Advertisement

Catalytic Materials for Simultaneous NOx–Soot Removal

  • Wenfeng Shangguan
  • Guchu Zou
  • Zhi Jiang
Chapter
Part of the Energy and Environment Research in China book series (EERC)

Abstract

The catalysts are the major challenge for this scheme. Both soot oxidation and NOx reduction should be considered and evaluated; it is tough to balance the two aspects mentioned above. Also, the material is required to be thermally stable in oxygen-rich conditions up to high temperature (above 700 °C); in this way, it could survive the thermal load impact. Naturally, oxides are firstly tested due to their thermal stability and activity.

References

  1. 1.
    K. Yoshida, S. Makino, S. Sumiya, G. Muramatsu, R. Helferich, Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust. SAE Technical Paper (1989)Google Scholar
  2. 2.
    O. Kralov, Catalysis by Non Metals (Academic Press, New York, 1970)Google Scholar
  3. 3.
    J. Choa, M.M. Thackeray, Structural changes of LiMn2O4 spinel electrodes during electrochemical cycling. J. Electrochem. Soc. 146, 3577–3581 (1999)CrossRefGoogle Scholar
  4. 4.
    N. Sahli, C. Petit, A.-C. Roger, A. Kiennemann, S. Libs, M.M. Bettahar, Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane. Catal. Today 113, 187–193 (2006)CrossRefGoogle Scholar
  5. 5.
    W. Shangguan, Y. Teraoka, S. Kagawa, Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides. Appl. Catal. B 8, 217–227 (1996)CrossRefGoogle Scholar
  6. 6.
    H.H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier, 1989)CrossRefGoogle Scholar
  7. 7.
    A.Y. Khodakov, Fischer-Tropsch synthesis: relations between structure of cobalt catalysts and their catalytic performance. Catal. Today 144, 251–257 (2009)CrossRefGoogle Scholar
  8. 8.
    F. Kapteijn, AJC Mierop. G. Abbel. and JA Moulijn. Chem. Soc. Chem. Commun. 1085 (1984)Google Scholar
  9. 9.
    A. Ahlstrom, I. Odenbrand, Combustion of soot deposits from diesel engines on mixed oxides of vanadium pentoxide and cupric oxide. Appl. Catal. 60, 157–172 (1990)CrossRefGoogle Scholar
  10. 10.
    A.F. Ahlström, C.I. Odenbrand, Catalytic combustion of soot deposits from diesel engines. Appl. Catal. 60, 143–156 (1990)CrossRefGoogle Scholar
  11. 11.
    P. Ciambelli, P. Corbo, M. Gambino, V. Palma, S. Vaccaro, Catalytic combustion of carbon particulate. Catal. Today 27, 99–106 (1996)CrossRefGoogle Scholar
  12. 12.
    C. Badini, V. Serra, G. Saracco, M. Montorsi, Thermal stability of Cu-KV catalyst for diesel soot combustion. Catal. Lett. 37, 247–254 (1996)CrossRefGoogle Scholar
  13. 13.
    W. Shangguan, Y. Teraoka, S. Kagawa, Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Appl. Catal. B 16, 149–154 (1998)CrossRefGoogle Scholar
  14. 14.
    Y. Teraoka, K. Nakano, W. Shangguan, S. Kagawa, Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides. Catal. Today 27, 107–113 (1996)CrossRefGoogle Scholar
  15. 15.
    M.C. Biesinger, L.W. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)CrossRefGoogle Scholar
  17. 17.
    W. Shangguan, Y. Teraoka, S. Kagawa, Effect of oxide composition of spinel-type copper chromites on the catalytic activity for the simultaneous removal of NOx and soot particulate. Res. Rep. Dept. Eng. Nagasaki Univ. 25, 241–248 (1995)Google Scholar
  18. 18.
    Y. Teraoka, K. Nakano, S. Kagawa, W. Shangguan, Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides. Appl. Catal. B 5, L181–L185 (1995)CrossRefGoogle Scholar
  19. 19.
    R. Voorhoeve, D. Johnson, J. Remeika, P. Gallagher, Perovskite oxides: materials science in catalysis. Science 195, 827–833 (1977)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    L.G. Tejuca, J.L.G. Fierro, J.M. Tascón, Structure and reactivity of perovskite-type oxides. Adv. Catal. 36, 237–328 (1989)Google Scholar
  21. 21.
    C.H. Kim, G. Qi, K. Dahlberg, W. Li, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327, 1624–1627 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, G. Russo, AFeO 3 (A = La, Nd, Sm) and LaFe1−xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties. Appl. Catal. B 29, 239–250 (2001)CrossRefGoogle Scholar
  23. 23.
    S. Cimino, S. Colonna, S. De Rossi, M. Faticanti, L. Lisi, I. Pettiti, P. Porta, Methane combustion and CO oxidation on zirconia-supported La, Mn oxides and LaMnO3 perovskite. J. Catal. 205, 309–317 (2002)CrossRefGoogle Scholar
  24. 24.
    N. Yamazoe, Y. Teraoka, Oxidation catalysis of perovskites—relationships to bulk structure and composition (valency, defect, etc.). Catal. Today 8, 175–199 (1990)CrossRefGoogle Scholar
  25. 25.
    C. Ramana, M. Massot, C. Julien, XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf. Interface Anal. 37, 412–416 (2005)CrossRefGoogle Scholar
  26. 26.
    M.A. Stranick, MnO2 by XPS. Surf. Sci. Spectra 6, 31–38 (1999)CrossRefGoogle Scholar
  27. 27.
    M.A. Stranick, Mn2O3 by XPS. Surf. Sci. Spectra 6, 39–46 (1999)CrossRefGoogle Scholar
  28. 28.
    K. Tabata, Y. Hirano, E. Suzuki, XPS studies on the oxygen species of LaMn1−xCuxO3+λ. Appl. Catal. A 170, 245–254 (1998)CrossRefGoogle Scholar
  29. 29.
    X. Peng, H. Lin, Z. Huang, W. Shangguan, Influence of composition of perovskite-type catalysts La(1-x)AxByMn(1-y)O3 on simultaneous removal of NOx and soot. J. Chem. Eng. Chin. Univ. 5, 028 (2006)Google Scholar
  30. 30.
    Y. Teraoka, K. Kanada, S. Kagawa, Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates. Appl. Catal. B 34, 73–78 (2001)CrossRefGoogle Scholar
  31. 31.
    X. Peng, H. Lin, W. Shangguan, Z. Huang, Physicochemical and catalytic properties of La0. 8K0. 2CuxMn1−xO3 for simultaneous removal of NOx and soot: effect of Cu substitution amount and calcination temperature. Ind. Eng. Chem. Res. 45, 8822–8828 (2006)CrossRefGoogle Scholar
  32. 32.
    M. Misono, A view on the future of mixed oxide catalysts: the case of heteropolyacids (polyoxometalates) and perovskites. Catal. Today 100, 95–100 (2005)CrossRefGoogle Scholar
  33. 33.
    X. Peng, H. Lin, W. Shangguan, Z. Huang, The effect of partial substitution K and Cu in LaMnO3 perovskites for simultaneous soot-NOx removal. Chin. J. Catal. 27, 767–771 (2006). (in Chinese)Google Scholar
  34. 34.
    X. Peng, H. Lin, W. Shangguan, Z. Huang, Surface properties and catalytic performance of La0. 8K0. 2CuxMn1−xO3 for simultaneous removal of NOx and soot. Chem. Eng. Technol. 30, 99–104 (2007)CrossRefGoogle Scholar
  35. 35.
    D.G. Evans, R.C. Slade, Structural aspects of layered double hydroxides, in Layered Double Hydroxides (Springer, 2006), pp. 1–87Google Scholar
  36. 36.
    A. Vaccari, Preparation and catalytic properties of cationic and anionic clays. Catal. Today 41, 53–71 (1998)CrossRefGoogle Scholar
  37. 37.
    L. Chmielarz, P. Kuśtrowski, A. Rafalska-Łasocha, D. Majda, R. Dziembaj, Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia. Appl. Catal. B: Environ. 35, 195–210 (2002)CrossRefGoogle Scholar
  38. 38.
    A. Corma, A. Palomares, F. Rey, F. Márquez, Simultaneous catalytic removal of SOx and NO x with hydrotalcite-derived mixed oxides containing copper, and their possibilities to be used in FCC units. J. Catal. 170, 140–149 (1997)CrossRefGoogle Scholar
  39. 39.
    S. Kannan, Decomposition of nitrous oxide over the catalysts derived from hydrotalcite-like compounds. Appl. Clay Sci. 13, 347–362 (1998)CrossRefGoogle Scholar
  40. 40.
    L. Chmielarz, P. Kuśtrowski, M. Zbroja, A. Rafalska-Łasocha, B. Dudek, R. Dziembaj, SCR of NO by NH3 on alumina or titania-pillared montmorillonite various modified with Cu or Co: part I. General characterization and catalysts screening. Appl. Catal. B: Environ. 45, 103–116 (2003)CrossRefGoogle Scholar
  41. 41.
    S. Velu, K. Suzuki, T. Osaki, A comparative study of reactions of methanol over catalysts derived from NiAl-and CoAl-layered double hydroxides and their Sn-containing analogues. Catal. Lett. 69, 43–50 (2000)CrossRefGoogle Scholar
  42. 42.
    P.G. Harrison, I.K. Ball, W. Daniell, P. Lukinskas, M.A. Céspedes, E.E. Miró, M.A.A. Ulla, Cobalt catalysts for the oxidation of diesel soot particulate. Chem. Eng. J. 95, 47–55 (2003)CrossRefGoogle Scholar
  43. 43.
    C. Querini, M. Ulla, F. Requejo, J. Soria, U. Sedrán, E. Miró, Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co, K/MgO catalysts. Appl. Catal. B: Environ. 15, 5–19 (1998)CrossRefGoogle Scholar
  44. 44.
    S. Kureti, W. Weisweiler, K. Hizbullah, Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas. Appl. Catal. B 43, 281–291 (2003)CrossRefGoogle Scholar
  45. 45.
    E. Miró, F. Ravelli, M. Ulla, L. Cornaglia, C. Querini, Catalytic combustion of diesel soot on Co, K supported catalysts. Catal. Today 53, 631–638 (1999)CrossRefGoogle Scholar
  46. 46.
    Z. Wang, Z. Jiang, W. Shangguan, Simultaneous catalytic removal of NOx and soot particulate over Co–Al mixed oxide catalysts derived from hydrotalcites. Catal. Commun. 8, 1659–1664 (2007)CrossRefGoogle Scholar
  47. 47.
    Z. Wang, W. Shangguan, J. Su, Z. Jiang, Catalytic oxidation of diesel soot on mixed oxides derived from hydrotalcites. Catal. Lett. 112(3–4), 149–154 (2006)CrossRefGoogle Scholar
  48. 48.
    C. Querini, L. Cornaglia, M. Ulla, E. Miro, Catalytic combustion of diesel soot on Co, K/MgO catalysts. Effect of the potassium loading on activity and stability. Appl. Catal. B: Environ. 20, 165–177 (1999)CrossRefGoogle Scholar
  49. 49.
    W. Shangguan, Y. Teraoka, S. Kagawa, Kinetics of soot—O2, soot—NO and soot—O2—NO reactions over spinel-type CuFe2O4 catalyst. Appl. Catal. B 12, 237–247 (1997)CrossRefGoogle Scholar
  50. 50.
    V. Milt, M. Pissarello, E. Miró, C. Querini, Abatement of diesel-exhaust pollutants: NOx storage and soot combustion on K/La2O3 catalysts. Appl. Catal. B 41, 397–414 (2003)CrossRefGoogle Scholar
  51. 51.
    M. Machida, Y. Murata, K. Kishikawa, D. Zhang, K. Ikeue, On the reasons for high activity of CeO2 catalyst for soot oxidation. Chem. Mater. 20, 4489–4494 (2008)CrossRefGoogle Scholar
  52. 52.
    S. Aouad, E. Saab, E. Abi-Aad, A. Aboukaïs, Study of the Ru/Ce system in the oxidation of carbon black and volatile organic compounds. Kinet. Catal. 48, 835–840 (2007)CrossRefGoogle Scholar
  53. 53.
    Z. Li, M. Meng, Y. Zha, F. Dai, T. Hu, Y. Xie, J. Zhang, Highly efficient multifunctional dually-substituted perovskite catalysts La1− xKxCo1− yCuyO3− δ used for soot combustion, NOx storage and simultaneous NOx-soot removal. Appl. Catal. B: Environ. 121, 65–74 (2012)CrossRefGoogle Scholar
  54. 54.
    S.-S. Hong, G.-D. Lee, Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts. Catal. Today 63, 397–404 (2000)CrossRefGoogle Scholar
  55. 55.
    G. Zou, M. Chen, W. Shangguan, Promotion effects of LaCoO3 formation on the catalytic performance of Co–La oxides for soot combustion in air. Catal. Commun. 51, 68–71 (2014)CrossRefGoogle Scholar
  56. 56.
    E. Makshina, S. Sirotin, V. Yushchenko, G. Mazo, M. van den Berg, K. Klements’ev, W. Grünert, B. Romanovskii, Nanocomposites based on LaCoO3 and mesoporous molecular sieves: preparation and physicochemical and catalytic properties. Kinet. Catal. 47, 49–53 (2006)CrossRefGoogle Scholar
  57. 57.
    L.F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, A. Boreave, A. Giroir-Fendler, Catalytic removal of toluene over Co3O4–CeO2 mixed oxide catalysts: comparison with Pt/Al2O3. Catal. Lett. 127, 270–276 (2008)CrossRefGoogle Scholar
  58. 58.
    J. Ren, Y. Yu, F. Dai, M. Meng, J. Zhang, L. Zheng, T. Hu, Domain-confined catalytic soot combustion over Co3O4 anchored on a TiO2 nanotube array catalyst prepared by mercaptoacetic acid induced surface-grafting. Nanoscale 5, 12144–12149 (2013)PubMedCrossRefGoogle Scholar
  59. 59.
    H. Wang, Z. Zhao, P. Liang, C. Xu, A. Duan, G. Jiang, J. Xu, J. Liu, Highly Active La1−xKx CoO3 perovskite-type complex oxide catalysts for the simultaneous removal of diesel soot and nitrogen oxides under loose contact conditions. Catal. Lett. 124, 91–99 (2008)CrossRefGoogle Scholar
  60. 60.
    Z. Li, M. Meng, Y. Zha, F. Dai, T. Hu, Y. Xie, J. Zhang, Highly efficient multifunctional dually-substituted perovskite catalysts La1−xKxCo1−yCuyO3−δ used for soot combustion, NOx storage and simultaneous NOx-soot removal. Appl. Catal. B Environ. 121, 65–74 (2012)CrossRefGoogle Scholar
  61. 61.
    P. Kirienko, S. Solov’ev, S. Orlik, Effect of CeO2 on the properties of the Pd/Co3O4/cordierite catalyst in the conversion of CO, NO, and hydrocarbons. Theor. Exp. Chem. 46, 39–44 (2010)CrossRefGoogle Scholar
  62. 62.
    G. Zou, Y. Xu, S. Wang, M. Chen, W. Shangguan, The synergistic effect in Co–Ce oxides for catalytic oxidation of diesel soot. Catal. Sci. Technol. 5, 1084–1092 (2015)CrossRefGoogle Scholar
  63. 63.
    V. Hadjiev, M. Iliev, I. Vergilov, The Raman spectra of Co3O4. J. Phys. C: Solid State Phys. 21, L199 (1988)CrossRefGoogle Scholar
  64. 64.
    I. Lorite, J.J. Romero, J.F. Fernández, Effects of the agglomeration state on the Raman properties of Co3O4 nanoparticles. J. Raman Spectrosc. 43, 1443–1448 (2012)CrossRefGoogle Scholar
  65. 65.
    W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. J. Catal. 171, 208–218 (1997)CrossRefGoogle Scholar
  66. 66.
    C. Vaz, H.-Q. Wang, C. Ahn, V. Henrich, M. Baykara, T. Schwendemann, N. Pilet, B. Albers, U. Schwarz, L. Zhang, Interface and electronic characterization of thin epitaxial Co3O4 films. Surf. Sci. 603, 291–297 (2009)CrossRefGoogle Scholar
  67. 67.
    J. Liu, Z. Zhao, J. Wang, C. Xu, A. Duan, G. Jiang, Q. Yang, The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Appl. Catal. B 84, 185–195 (2008)CrossRefGoogle Scholar
  68. 68.
    M.M. Natile, A. Glisenti, CoOx/CeO2 nanocomposite powders: synthesis, characterization, and reactivity. Chem. Mater. 17, 3403–3414 (2005)CrossRefGoogle Scholar
  69. 69.
    M. O’Connell, A. Norman, C. Hüttermann, M. Morris, Catalytic oxidation over lanthanum-transition metal perovskite materials. Catal. Today 47, 123–132 (1999)CrossRefGoogle Scholar
  70. 70.
    S. Shinde, K. Rajpure, X-ray photoelectron spectroscopic study of catalyst based zinc oxide thin films. J. Alloy. Compd. 509, 4603–4607 (2011)CrossRefGoogle Scholar
  71. 71.
    E. Bêche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267 (2008)CrossRefGoogle Scholar
  72. 72.
    B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J. Phys. Chem. B 107, 5162–5167 (2003)CrossRefGoogle Scholar
  73. 73.
    H.B. Pereira, C. Polato, J.L.F. Monteiro, C.A. Henriques, Mn/Mg/Al-spinels as catalysts for SOx abatement: influence of CeO2 incorporation and catalytic stability. Catal. Today 149, 309–315 (2010)CrossRefGoogle Scholar
  74. 74.
    G. Colón, J. Navio, R. Monaci, I. Ferino, CeO2–La2O3 catalytic system Part I. Preparation and characterisation of catalysts. Phys. Chem. Chem. Phys. 2, 4453–4459 (2000)CrossRefGoogle Scholar
  75. 75.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Y. Ren, Z. Ma, P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications. Chem. Soc. Rev. 41, 4909–4927 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1–45 (2005)CrossRefGoogle Scholar
  78. 78.
    C.M.A. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    C.M. Parlett, M.A. Isaacs, S.K. Beaumont, L.M. Bingham, N.S. Hondow, K. Wilson, A.F. Lee, Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nat. Mater. 15, 178–182 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    C. Perego, R. Millini, Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev. 42, 3956–3976 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Y. Wei, Z. Zhao, J. Liu, C. Xu, G. Jiang, A. Duan, Design and synthesis of 3D ordered macroporous CeO2–supported Pt@CeO2−δ core-shell nanoparticle materials for enhanced catalytic activity of soot oxidation. Small 9, 3957–3963 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Y. Wang, H. Arandiyan, J. Scott, A. Bagheri, H. Dai, R. Amal, Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review. J. Mater. Chem. A 5, 8825–8846 (2017)CrossRefGoogle Scholar
  83. 83.
    S. Van Donk, A.H. Janssen, J.H. Bitter, K.P. de Jong, Generation, characterization, and impact of mesopores in zeolite catalysts. Catal. Rev. 45, 297–319 (2003)CrossRefGoogle Scholar
  84. 84.
    Q. Ding, H. Xian, Y. Tan, N. Tsubaki, X. Li, Mesoporous SiO2-confined La0.7Sr0.3CoO3 perovskite nanoparticles: an efficient NOx adsorber for lean-burn exhausts. Catal. Sci. Technol. 3, 1493–1496 (2013)CrossRefGoogle Scholar
  85. 85.
    Y. Du, Q. Meng, J. Wang, J. Yan, H. Fan, Y. Liu, H. Dai, Three-dimensional mesoporous manganese oxides and cobalt oxides: high-efficiency catalysts for the removal of toluene and carbon monoxide. Microporous Mesoporous Mater. 162, 199–206 (2012)CrossRefGoogle Scholar
  86. 86.
    Z. Jiang, W. Zhang, W. Shangguan, X. Wu, Y. Teraoka, Adsorption of NO molecule on spinel-type CuFe2O4 surface: a first-principles study. J. Phys. Chem. C 115, 13035–13040 (2011)CrossRefGoogle Scholar
  87. 87.
    Z. Jiang, Z. Zhu, W. Guo, M. Chen, W. Shangguan, Surface sodium functionalization of ordered mesoporous Co3O4 controls the enhanced simultaneous catalytic removal of soot and NOx. J. Mater. Chem. A 5, 20696–20708 (2017)CrossRefGoogle Scholar
  88. 88.
    M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Characterization of the porous structure of SBA-15. Chem. Mater. 12, 1961–1968 (2000)CrossRefGoogle Scholar
  89. 89.
    Y. Feng, L. Li, S. Niu, Y. Qu, Q. Zhang, Y. Li, W. Zhao, H. Li, J. Shi, Controlled synthesis of highly active mesoporous Co3O4 polycrystals for low temperature CO oxidation. Appl. Catal. B 111, 461–466 (2012)CrossRefGoogle Scholar
  90. 90.
    M. Casascabanas, G. Binotto, D. Larcher, A. Lecup, V. Giordani, J. Tarascon, Defect chemistry and catalytic activity of nanosized Co3O4. Chem. Mater. 21, 1939–1947 (2009)CrossRefGoogle Scholar
  91. 91.
    N. Najmoddin, A. Beitollahi, M. Muhammed, N. Ansari, E. Devlin, S.M. Mohseni, H. Rezaie, D. Niarchos, J. Åkerman, M.S. Toprak, Effect of nanoconfinement on the formation, structural transition and magnetic behavior of mesoporous copper ferrite. J. Alloy. Compd. 598, 191–197 (2014)CrossRefGoogle Scholar
  92. 92.
    F. Jiao, A. Harrison, J.-C. Jumas, A.V. Chadwick, W. Kockelmann, P.G. Bruce, Ordered mesoporous Fe2O3 with crystalline walls. J. Am. Chem. Soc. 128, 5468–5474 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    B. Bai, H. Arandiyan, J. Li, Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl. Catal. B 142, 677–683 (2013)CrossRefGoogle Scholar
  94. 94.
    X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    C.Y. Ma, Z. Mu, J.J. Li, Y.G. Jin, J. Cheng, G.Q. Lu, Z.P. Hao, S.Z. Qiao, Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. J. Am. Chem. Soc. 132, 2608–2613 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    B. Bai, H. Arandiyan, J. Li, Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl. Catal. B 142–143, 677–683 (2013)CrossRefGoogle Scholar
  97. 97.
    C.-I. Ahn, D.-W. Jeong, J.M. Cho, H.-S. Na, W.-J. Jang, H.-S. Roh, J.-H. Choi, S.H. Um, J.W. Bae, Water gas shift reaction on the Mn-modified ordered mesoporous Co3O4. Microporous Mesoporous Mater. 221, 204–211 (2016)CrossRefGoogle Scholar
  98. 98.
    L. Xue, C. Zhang, H. He, Y. Teraoka, Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal. B: Environ. 75, 167–174 (2007)CrossRefGoogle Scholar
  99. 99.
    Y. Peng, W. Si, J. Luo, W. Su, H. Chang, J. Li, J. Hao, J.C. Crittenden, Surface tuning of La0.5Sr0.5CoO3 perovskite catalysts by acetic acid for NOx storage and reduction. Environ. Sci. Technol. 50, 6442–6448 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    R. Vijay, R.J. Hendershot, S.M. Riverajimenez, W.B. Rogers, B.J. Feist, C.M. Snively, J. Lauterbach, Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation. Catal. Commun. 6, 167–171 (2005)CrossRefGoogle Scholar
  101. 101.
    L. Sivachandiran, F. Thevenet, P. Gravejat, A. Rousseau, Investigation of NO and NO2 adsorption mechanisms on TiO2 at room temperature. Appl. Catal. B: Environ. 142, 196–204 (2013)CrossRefGoogle Scholar
  102. 102.
    J. Szanyi, J.H. Kwak, D.H. Kim, S.D. Burton, C.H.F. Peden, NO2 adsorption on BaO/Al2O3: the nature of nitrate species. J. Phys. Chem. B 109, 27–29 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    F. Prinetto, G. Ghiotti, I. Nova, L. Lietti, E. Tronconi, P. Forzatti, FT-IR and TPD investigation of the NOx storage properties of BaO/Al2O3 and Pt–BaO/Al2O3 catalysts. J. Phys. Chem. B 105, 12732–12745 (2001)CrossRefGoogle Scholar
  104. 104.
    L. Olsson, H. Persson, E. Fridell, M. Skoglundh, B. Andersson, A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3. J. Phys. Chem. B 105, 6895–6906 (2001)CrossRefGoogle Scholar
  105. 105.
    C.D. Wagner, G.E. Muilenberg, Handbook of X-ray photoelectron spectroscopy: a reference book of standard data for use in X-ray photoelectron spectroscopy, in Physical Electronics Division (Perkin-Elmer Corp., 1979)Google Scholar
  106. 106.
    X. Wang, W. Wen, J. Mi, X. Li, R. Wang, The ordered mesoporous transition metal oxides for selective catalytic reduction of NOx at low temperature. Appl. Catal. B: Environ. 176, 454–463 (2015)CrossRefGoogle Scholar
  107. 107.
    M.M. Natile, A. Glisenti, Study of surface reactivity of cobalt oxides: interaction with methanol. Chem. Mater. 14, 3090–3099 (2002)CrossRefGoogle Scholar
  108. 108.
    C.-I. Ahn, J.W. Bae, Fischer-Tropsch synthesis on the Al2O3-modified ordered mesoporous Co3O4 with an enhanced catalytic activity and stability. Catal. Today 265, 27–35 (2016)CrossRefGoogle Scholar
  109. 109.
    K.I. Hadjiivanov, Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal. Rev. 42, 71–144 (2000)CrossRefGoogle Scholar
  110. 110.
    Y. Shi, S. Chen, H. Sun, Y. Shu, X. Quan, Low-temperature selective catalytic reduction of NOx with NH3 over hierarchically macro-mesoporous Mn/TiO2. Catal. Commun. 42, 10–13 (2013)CrossRefGoogle Scholar
  111. 111.
    C. He, K. Köhler, Selective catalytic reduction of NO by propane over CoOx/Al2O3: an investigation of the surface reactions using in situ infrared spectroscopy. Phys. Chem. Chem. Phys. 8, 898–905 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    M.L. Traulsen, H.H. Ingelsten, K.K. Hansen, Diffuse reflectance infrared fourier transform study of NOx adsorption on CGO10 impregnated with K2O or BaO. J. Phys. Chem. A 116, 2497–2505 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    W. Shangguan, Y. Teraoka, S. Kagawa, Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Appl. Catal. B: Environ. 16, 149–154 (1998)CrossRefGoogle Scholar
  114. 114.
    M.E. Gálvez, S. Ascaso, R. Moliner, M.J. Lázaro, Influence of the alkali promoter on the activity and stability of transition metal (Cu Co, Fe) based structured catalysts for the simultaneous removal of soot and NOx. Top. Catal. 56, 493–498 (2013)CrossRefGoogle Scholar
  115. 115.
    M.L. Pisarello, V. Milt, M.A. Peralta, C.A. Querini, E.E. Miró, Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts. Catal. Today 75, 465–470 (2002)CrossRefGoogle Scholar
  116. 116.
    E. Aneggi, C. De Leitenburg, G. Dolcetti, A. Trovarelli, Diesel soot combustion activity of ceria promoted with alkali metals. Catal. Today 136, 3–10 (2008)CrossRefGoogle Scholar
  117. 117.
    T. Jakubek, W. Kaspera, P. Legutko, P. Stelmachowski, A. Kotarba, How to efficiently promote transition metal oxides by alkali towards catalytic soot oxidation. Top. Catal. 59, 1083–1089 (2016)CrossRefGoogle Scholar
  118. 118.
    A.M. Hernandezgimenez, D.L. Castello, A. Buenolopez, Diesel soot combustion catalysts: review of active phases. Chem. Pap. 68, 1154–1168 (2014)Google Scholar
  119. 119.
    T. Baidya, P. Bera, B.D. Mukri, S.K. Parida, O. Krocher, M. Elsener, M.S. Hegde, DRIFTS studies on CO and NO adsorption and NO + CO reaction over Pd2+-substituted CeO2 and Ce0.75Sn0.25O2 catalysts. J. Catal. 303, 117–129 (2013)CrossRefGoogle Scholar
  120. 120.
    L. Wu, S. Tong, M. Ge, Heterogeneous reaction of NO2 on Al2O3: the effect of temperature on the nitrite and nitrate formation. J. Phys. Chem. A 117, 4937–4944 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    C.S. MacLeod, A.P. Harvey, A.F. Lee, K. Wilson, Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chem. Eng. J. 135, 63–70 (2008)CrossRefGoogle Scholar
  122. 122.
    R.S. París, V. Montes, M. Boutonnet, S. Järås, Higher alcohol synthesis over nickel-modified alkali-doped molybdenum sulfide catalysts prepared by conventional coprecipitation and coprecipitation in microemulsions. Catal. Today 258, 294–303 (2015)CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University Press, Shanghai and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS)ShanghaiChina

Personalised recommendations