Implication of Algal Microbiology for Wastewater Treatment and Bioenergy Production

  • Vinayak V. Pathak
  • Shamshad Ahmad
  • Richa KothariEmail author


The Indian power sector has developed huge infrastructure for power generation, transmission and distribution of energy since the major utilization of fossil fuel has been an obstacle to achieve energy sustainability. Moreover, inadequate efficiency to treat the municipal and industrial wastewater is also generating serious environmental hazards. Thus concurrent management roadmap is required to tackle these challenges. In this context, algae have enormous efficiency to deal the challenges related to environment as well as energy sustainability. Algae have unique potential to grow under variety of environmental conditions due to flexible metabolic pathways. Wastewater generation and its adequate treatment are two of the major challenges to achieve the environmental sustainability that can be resolved through integration of algal cultivation in wastewater treatment systems. In this article, a holistic view on implication of algal microbiology for wastewater remediation and bioenergy production is provided. The procedures, associated challenges, and advancement in line of algal biofuel production explored by various authors are studied to project better ways for algal biofuel production process. A variety of pollutants as nutrients and their impact on lipid production in algal biomass are considered as the main advantages of this holistic approach. Advancements and challenges in algal harvesting and conversion processes for biodiesel production are also reviewed.


Bioenergy Microalgae Biodiesel Algal harvesting Environmental hazard 


  1. Anderson, J. L., Peterson, R. C., & Swainson, I. P. (2005). Combined neutron powder and X-ray single-crystal diffraction refinement of the atomic structure and hydrogen bonding of goslarite (ZnSO4.7H2O). Mineralogical Magazine, 69, 259–271.CrossRefGoogle Scholar
  2. Baccella, S., Cerichelli, G., Chiarini, M., Ercole, C., Fantauzzi, E., Lepidi, A., Toro, L., & Veglio, F. (2000). Biological treatment of alkaline industrial waste waters. Process Biochemistry, 35, 595–602.CrossRefGoogle Scholar
  3. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.CrossRefGoogle Scholar
  4. Bourgeous, K. N., Darby, J. L., & Tchobanoglous, G. (2001). Ultrafiltration of wastewater effects of particles, mode of operation, and backwash effectiveness. Water Research, 35(1), 77–90.CrossRefGoogle Scholar
  5. Caputo, A. C., & Pelagagge, P. M. (2001). Waste-to-energy plant for paper industry sludges disposal: Technical-economic study. Journal of Hazardous Materials, 81(3), 265–283.CrossRefGoogle Scholar
  6. Champagne, P., & Anderson, B. C. (2015). Enhanced biogas production from anaerobic co-digestion of municipal wastewater treatment sludge and fat, oil and grease (FOG) by a modified two-stage thermophilic digester system with selected thermo-chemical pre-treatment. Renewable Energy, 83, 474–482.CrossRefGoogle Scholar
  7. Cheng, Y., Lu, Y., Gao, C., & Wu, Q. (2009). Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy & Fuels, 23, 4166–4173.CrossRefGoogle Scholar
  8. Chinnasamy, S., Bhatnagar, A., Claxton, R., & Das, K. C. (2010). Biomass and bioenergy production potential of algae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresource Technology, 101, 6751–6760.CrossRefGoogle Scholar
  9. Chisti, Y. (2007). Biodiesel from algae. Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  10. Cho, Y. C., Cheng, J. H., Hsu, S. L., Hong, S. E., Lee, T. M., & Chang, C. M. J. (2011). Supercritical carbon dioxide anti-solvent precipitation of anti-oxidative zeaxanthin highly recovered by elution chromatography from Nannochloropsis oculata. Separation and Purification Technology, 78(3), 274–280.CrossRefGoogle Scholar
  11. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48, 1146–1151.CrossRefGoogle Scholar
  12. Dahmani, S., Zerrouki, D., Ramanna, L., Rawat, I., & Bux, F. (2016). Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresource Technology, 219, 749–752.CrossRefGoogle Scholar
  13. Demirbas, A. (2000). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50, 14–34.CrossRefGoogle Scholar
  14. Divakaran, R., & Pillai, V. N. S. (2002). Flocculation of algae using chitosan. Journal of Applied Phycology, 14, 419–422.CrossRefGoogle Scholar
  15. Drira, N., Piras, A., Rosa, A., Porcedda, S., & Dhaouadi, H. (2016). Algae from domestic wastewater facility’s high rate algal pond: Lipids extraction, characterization and biodiesel production. Bioresource Technology, 206, 239–244.CrossRefGoogle Scholar
  16. Dufreche, S. R., Hernandez, T., French, D., Sparks, M., & Zappi, E. (2007). Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. Journal of the American Oil Chemists’ Society, 84, 181–187.CrossRefGoogle Scholar
  17. Ehimen, E. A., Sun, Z. F., & Carrington, C. G. (2010). Variables affecting the in situ transesterification of algae lipids. Fuel, 89(3), 677–684.CrossRefGoogle Scholar
  18. El-Kassas, H. Y., & Mohamed, L. A. (2014). Bioremediation of textile waste effluent by Chlorella vulgaris. Egyptian Journel of Aquatic Research, 40(3), 301–208.CrossRefGoogle Scholar
  19. Elrayies, G. M. (2018). Microalgae: Prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81, 1175–1191.CrossRefGoogle Scholar
  20. Estévez-Landazábal, L. L., Barajas-Solano, A. F., Barajas-Ferreira, C., & Kafarov, V. (2015). Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate. Ciencia Tecnologíay Futuro, 5(2), 113–126.Google Scholar
  21. Fakhry, E. M., & El Maghraby, D. M. (2015). Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Botanical Studies, 56, 6.CrossRefGoogle Scholar
  22. Florin, L., Tsokoglou, A., & Happe, T. A. (2001). Novel type of Fe-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetical electron transport chain. The Journal of Biological Chemistry, 276, 6125–6132.CrossRefGoogle Scholar
  23. Girma, E., Belarbi, E. H., Fernandez, G. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotech Advances, 20, 491–515.CrossRefGoogle Scholar
  24. Green, B., Lundquist, T., & Oswald, W. J. (1995). Energetics of advanced integrated wastewater pond systems. Water Science and Technology, 31(12), 9–20.CrossRefGoogle Scholar
  25. Halder, S. (2014). Bioremediation of heavy metals through freshwater microalgae: A review. Scholars Academic Journal of Biosciences, 2, 825–830.Google Scholar
  26. Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from algae for biodiesel production: A review. Biotechnology Advances, 30, 709–732.CrossRefGoogle Scholar
  27. Hamendez-Zamora, M., Perales-Vela, H. V., Flores-Ortiz, C. M., & Canizares-Villanueva, R. O. (2014). Physiological and biochemical responses of Chlorella vulgaris to Congo red. Ecotoxicology and Environmental Safety, 129, 189–198.Google Scholar
  28. Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., & Forde, G. (2010). Techno-economic analysis of an integrated algae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy, 35(1), 741–747.CrossRefGoogle Scholar
  29. He, P. J., Mao, B., Shen, C. M., Shao, L. M., Lee, D. J., & Chang, J. S. (2013). Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology, 129, 177–181.CrossRefGoogle Scholar
  30. Heasman, M., Diemar, J., O’Connor, W., Sushames, T., & Foulkes, L. (2000). Development of extended shelf-life algae concentrate diets harvested by centrifugation for bivalve molluscs—A summary. Aquaculture Research, 31, 637–659.CrossRefGoogle Scholar
  31. Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., & Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90, 1502–1514.CrossRefGoogle Scholar
  32. Hodaifa, G., Martinez, M. E., & Sanchez, S. (2008). Use of industrial wastewater from olive oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technology, 99, 1111–1117.CrossRefGoogle Scholar
  33. Hong, L., & Logan, B. (2004). Electricity generation using air cathode single chamber microbial fuel cell in the presence and absence of proton exchange membrane. Environmental Science & Technology, 38, 4040–4046.CrossRefGoogle Scholar
  34. energy posted 16.10.2014.
  35. Indian Energy Outlook. (2015). International Energy Agency. Available at:
  36. Kalhor, A. X., Dabbagh, A., Mohammadi, N., Ehsan, A., Bahrami, A., & Movafeghi, A. (2016). Biodiesel production in crude oil contaminated environment using Chlorella vulgaris. Bioresource Technology, 222, 190–194.CrossRefGoogle Scholar
  37. Kanda, H., & Li, P. (2011). Simple extraction method of green crude from natural blue green algae by di methyl ether: Extraction efficiency on several species compared to the Bligh –Dyer’s method. Sweden: World Renewable Energy Congress.Google Scholar
  38. Kasiri, S., Ulrich, A., & Prasad, V. (2015). Optimization of CO2 fixation by Chlorella kessleri cultivated in closed raceway photobioreactor. Bioresource Technology, 194, 144–155.CrossRefGoogle Scholar
  39. Khatee, A. R., Vafaei, F., & Jannatkhah. (2013). Biosorption of three textile dyes from contaminated water by filamentous green alga Spirogyra sp. kinetic isotherm and thermodynamic studies. International Biodeterioration and Biodegradation, 83, 33–40.CrossRefGoogle Scholar
  40. Kisku, G. C., Barman, S. C., & Bhargava, S. K. (2000). Contamination of soil and plants potentially toxic elements irrigated with mixed industrial effluent and impact in the environment. Water, Air, and Soil Pollution, 120, 121–137.CrossRefGoogle Scholar
  41. Knothe, G., Bagby, M. O., & Ryan, T. A. (1997). Cetane numbers of fatty compounds: Influence of compound structure and of various potential cetane improvers. SAE Technical Paper, 971681, 127–132.Google Scholar
  42. Kong, Q., Li, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of algae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160, 9–18.CrossRefGoogle Scholar
  43. Kothari, R., Pathak, V. V., Chopra, A. K., Ahmad, S., Allen, T., & Yadav, B. C. (2015). Developments in bioenergy and sustainable agriculture sectors for climate change mitigation in Indian context: A state of art. Climate Change and Environment Sustainability, 3(2), 93–103.CrossRefGoogle Scholar
  44. Kothari, R., Kumar, V., Pathak, V. V., Ahmad, S., Aoyi, O., & Tyagi, V. V. (2017a). A critical review on factors influencing fermentative hydrogen production. Frontier Bioscience (Landmark Edition), 22, 1195.CrossRefGoogle Scholar
  45. Kothari, R., Pathak, V. V., Pandey, A., Ahmad, S., Srivastava, C., & Tyagi, V. V. (2017b). A novel method to harvest Chlorella sp. via low cost bioflocculant: Influence of temperature with kinetic an thermodynamic functions. Bioresource Technology, 225, 84–89.CrossRefGoogle Scholar
  46. Kothari, R., Pandey, A., Ahmad, S., Kumar, A., Pathak, V. V., & Tyagi, V. V. (2017c). Microalgal cultivation for value-added products: A critical enviro-economical assessment. 3 Biotech, 7(4), 243.CrossRefGoogle Scholar
  47. Kousha, A., Daneshvar, E., Esmaeli, A. R., Jokar, M., & Khatee, A. R. (2012). Optimization of Aci blue 25 removal from aqueous solutions by raw esterified and protonated Janiaadhaerens biomass. International Journal of Biodeterioration & Biodegradation, 69, 97–105.CrossRefGoogle Scholar
  48. Kumar, P. R., Sameera, K., Mahalakshmi, G., Akbersha, M. A. A., & Thajuddin, N. (2012). Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga, Chlorella sp., BUM11008: Evaluation for biodiesel production. Biomass and Bioenergy, 37, 60–66.CrossRefGoogle Scholar
  49. Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.CrossRefGoogle Scholar
  50. Levine, R. B., Pinnarat, T., & Savage, P. E. (2010). Biodiesel production from wet algal biomass through in-situ lipid hydrolysis and supercritical transesterification. Energy & Fuels, 24, 5235–5243.CrossRefGoogle Scholar
  51. Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049.CrossRefGoogle Scholar
  52. Lin, T. S., & Wu, J. Y. (2015). Effect of carbon sources on growth and lipid accumulation of newly isolated algae cultured under mixotrophic condition. Bioresource Technology, 184, 100–107.CrossRefGoogle Scholar
  53. Lynch, F., Santana-Sanchez, A., Jamsa, M., Sivonen, K., Aro, E. M., & Allahverdiyeva, Y. (2015). Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Research, 11, 411–420.CrossRefGoogle Scholar
  54. Ma, L. P., Li, B., & Zhang, T. (2014). Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Applied Microbiology and Biotechnology, 98, 5195–5204.CrossRefGoogle Scholar
  55. Mansoorian, H. J., Amir, H. M., Ahmad, J. J., & Narges, K. (2016). Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. Journal of Saudi Chemical Society, 20, 88–100.CrossRefGoogle Scholar
  56. Markov, S. A., Thomas, A. D., Bazin, M. J., & Hall, D. O. (1997). Photoproduction of hydrogen by cyanobacteria under partial vacuum in batch culture or in a photobioreactor. International Journal of Hydrogen Energy, 22, 521.CrossRefGoogle Scholar
  57. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Algae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.CrossRefGoogle Scholar
  58. Mata, T. M., Martins, A. A., & Caetane, N. S. (2012). Algae processing for biodiesel production. In Advances in biodiesel production (pp. 204–231).CrossRefGoogle Scholar
  59. Meher, L. C., Dharmagadda, V. S. S., & Naik, S. N. (2006). Optimization of alkali catalyzedtransesterification of Pongamiapinnata oil for production of biodiesel. Bioresource Technology, 97, 1392.CrossRefGoogle Scholar
  60. Mendes Rui, L., Reis Alberto, D., & Palvara Antonio, F. (2006). Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: Comparison with organic solvent extraction. Food Chemistry, 99(1), 57–63.CrossRefGoogle Scholar
  61. Milledge, J. J., & Heaven, S. (2013). A review on the harvesting of algae for biofuel production. Review in Environmental Science and Biotechnology, 12(2), 165–178.CrossRefGoogle Scholar
  62. Mohan, V. S., Rohit, M. V., Chandra, R., & Goud, K. K. (2015) Algal biorefinary. In J. Shibu & B. Thallada (Eds.), Advanced biorefineries for sustainable production and distribution (pp. 199–216).Google Scholar
  63. Molinuevo-Salces, B., García-González, M. C., González-Fernández, C., Cuetos, M. J., Morán, A., & Gómez, X. (2010). Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresource Technology, 101(24), 9479–9485.CrossRefGoogle Scholar
  64. Mona, S., Kaushik, A., & Kaushik, C. P. (2011). Waste biomass of Nostoclinckia as adsorbent of crystal violet dye: Optimization based on statistical model. International Journal of Biodeterioration & Biodegradation, 65(3), 513–521.CrossRefGoogle Scholar
  65. Muga, H. E., & Mihelcic, J. R. (2008). Sustainability of wastewater treatment technologies. Journal of Environmental Management, 88, 437–447.CrossRefGoogle Scholar
  66. Mujtaba, G., Choi, W., Lee, C. G., & Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123, 279–283.CrossRefGoogle Scholar
  67. Munoz, R., Köllner, C., & Guieysse, B. (2009). Biofilm photobioreactors for the treatment of industrial wastewaters. Journal of Hazardous Materials, 161, 29–34.CrossRefGoogle Scholar
  68. Naidoo, S., & Olaniran, A. O. (2013). Treated wastewater effluent as a source of microbial pollution of surface water resources. International Journal of Environmental Research and Public Health, 11(1), 249–270.CrossRefGoogle Scholar
  69. Oh, H. M., Lee, S. J., Park, M. H., Kim, H. S., Kim, H. C., Yoon, J. H., Kwon, G. S., & Yoon, B. D. (2001). Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnology Letters, 23, 1229–1234.CrossRefGoogle Scholar
  70. Okoh, A. I., Sibanda, T., & Gusha, S. S. (2010). Inadequately treated wastewater as a source of human enteric viruses in the environment. International Journal of Environmental Research and Public Health, 7(6), 2620–2637.CrossRefGoogle Scholar
  71. Osundeko, O., Davies, H., & Pittman, J. K. (2013). Oxidative stress tolerant algae strains are highly efficient for biofuel feedstock production on wastewater. Biomass and Bioenergy, 56, 284–294CrossRefGoogle Scholar
  72. Pandey, A., Lee, D. J., Chisti, Y., & Scccol, C. (2014). Biofuels from algae (p. 348). San Diego: Elsevier.Google Scholar
  73. Pathak, V. V., Kothari, R., Chopra, A. K., & Singh, D. P. (2015). Experimental and kinetic studies for Phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. Journal of Environmental Management, 2015, 1–8.Google Scholar
  74. Pathak, V. V., Kothari, R., Chopra, A. K., Ahmad, S., Pandey, A. K., & Rahim, N. A. (2016). Effect of solvent extraction methods on oil yield and its parametric feasibility with C. Pyrenoidosa (pp. 87–86).Google Scholar
  75. Patil, V., Tran, K. Q., & Giselrød, H. R. (2009). Towards sustainable production of biofuels from algae. International Journal of Molecular Sciences, 9(7), 1188–1195.CrossRefGoogle Scholar
  76. Ponnuswamy, I., Soundararajan, M., Shabudeen, S., & Shoba, U. S. (2014). Resolution of lipid content from algal growth in carbon sequestration studies. International Journal of Advance Science and Technology, 67, 23–32.CrossRefGoogle Scholar
  77. Rahimnejad, M., Ghoreyshi, A. A., Najafpour, G., & Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 88(11), 3999–4004.CrossRefGoogle Scholar
  78. REN 21 Renewables. (2014). Global status report. Available at:
  79. Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101, 58–64.CrossRefGoogle Scholar
  80. Salama, E. S., Kim, J. R., Ji, M. K., Cho, D. W., Abou-Shanab, R. A., & Kabra, A. N. (2015). Application of acid mine drainage for coagulation/flocculation of microalgal biomass. Bioresource Technology, 186, 232–237.CrossRefGoogle Scholar
  81. Sathish, A., & Sins, R. C. (2012). Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresource Technology, 118, 643–647.CrossRefGoogle Scholar
  82. Schaar, H., Clara, M., Gans, O., & Kreuzinger, N. (2010). Micropollutant removal during biological wastewater treatment and a subsequent ozonation step. Environmental Pollution, 158(5), 1399–1404.CrossRefGoogle Scholar
  83. Shamshad, A., Pandey, A., Kothari, R., Pathak, V. V., & Tyagi, V. V. (2017) Closed photobioreactors: Construction material and influencing parameters at the commercial scale. In: Y.F. Tsang (Ed.), Photobioreactors: Advancements, applications and research (pp. 149–161). NOVA Publication. ISBN: 978-1-53612-354-8.Google Scholar
  84. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program—biodiesel from algae. National Renewable Energy Laboratory, Golden, CO. Report NREL/TP-580–24190.Google Scholar
  85. Sierra, E., Acien, F. G., Fernandez, J. M., Garcia, J. L., Gonzalez, C., & Molina, E. (2008). Characterization of flat plate photobioreactor for the production of algae. Chemical Engineering Journal, 138, 136–147.CrossRefGoogle Scholar
  86. Sonune, A., & Ghate, R. (2004). Developments in wastewater treatment methods. Desalination, 167, 55–63.CrossRefGoogle Scholar
  87. Soxhlet, F. (1879). Die gewichtsanalytischebestimmung des milchfettes. Dinglers’ Polytechisches Journal, 232, 461–465.Google Scholar
  88. Spilling, K., Ása, B., Dagmar, E., Heiko, R., & Halldór, G. S. (2013). The effect of high pH on structural lipids in diatoms. Journal of Applied Phycology, 25(5), 1435–1439.CrossRefGoogle Scholar
  89. Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4, 111–133.CrossRefGoogle Scholar
  90. Stillwell, A. S., King, C. W., Webber, M. E., Duncan, I. J., & Hardberger, A. (2011). The energy water nexus in Texas. Ecology and Society, 16(1), 2.CrossRefGoogle Scholar
  91. Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Mirzaei, H. H., Mirzajanzadeh, M., Shafaroudi, S. M., & Bakhtiari, S. (2015). Fatty acid profiling: A selective criterion for screening algae strains for biodiesel production. Algal Research, 2(3), 258–267.CrossRefGoogle Scholar
  92. Tang, H., Abunasser, N., Garcia, M. E. D., Chen, M., Ng, K. S., & Salley, S. O. (2011). Potential of algae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Applied Energy, 88(10), 3324–3330.CrossRefGoogle Scholar
  93. Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactor for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028.CrossRefGoogle Scholar
  94. Ummalyma, S. B., Anil, K. M., Pandey, A., & Sukumaran, R. K. (2016). Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. Bioresource Technology, 213, 216–221.CrossRefGoogle Scholar
  95. USEPA. (1999). Guidelines for Carcinogen risk assessment review draft. NCEA-F-0644.Google Scholar
  96. Victoria, O., Adesanya, E. C., Stuart, A. S., & Alison, G. S. (2014). Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresource Technology, 163, 343–355.CrossRefGoogle Scholar
  97. Wagenen, V. J., Miller, T. W., Hobbs, S., Hook, P., Crowe, B., & Huesemann, M. (2012). Effects of light and temperature on fatty acid production in Nannochloropsis Salina. Energies, 5, 731.CrossRefGoogle Scholar
  98. Wang, Y., Ho, S. H., Cheng, C. L., Guo, W. Q., Nagarajan, D., Ren, N. Q., Lee, D. J., & Chang, J. S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485–497.CrossRefGoogle Scholar
  99. Yi, L., Yanting, X., Lei, L., Xiaobing, J., Kun, Z., Tianling, Z., & Wang, H. (2016). First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass. Bioresource Technology, 218, 807–815.CrossRefGoogle Scholar
  100. Zhang, X., Wang, L., Sommerfeld, M., & Hu, Q. (2016). Harvesting microalgal biomass using magnesium coagulation-dissolved air flotation. Biomass and Bioenergy, 93, 43–49.CrossRefGoogle Scholar
  101. Zhu, F., Wang, W., & ZhangX, T. G. (2011). Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode. Bioresource Technology, 102(15), 7324–7328.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Vinayak V. Pathak
    • 1
  • Shamshad Ahmad
    • 2
  • Richa Kothari
    • 3
    • 4
    Email author
  1. 1.Department of ChemistryManav Rachna UniversityFaridabadIndia
  2. 2.Department of Environmental Science, School for Environmental ScienceBabasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia
  3. 3.Department of Environmental SciencesCentral University of JammuJammu and KashmirIndia
  4. 4.Babasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations