.org/10.1128/AEM.02000-07.CrossRefGoogle Scholar
  73. Rodrigues, D. F., Ivanova, N., He, Z., Huebner, M., Zhou, J., & Tiedje, J. M. (2008). Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: A genome and transcriptome approach. BMC Genomics, 9, 547.CrossRefGoogle Scholar
  74. Russell, R. J., Gerike, U., Danson, M. J., Hough, D. W., & Taylor, G. L. (1998). Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure, 6, 351–336.CrossRefGoogle Scholar
  75. Schiffer, C. A., & Dötsch, V. (1996). The role of protein-solvent interactions in protein unfolding. Current Opinion in Biotechnology, 7, 428–432.CrossRefGoogle Scholar
  76. Sen, S., & Nilsson, L. (2016). Thermostable subtilisin. In Thermostable proteins: Structural stability and design. CRC Press.Google Scholar
  77. Siddiqui, K. S., & Cavicchioli, R. (2006). Cold-adapted enzymes. Annual Review of Biochemistry, 75, 403–433.CrossRefGoogle Scholar
  78. Smalås, A. O., Leiros, H. K., Os, V., & Willassen, N. P. (2000). Cold adapted enzymes. Biotechnology Annual Review, 6, 1–57.CrossRefGoogle Scholar
  79. Sterner, R., Kleemann, G. R., Szadkowski, H., Lustig, A., Hennig, M., & Kirchner, K. (1996). Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer. Protein Science, 5, 2000–2008.CrossRefGoogle Scholar
  80. Strocchi, M., Ferrer, M., Timmis, K. N., & Golyshin, P. N. (2006). Low temperature-induced systems failure in Escherichia coli: Insights from rescue by cold-adapted chaperones. Proteomics, 6(1), 193–206.CrossRefGoogle Scholar
  81. Struvay, C., & Feller, G. (2012). Optimization to low temperature activity in psychrophilic enzymes. International Journal of Molecular Sciences, 13(9), 11643–11665.CrossRefGoogle Scholar
  82. Tanaka, Y., Tsumoto, K., Yasutake, Y., Umetsu, M., Yao, M., Fukada, H., Tanaka, I., & Kumagai, I. (2004). How oligomerization contributes to the thermostability of an archaeon protein. Protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii. Journal of Biological Chemistry, 279(31), 32957–32967.CrossRefGoogle Scholar
  83. Teplyakov, A. V., Kuranova, I. P., Harutyunyan, E. H., Vainshtein, B. K., Friimmel, C., Hiihne, W. E., & Wilson, K. S. (1990). Crystal structure of thermitase at 1.4 A resolution. Journal of Molecular Biology, 214, 261–279.CrossRefGoogle Scholar
  84. Trent, J. D., Gabrielsen, M., Jensen, B., Neuhard, J., & Olsen, J. (1994). Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. Journal of Bacteriology, 176(19), 6148–6152.CrossRefGoogle Scholar
  85. Tsigos, I., Velonia, K., Smonou, I., & Bouriotis, V. (1998). Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. European Journal of Biochemistry, 254, 356–362.CrossRefGoogle Scholar
  86. Vetriani, C., Maeder, D. L., Tolliday, N., Yip, K. S.-P., Stillman, T. J., Britton, K. L., Rice, D. W., Klump, H. H., & Robb, F. T. (1998). Protein thermostability above 100°C: A key role for ionic interactions. Proceedings of the National Academy of Sciences of the United States of America, 95, 12300–12305.CrossRefGoogle Scholar
  87. Villeret, V., Clantin, B., Tricot, C., Legrain, C., Roovers, M. S., Glansdorff, V. N., & Van Beeumen, J. (1998). The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proceedings of the National Academy of Sciences of the United States of America, 95, 2801–2806.CrossRefGoogle Scholar
  88. Violot, S., Aghajari, N., Czjzek, M., Feller, G., Sonan, G. K., Gouet, P., Gerday, C., Haser, R., & Receveur-Brechot, V. (2005). Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. Journal of Molecular Biology, 348, 1211–1224.CrossRefGoogle Scholar
  89. Vogt, G., & Argos, P. (1997). Protein thermal stability: Hydrogen bonds or internal packing? Folding & Design, 2, S40–S46.CrossRefGoogle Scholar
  90. Vogt, G., Woell, S., & Argos, P. (1997). Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269, 631–643.CrossRefGoogle Scholar
  91. Walker, J. E., Wonacott, A. J., & Harris, J. I. (1980). Heat stability of a tetrameric enzyme, n-glyceraldehyde-3-phosphate dehydrogenase. European Journal of Biochemistry, 108, 581–586.CrossRefGoogle Scholar
  92. Wang, K., Luo, H., Tian, J., Turunen, O., Huang, H., Shi, P., Hua, H., Wang, C., Wang, S., & Yao, B. (2014a). Thermostability improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Applied and Environmental Microbiology, 80, 2158–2165.CrossRefGoogle Scholar
  93. Wang, W., Ma, T., Zhang, B., Yao, N., Li, M., Cui, L., Li, G., Ma, Z., & Cheng, J. (2014b). A novel mechanism of protein thermostability: A unique N-terminal domain confers heat resistance to Fe/Mn-SODs. Scientific Reports, 4, 7284.CrossRefGoogle Scholar
  94. Watanabe, K., Chishiro, K., Kitamura, K., & Suzuki, Y. (1991). Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1, 6-glucosidase from Bacillus thermoglucosidasius KP 1006. The Journal of Biological Chemistry, 266, 24287–24294.Google Scholar
  95. Watanabe, K., Masuda, T., Ohashi, H., Mihara, H., & Suzuki, Y. (1994). Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1, 6-glucosidase refragable proof supporting the Proline Rule. European Journal of Biochemistry, 226, 277–283.CrossRefGoogle Scholar
  96. Wrba, A., Schweiger, A., Schultes, V., Jaenicke, R., & Závodszky, P. (1990). Extremely thermostable o-glyceraldehyde-3.phosphatedehydrogenase from the eubacterium Thermotoga maritime. Biochemistry, 29, 7584–7592.CrossRefGoogle Scholar
  97. Yu, H., Zhao, Y., Guo, C., Gan, Y., & Huang, H. (2015). The role of proline substitutions within flexible regions on thermostability of luciferase. Biochimica et Biophysica Acta, 1854, 65–72.CrossRefGoogle Scholar
  98. Zeng, J., Gao, X., Dai, Z., Tang, B., & Tang, X. F. (2014). Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+−binding site. Applied and Environmental Microbiology, 80(9), 2763–2772.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biotechnology, School of Life SciencesBabasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia

Personalised recommendations