Advertisement

Influencing Factors for Simultaneous NOx–Soot Removal

  • Wenfeng Shangguan
  • Guchu Zou
  • Zhi Jiang
Chapter
Part of the Energy and Environment Research in China book series (EERC)

Abstract

Apart from the material and kinetics, other several factors are affecting the multiplex reaction, simultaneous NOx–soot removal via catalysts. It is believed that most catalytic reactions occur on the surfaces. Hence, the discussions on surface modification in addition to composition design are indispensable to this process. The surface modifications by a variety of preparation techniques will consequently cause the alteration of many macrolevel parameters including surface areas and morphology and in turn influence the reactant/intermediate adsorption and desorption behaviors on the surface.

References

  1. 1.
    J. Van Doorn, J. Varloud, P. Mériaudeau, V. Perrichon, M. Chevrier, C. Gauthier, Effect of support material on the catalytic combustion of diesel soot particulates. Appl. Catal. B 1, 117–127 (1992)CrossRefGoogle Scholar
  2. 2.
    G. Mul, J.P. Neeft, F. Kapteijn, M. Makkee, J.A. Moulijn, Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst. Appl. Catal. B 6, 339–352 (1995)CrossRefGoogle Scholar
  3. 3.
    Y. Teraoka, S. Kagawa, Simultaneous catalytic removal of NOϰ and diesel soot particulates. Catal. Surv. Asia 2, 155–164 (1998)CrossRefGoogle Scholar
  4. 4.
    J. Neeft, O.P. van Pruissen, M. Makkee, J.A. Moulijn, Catalysts for the oxidation of soot from diesel exhaust gases II. Contact between soot and catalyst under practical conditions. Appl. Catal. B 12, 21–31 (1997)CrossRefGoogle Scholar
  5. 5.
    E. Aneggi, V. Rico-Perez, C. de Leitenburg, S. Maschio, L. Soler, J. Llorca, A. Trovarelli, Ceria-zirconia particles wrapped in a 2D carbon envelope: improved low-temperature oxygen transfer and oxidation activity. Angew. Chem. 127, 14246–14249 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Hensgen, K. Stöwe, Soot-catalyst contact studies in combustion processes using nano-scaled ceria as test material. Catal. Today 159, 100–107 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Kureti, W. Weisweiler, K. Hizbullah, Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas. Appl. Catal. B 43, 281–291 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Bensaid, N. Russo, D. Fino, CeO2 catalysts with fibrous morphology for soot oxidation: the importance of the soot-catalyst contact conditions. Catal. Today 216, 57–63 (2013)CrossRefGoogle Scholar
  9. 9.
    G. Zhang, Z. Zhao, J. Xu, J. Zheng, J. Liu, G. Jiang, A. Duan, H. He, Comparative study on the preparation, characterization and catalytic performances of 3DOM Ce-based materials for the combustion of diesel soot. Appl. Catal. B 107, 302–315 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Wei, J. Liu, Z. Zhao, Y. Chen, C. Xu, A. Duan, G. Jiang, H. He, Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. Angew. Chem. Int. Ed. 50, 2326–2329 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Zhang, Z. Zhao, J. Liu, G. Jiang, A. Duan, J. Zheng, S. Chen, R. Zhou, Three dimensionally ordered macroporous Ce1−xZrxO2 solid solutions for diesel soot combustion. Chem. Commun. 46, 457–459 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Xu, J. Liu, Z. Zhao, J. Zheng, G. Zhang, A. Duan, G. Jiang, Three-dimensionally ordered macroporous LaCoxFe1−xO3 perovskite-type complex oxide catalysts for diesel soot combustion. Catal. Today 153, 136–142 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Simonsen, S. Dahl, E. Johnson, S. Helveg, Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy. J. Catal. 255, 1–5 (2008)CrossRefGoogle Scholar
  14. 14.
    K. Nakamura, H. Oki, R. Sanui, N. Hidaka, M. Tanaka, H. Matsumoto, K. Hanamura, Characteristics of soot oxidation at the interface between soot and silicon-oxy-carbide with embedded single nanosized Pt particles. SAE Technical Paper (2013)Google Scholar
  15. 15.
    D. Gardini, J.M. Christensen, C.D. Damsgaard, A.D. Jensen, J.B. Wagner, Visualizing the mobility of silver during catalytic soot oxidation. Appl. Catal. B 183, 28–36 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Epicier, A. Serve, M. Aouine, F.C.S. Aires, M. Tsampas, B. Cartoixa, K. Pajot, P. Vernoux, Environmental TEM investigation of the mechanism of soot combustion by Ag supported catalystsGoogle Scholar
  17. 17.
    E. Saab, E. Abi-Aad, M. Bokova, E. Zhilinskaya, A. Aboukaïs, EPR characterisation of carbon black in loose and tight contact with Al2O3 and CeO2 catalysts. Carbon 45, 561–567 (2007)CrossRefGoogle Scholar
  18. 18.
    E. Kukovitsky, S. L’vov, N. Sainov, V. Shustov, L. Chernozatonskii, Correlation between metal catalyst particle size and carbon nanotube growth. Chem. Phys. Lett. 355, 497–503 (2002)CrossRefGoogle Scholar
  19. 19.
    G. Zou, Z. Fan, X. Yao, Y. Zhang, Z. Zhang, M. Chen, W. Shangguan, Catalytic performance of Ag/Co-Ce composite oxides during soot combustion in O2 and NOx: insights into the effects of silver (2017)Google Scholar
  20. 20.
    R. Matarrese, L. Castoldi, L. Lietti, P. Forzatti, Soot combustion: Reactivity of alkaline and alkaline earth metal oxides in full contact with soot. Catal. Today 136, 11–17 (2008)CrossRefGoogle Scholar
  21. 21.
    J. Oi-Uchisawa, S. Wang, T. Nanba, A. Ohi, A. Obuchi, Improvement of Pt catalyst for soot oxidation using mixed oxide as a support. Appl. Catal. B 44, 207–215 (2003)CrossRefGoogle Scholar
  22. 22.
    J. Oi-Uchisawa, A. Obuchi, S. Wang, T. Nanba, A. Ohi, Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation. Appl. Catal. B 43, 117–129 (2003)CrossRefGoogle Scholar
  23. 23.
    Y. Wei, J. Liu, Z. Zhao, C. Xu, A. Duan, G. Jiang, Structural and synergistic effects of three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported Pt nanoparticles on the catalytic performance for soot combustion. Appl. Catal. A 453, 250–261 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Setiabudi, B.A. Van Setten, M. Makkee, J.A. Moulijn, The influence of NOx on soot oxidation rate: molten salt versus platinum. Appl. Catal. B 35, 159–166 (2002)CrossRefGoogle Scholar
  25. 25.
    E. Xue, K. Seshan, J. Ross, Roles of supports, Pt loading and Pt dispersion in the oxidation of NO to NO2 and of SO2 to SO3. Appl. Catal. B 11, 65–79 (1996)CrossRefGoogle Scholar
  26. 26.
    S. Mulla, N. Chen, L. Cumaranatunge, G. Blau, D. Zemlyanov, W. Delgass, W. Epling, F. Ribeiro, Reaction of NO and O2 to NO2 on Pt: kinetics and catalyst deactivation. J. Catal. 241, 389–399 (2006)CrossRefGoogle Scholar
  27. 27.
    N. Güngör, S. Işçi, E. Günister, W. Miśta, H. Teterycz, R. Klimkiewicz, Characterization of sepiolite as a support of silver catalyst in soot combustion. Appl. Clay Sci. 32, 291–296 (2006)CrossRefGoogle Scholar
  28. 28.
    K.-I. Shimizu, H. Kawachi, A. Satsuma, Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Appl. Catal. B 96, 169–175 (2010)CrossRefGoogle Scholar
  29. 29.
    E. Aneggi, J. Llorca, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Soot combustion over silver-supported catalysts. Appl. Catal. B 91, 489–498 (2009)CrossRefGoogle Scholar
  30. 30.
    K. Yamazaki, T. Kayama, F. Dong, H. Shinjoh, A mechanistic study on soot oxidation over CeO2–Ag catalyst with ‘rice-ball’ morphology. J. Catal. 282, 289–298 (2011)CrossRefGoogle Scholar
  31. 31.
    K.-I. Shimizu, M. Katagiri, S. Satokawa, A. Satsuma, Sintering-resistant and self-regenerative properties of Ag/SnO2 catalyst for soot oxidation. Appl. Catal. B 108, 39–46 (2011)CrossRefGoogle Scholar
  32. 32.
    K. Villani, R. Brosius, J.A. Martens, Catalytic carbon oxidation over Ag/Al2O3. J. Catal. 236, 172–175 (2005)CrossRefGoogle Scholar
  33. 33.
    B. Dernaika, D. Uner, A simplified approach to determine the activation energies of uncatalyzed and catalyzed combustion of soot. Appl. Catal. B 40, 219–229 (2003)CrossRefGoogle Scholar
  34. 34.
    W. Shangguan, Y. Teraoka, S. Kagawa, Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Appl. Catal. B 16, 149–154 (1998)CrossRefGoogle Scholar
  35. 35.
    J. Liu, Z. Zhao, J. Wang, C. Xu, A. Duan, G. Jiang, Q. Yang, The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Appl. Catal. B 84, 185–195 (2008)CrossRefGoogle Scholar
  36. 36.
    M. O’Connell, A. Norman, C. Hüttermann, M. Morris, Catalytic oxidation over lanthanum-transition metal perovskite materials. Catal. Today 47, 123–132 (1999)CrossRefGoogle Scholar
  37. 37.
    S. Shinde, K. Rajpure, X-ray photoelectron spectroscopic study of catalyst based zinc oxide thin films. J. Alloy. Compd. 509, 4603–4607 (2011)CrossRefGoogle Scholar
  38. 38.
    G. Zou, Y. Xu, S. Wang, M. Chen, W. Shangguan, The synergistic effect in Co–Ce oxides for catalytic oxidation of diesel soot. Catal. Sci. Technol. 5, 1084–1092 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Bao, M. Muhler, T. Schedel-Niedrig, R. Schlögl, Interaction of oxygen with silver at high temperature and atmospheric pressure: A spectroscopic and structural analysis of a strongly bound surface species. Phys. Rev. B 54, 2249 (1996)CrossRefGoogle Scholar
  40. 40.
    G.B. Hoflund, Z.F. Hazos, G.N. Salaita, Surface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys. Rev. B 62, 11126 (2000)CrossRefGoogle Scholar
  41. 41.
    E. Bêche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267 (2008)CrossRefGoogle Scholar
  42. 42.
    M. Grube, J. Lin, P. Lee, S. Kokorevicha, Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 130, 324–333 (2006)CrossRefGoogle Scholar
  43. 43.
    E. Smidt, K. Meissl, The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 27, 268–276 (2007)CrossRefPubMedGoogle Scholar
  44. 44.
    V.G. Milt, E.D. Banús, M.A. Ulla, E.E. Miró, Soot combustion and NOx adsorption on Co, Ba, K/ZrO2. Catal. Today 133, 435–440 (2008)CrossRefGoogle Scholar
  45. 45.
    E. Smidt, P. Lechner, M. Schwanninger, G. Haberhauer, M. Gerzabek, Characterization of waste organic matter by FT-IR spectroscopy: application in waste science. Appl. Spectrosc. 56, 1170–1175 (2002)CrossRefGoogle Scholar
  46. 46.
    U. Bentrup, A. Brückner, M. Richter, R. Fricke, NOx adsorption on MnO2/NaY composite: an in situ FTIR and EPR study. Appl. Catal. B 32, 229–241 (2001)CrossRefGoogle Scholar
  47. 47.
    E. Ivanova, K. Hadjiivanov, D. Klissurski, M. Bevilacqua, T. Armaroli, G. Busca, FTIR study of species arising after NO adsorption and NO + O2 co-adsorption on CoY: comparison with Co-ZSM-5. Micropor. Mesopor. Mater. 46, 299–309 (2001)CrossRefGoogle Scholar
  48. 48.
    H. Koga, T. Kitaoka, H. Wariishi, In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications. J. Mater. Chem. 19, 2135–2140 (2009)CrossRefGoogle Scholar
  49. 49.
    T.-X. Liu, X.-Z. Li, F.-B. Li, AgNO3-induced photocatalytic degradation of odorous methyl mercaptan in gaseous phase: mechanism of chemisorption and photocatalytic reaction. Environ. Sci. Technol. 42, 4540–4545 (2008)CrossRefPubMedGoogle Scholar
  50. 50.
    W.-X. Li, C. Stampfl, M. Scheffler, Why is a noble metal catalytically active? The role of the O–Ag interaction in the function of silver as an oxidation catalyst. Phys. Rev. Lett. 90, 256102 (2003)CrossRefPubMedGoogle Scholar
  51. 51.
    L. Li, J.C. Yang, Complex oxide structures formed by oxidation of Ag (100) and Ag (111) by hyperthermal atomic oxygen. Mater. High Temp. 20, 601–606 (2003)CrossRefGoogle Scholar
  52. 52.
    G. Lu, X. Zuo, Epoxidation of propylene by air over modified silver catalyst. Catal. Lett. 58, 67–70 (1999)CrossRefGoogle Scholar
  53. 53.
    R.E. Kenson, M. Lapkin, Kinetics and mechanism of ethylene oxidation. Reactions of ethylene and ethylene oxide on a silver catalyst. J. Phys. Chem. 74, 1493–1502 (1970)CrossRefGoogle Scholar
  54. 54.
    I.E. Wachs, R.J. Madix, The oxidation of methanol on a silver (110) catalyst. Surf. Sci. 76, 531–558 (1978)CrossRefGoogle Scholar
  55. 55.
    M. Haneda, A. Towata, Catalytic performance of supported Ag nano-particles prepared by liquid phase chemical reduction for soot oxidation. Catal. Today 242, 351–356 (2015)CrossRefGoogle Scholar
  56. 56.
    Y. Ono, T. Matsumura, N. Kitajima, S. Fukuzumi, Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals. J. Phys. Chem. 81, 1307–1311 (1977)CrossRefGoogle Scholar
  57. 57.
    R. Clarkson, A. Cirillo Jr., The formation and reactivity of oxygen as O2 on a supported silver surface. J. Catal. 33, 392–401 (1974)CrossRefGoogle Scholar
  58. 58.
    L. Chen, D. Ma, X. Bao, Hydrogen treatment-induced surface reconstruction: formation of superoxide species on activated carbon over Ag/activated carbon catalysts for selective oxidation of CO in H2-rich gases. J. Phys. Chem. C 111, 2229–2234 (2007)CrossRefGoogle Scholar
  59. 59.
    M. Machida, Y. Murata, K. Kishikawa, D. Zhang, K. Ikeue, On the reasons for high activity of CeO2 catalyst for soot oxidation. Chem. Mater. 20, 4489–4494 (2008)CrossRefGoogle Scholar
  60. 60.
    W. Davis, S. Rogers, A. Ubbelohde, Melting and crystal structure. The mechanism of melting of group I nitrates. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 220, 14–24 (1953)CrossRefGoogle Scholar
  61. 61.
    H. Shimokawa, H. Kusaba, H. Einaga, Y. Teraoka, Effect of surface area of La–K–Mn–O perovskite catalysts on diesel particulate oxidation. Catal. Today 139, 8–14 (2008)CrossRefGoogle Scholar
  62. 62.
    I. Atribak, A. Bueno-Lopez, A. Garcia-Garcia, Further insights into the key features of ceria-zirconia mixed oxides governing the catalysed soot combustion under NOx/O2. Top. Catal. 52, 2088–2091 (2009)CrossRefGoogle Scholar
  63. 63.
    Q. Liang, X. Wu, X. Wu, D. Weng, Role of surface area in oxygen storage capacity of ceria–zirconia as soot combustion catalyst. Catal. Lett. 119, 265–270 (2007)CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University Press, Shanghai and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS)ShanghaiChina

Personalised recommendations