Advertisement

Betaherpesvirus Virion Assembly and Egress

  • William L. Close
  • Ashley N. Anderson
  • Philip E. Pellett
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1045)

Abstract

Virions are the vehicle for cell-to-cell and host-to-host transmission of viruses. Virions need to be assembled reliably and efficiently, be released from infected cells, survive in the extracellular environment during transmission, recognize and then trigger entry of appropriate target cells, and disassemble in an orderly manner during initiation of a new infection. The betaherpesvirus subfamily includes four human herpesviruses (human cytomegalovirus and human herpesviruses 6A, 6B, and 7), as well as viruses that are the basis of important animal models of infection and immunity. Similar to other herpesviruses, betaherpesvirus virions consist of four main parts (in order from the inside): the genome, capsid, tegument, and envelope. Betaherpesvirus genomes are dsDNA and range in length from ~145 to 240 kb. Virion capsids (or nucleocapsids) are geometrically well-defined vessels that contain one copy of the dsDNA viral genome. The tegument is a collection of several thousand protein and RNA molecules packed into the space between the envelope and the capsid for delivery and immediate activity upon cellular entry at the initiation of an infection. Betaherpesvirus envelopes consist of lipid bilayers studded with virus-encoded glycoproteins; they protect the virion during transmission and mediate virion entry during initiation of new infections. Here, we summarize the mechanisms of betaherpesvirus virion assembly, including how infection modifies, reprograms, hijacks, and otherwise manipulates cellular processes and pathways to produce virion components, assemble the parts into infectious virions, and then transport the nascent virions to the extracellular environment for transmission.

Keywords

Herpesvirus Human cytomegalovirus Human herpesvirus 6 Betaherpesvirus Cytomegalovirus Roseolovirus Virion Capsid Virion envelope Virion assembly Virus-host interaction 

References

  1. Adler B, Scrivano L, Ruzcics Z, Rupp B, Sinzger C, Koszinowski U (2006) Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J Gen Virol 87(Pt 9):2451–2460.  https://doi.org/10.1099/vir.0.81921-0 CrossRefPubMedGoogle Scholar
  2. Ahlqvist J, Mocarski E (2011) Cytomegalovirus UL103 controls virion and dense body egress. J Virol 85(10):5125–5135.  https://doi.org/10.1128/jvi.01682-10 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albecka A, Laine RF, Janssen AF, Kaminski CF, Crump CM (2016) HSV-1 glycoproteins are delivered to virus assembly sites through dynamin-dependent endocytosis. Traffic 17(1):21–39.  https://doi.org/10.1111/tra.12340 CrossRefPubMedGoogle Scholar
  4. Albecka A, Owen DJ, Ivanova L, Brun J, Liman R, Davies L, Ahmed MF, Colaco S, Hollinshead M, Graham SC, Crump CM (2017) Dual function of the pUL7-pUL51 tegument protein complex in herpes simplex virus 1 infection. J Virol 91(2).  https://doi.org/10.1128/jvi.02196-16 Google Scholar
  5. Alconada A, Bauer U, Hoflack B (1996) A tyrosine-based motif and a casein kinase II phosphorylation site regulate the intracellular trafficking of the varicella-zoster virus glycoprotein I, a protein localized in the trans-Golgi network. EMBO J 15(22):6096–6110PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alconada A, Bauer U, Sodeik B, Hoflack B (1999) Intracellular traffic of herpes simplex virus glycoprotein gE: characterization of the sorting signals required for its trans-Golgi network localization. J Virol 73(1):377–387PubMedPubMedCentralGoogle Scholar
  7. Alwine JC (2012) The human cytomegalovirus assembly compartment: a masterpiece of viral manipulation of cellular processes that facilitates assembly and egress. PLoS Pathog 8(9):e1002878.  https://doi.org/10.1371/journal.ppat.1002878 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Archer MA, Brechtel TM, Davis LE, Parmar RC, Hasan MH, Tandon R (2017) Inhibition of endocytic pathways impacts cytomegalovirus maturation. Sci Rep 7:46069.  https://doi.org/10.1038/srep46069 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baines JD, Roizman B (1992) The UL11 gene of herpes simplex virus 1 encodes a function that facilitates nucleocapsid envelopment and egress from cells. J Virol 66(8):5168–5174PubMedPubMedCentralGoogle Scholar
  10. Bardens A, Doring T, Stieler J, Prange R (2011) Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner. Cell Microbiol 13(4):602–619.  https://doi.org/10.1111/j.1462-5822.2010.01557.x CrossRefPubMedGoogle Scholar
  11. Beghetto E, Paolis FD, Spadoni A, Del Porto P, Buffolano W, Gargano N (2008) Molecular dissection of the human B cell response against cytomegalovirus infection by lambda display. J Virol Methods 151(1):7–14.  https://doi.org/10.1016/j.jviromet.2008.04.005 CrossRefPubMedGoogle Scholar
  12. Beitia Ortiz de Zarate I, Cantero-Aguilar L, Longo M, Berlioz-Torrent C, Rozenberg F (2007) Contribution of endocytic motifs in the cytoplasmic tail of herpes simplex virus type 1 glycoprotein B to virus replication and cell-cell fusion. J Virol 81(24):13889–13903.  https://doi.org/10.1128/JVI.01231-07 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bello-Morales R, Crespillo AJ, Fraile-Ramos A, Tabares E, Alcina A, Lopez-Guerrero JA (2012) Role of the small GTPase Rab27a during herpes simplex virus infection of oligodendrocytic cells. BMC Microbiol 12:265.  https://doi.org/10.1186/1471-2180-12-265 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Benyesh-Melnick M, Probstmeyer F, McCombs R, Brunschwig JP, Vonka V (1966) Correlation between infectivity and physical virus particles in human cytomegalovirus. J Bacteriol 92(5):1555–1561PubMedPubMedCentralGoogle Scholar
  15. Bigalke JM, Heldwein EE (2015) Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J 34(23):2921–2936.  https://doi.org/10.15252/embj.201592359 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bigalke JM, Heldwein EE (2016) Nuclear exodus: herpesviruses lead the way. Annu Rev Virol 3(1):387–409.  https://doi.org/10.1146/annurev-virology-110615-042215 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Borst EM, Wagner K, Binz A, Sodeik B, Messerle M (2008) The essential human cytomegalovirus gene UL52 is required for cleavage-packaging of the viral genome. J Virol 82(5):2065–2078.  https://doi.org/10.1128/jvi.01967-07 CrossRefPubMedGoogle Scholar
  18. Borst EM, Kleine-Albers J, Gabaev I, Babic M, Wagner K, Binz A, Degenhardt I, Kalesse M, Jonjic S, Bauerfeind R, Messerle M (2013) The human cytomegalovirus UL51 protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89. J Virol 87(3):1720–1732.  https://doi.org/10.1128/jvi.01955-12 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Borst EM, Bauerfeind R, Binz A, Stephan TM, Neuber S, Wagner K, Steinbruck L, Sodeik B, Lenac Rovis T, Jonjic S, Messerle M (2016) The essential human cytomegalovirus proteins pUL77 and pUL93 are structural components necessary for viral genome encapsidation. J Virol 90(13):5860–5875.  https://doi.org/10.1128/jvi.00384-16 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bowman JJ, Lacayo JC, Burbelo P, Fischer ER, Cohen JI (2011) Rhesus and human cytomegalovirus glycoprotein L are required for infection and cell-to-cell spread of virus but cannot complement each other. J Virol 85(5):2089–2099.  https://doi.org/10.1128/JVI.01970-10 CrossRefPubMedGoogle Scholar
  21. Britt B (2007) Maturation and egress. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, Therapy, and Immunoprophylaxis. Cambridge University Press c.2007, CambridgeGoogle Scholar
  22. Britt WJ, Mach M (1996) Human cytomegalovirus glycoproteins. Intervirology 39(5-6):401–412CrossRefPubMedGoogle Scholar
  23. Brown D (2000) Targeting of membrane transporters in renal epithelia: when cell biology meets physiology. Am J Physiol Renal Physiol 278(2):F192–F201CrossRefPubMedGoogle Scholar
  24. Buchkovich NJ, Maguire TG, Alwine JC (2010) Role of the endoplasmic reticulum chaperone BiP, SUN domain proteins, and dynein in altering nuclear morphology during human cytomegalovirus infection. J Virol 84(14):7005–7017.  https://doi.org/10.1128/JVI.00719-10 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bughio F, Elliott DA, Goodrum F (2013) An endothelial cell-specific requirement for the UL133-UL138 locus of human cytomegalovirus for efficient virus maturation. J Virol 87(6):3062–3075.  https://doi.org/10.1128/JVI.02510-12 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bughio F, Umashankar M, Wilson J, Goodrum F (2015) Human cytomegalovirus UL135 and UL136 genes are required for postentry tropism in endothelial cells. J Virol 89(13):6536–6550.  https://doi.org/10.1128/JVI.00284-15 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Calistri A, Sette P, Salata C, Cancellotti E, Forghieri C, Comin A, Gottlinger H, Campadelli-Fiume G, Palu G, Parolin C (2007) Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies. J Virol 81(20):11468–11478.  https://doi.org/10.1128/JVI.01364-07 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Calo S, Cortese M, Ciferri C, Bruno L, Gerrein R, Benucci B, Monda G, Gentile M, Kessler T, Uematsu Y, Maione D, Lilja AE, Carfi A, Merola M (2016) The human cytomegalovirus UL116 gene encodes an envelope glycoprotein forming a complex with gH independently from gL. J Virol 90(10):4926–4938.  https://doi.org/10.1128/JVI.02517-15 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Camozzi D, Pignatelli S, Valvo C, Lattanzi G, Capanni C, Dal Monte P, Landini MP (2008) Remodelling of the nuclear lamina during human cytomegalovirus infection: role of the viral proteins pUL50 and pUL53. J Gen Virol 89(Pt 3):731–740.  https://doi.org/10.1099/vir.0.83377-0 CrossRefPubMedGoogle Scholar
  30. Caviness K, Cicchini L, Rak M, Umashankar M, Goodrum F (2014) Complex expression of the UL136 gene of human cytomegalovirus results in multiple protein isoforms with unique roles in replication. J Virol 88(24):14412–14425.  https://doi.org/10.1128/JVI.02711-14 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Caviness K, Bughio F, Crawford LB, Streblow DN, Nelson JA, Caposio P, Goodrum F (2016) Complex interplay of the UL136 isoforms balances cytomegalovirus replication and latency. MBio 7(2):e01986.  https://doi.org/10.1128/mBio.01986-15 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cepeda V, Fraile-Ramos A (2011) A role for the SNARE protein syntaxin 3 in human cytomegalovirus morphogenesis. Cell Microbiol 13(6):846–858.  https://doi.org/10.1111/j.1462-5822.2011.01583.x CrossRefPubMedGoogle Scholar
  33. Cepeda V, Esteban M, Fraile-Ramos A (2010) Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cell Microbiol 12(3):386–404.  https://doi.org/10.1111/j.1462-5822.2009.01405.x CrossRefPubMedGoogle Scholar
  34. Cha TA, Tom E, Kemble GW, Duke GM, Mocarski ES, Spaete RR (1996) Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70(1):78–83PubMedPubMedCentralGoogle Scholar
  35. Chadha P, Han J, Starkey JL, Wills JW (2012) Regulated interaction of tegument proteins UL16 and UL11 from herpes simplex virus. J Virol 86(21):11886–11898.  https://doi.org/10.1128/JVI.01879-12 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T, Hutchison CA 3rd, Kouzarides T, Martignetti JA et al (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169PubMedGoogle Scholar
  37. Chen DH, Jiang H, Lee M, Liu F, Zhou ZH (1999) Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology 260(1):10–16.  https://doi.org/10.1006/viro.1999.9791 CrossRefPubMedGoogle Scholar
  38. Chin KC, Cresswell P (2001) Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc Natl Acad Sci U S A 98(26):15125–15130.  https://doi.org/10.1073/pnas.011593298 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Chiu YF, Sugden B, Chang PJ, Chen LW, Lin YJ, Lan YC, Lai CH, Liou JY, Liu ST, Hung CH (2012) Characterization and intracellular trafficking of Epstein-Barr virus BBLF1, a protein involved in virion maturation. J Virol 86(18):9647–9655.  https://doi.org/10.1128/JVI.01126-12 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chlanda P, Schraidt O, Kummer S, Riches J, Oberwinkler H, Prinz S, Krausslich HG, Briggs JA (2015) Structural analysis of the roles of influenza A virus membrane-associated proteins in assembly and morphology. J Virol 89(17):8957–8966.  https://doi.org/10.1128/JVI.00592-15 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Chouljenko DV, Jambunathan N, Chouljenko VN, Naderi M, Brylinski M, Caskey JR, Kousoulas KG (2016) Herpes simplex virus 1 UL37 protein tyrosine residues conserved among all alphaherpesviruses are required for interactions with glycoprotein K, cytoplasmic virion envelopment, and infectious virus production. J Virol 90(22):10351–10361.  https://doi.org/10.1128/JVI.01202-16 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Coleman S, Hornig J, Maddux S, Choi KY, McGregor A (2015) Viral glycoprotein complex formation, essential function and immunogenicity in the guinea pig model for cytomegalovirus. PLoS One 10(8):e0135567.  https://doi.org/10.1371/journal.pone.0135567 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Coleman S, Choi KY, Root M, McGregor A (2016) A homolog pentameric complex dictates viral epithelial tropism, pathogenicity and congenital infection rate in guinea pig cytomegalovirus. PLoS Pathog 12(7):e1005755.  https://doi.org/10.1371/journal.ppat.1005755 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Crump CM, Hung CH, Thomas L, Wan L, Thomas G (2003) Role of PACS-1 in trafficking of human cytomegalovirus glycoprotein B and virus production. J Virol 77(20):11105–11113.  https://doi.org/10.1128/jvi.77.20.11105-11113.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Crump CM, Yates C, Minson T (2007) Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol 81(14):7380–7387.  https://doi.org/10.1128/JVI.00222-07 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Cruz L, Streck NT, Ferguson K, Desai T, Desai DH, Amin SG, Buchkovich NJ (2017) Potent inhibition of human cytomegalovirus by modulation of cellular SNARE syntaxin 5. J Virol 91(1).  https://doi.org/10.1128/JVI.01637-16 PubMedPubMedCentralGoogle Scholar
  47. Dai X, Yu X, Gong H, Jiang X, Abenes G, Liu H, Shivakoti S, Britt WJ, Zhu H, Liu F, Zhou ZH (2013) The smallest capsid protein mediates binding of the essential tegument protein pp 150 to stabilize DNA-containing capsids in human cytomegalovirus. PLoS Pathog 9(8):e1003525.  https://doi.org/10.1371/journal.ppat.1003525 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Das S, Pellett PE (2011) Spatial relationships between markers for secretory and endosomal machinery in human cytomegalovirus-infected cells versus those in uninfected cells. J Virol 85(12):5864–5879.  https://doi.org/10.1128/jvi.00155-11 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Das S, Vasanji A, Pellett PE (2007) Three-dimensional structure of the human cytomegalovirus cytoplasmic virion assembly complex includes a reoriented secretory apparatus. J Virol 81(21):11861–11869.  https://doi.org/10.1128/jvi.01077-07 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Das S, Ortiz DA, Gurczynski SJ, Khan F, Pellett PE (2014) Identification of human cytomegalovirus genes important for biogenesis of the cytoplasmic virion assembly complex. J Virol 88(16):9086–9099.  https://doi.org/10.1128/jvi.01141-14 CrossRefPubMedPubMedCentralGoogle Scholar
  51. DeRussy BM, Tandon R (2015) Human cytomegalovirus pUL93 Is required for viral genome cleavage and packaging. J Virol 89(23):12221–12225.  https://doi.org/10.1128/jvi.02382-15 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L, Addison C, Dargan DJ, McGeoch DJ, Gatherer D, Emery VC, Griffiths PD, Sinzger C, McSharry BP, Wilkinson GW, Davison AJ (2004) Genetic content of wild-type human cytomegalovirus. J Gen Virol 85(Pt 5):1301–1312.  https://doi.org/10.1099/vir.0.79888-0 CrossRefPubMedGoogle Scholar
  53. Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F (2003) Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 100(24):14223–14228.  https://doi.org/10.1073/pnas.2334032100 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Favoreel HW, Van Minnebruggen G, Nauwynck HJ, Enquist LW, Pensaert MB (2002) A tyrosine-based motif in the cytoplasmic tail of pseudorabies virus glycoprotein B is important for both antibody-induced internalization of viral glycoproteins and efficient cell-to-cell spread. J Virol 76(13):6845–6851CrossRefPubMedPubMedCentralGoogle Scholar
  55. Fischer D (2012) Dissecting functional motifs of the human cytomegalovirus tegument protein pUL71 (Ph.D. thesis). University of Ulm, UlmGoogle Scholar
  56. Fish KN, Britt W, Nelson JA (1996) A novel mechanism for persistence of human cytomegalovirus in macrophages. J Virol 70(3):1855–1862PubMedPubMedCentralGoogle Scholar
  57. Foster TP, Melancon JM, Olivier TL, Kousoulas KG (2004) Herpes simplex virus type 1 glycoprotein K and the UL20 protein are interdependent for intracellular trafficking and trans-Golgi network localization. J Virol 78(23):13262–13277.  https://doi.org/10.1128/JVI.78.23.13262-13277.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Fraile-Ramos A, Pelchen-Matthews A, Risco C, Rejas MT, Emery VC, Hassan-Walker AF, Esteban M, Marsh M (2007) The ESCRT machinery is not required for human cytomegalovirus envelopment. Cell Microbiol 9(12):2955–2967.  https://doi.org/10.1111/j.1462-5822.2007.01024.x CrossRefPubMedGoogle Scholar
  59. Fraile-Ramos A, Cepeda V, Elstak E, van der Sluijs P (2010) Rab27a is required for human cytomegalovirus assembly. PLoS One 5(12):e15318.  https://doi.org/10.1371/journal.pone.0015318 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Fukuda M (2013) Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 14(9):949–963.  https://doi.org/10.1111/tra.12083 CrossRefPubMedGoogle Scholar
  61. Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum JD, Shamulailatpam P, Love CL, Dave SS, Tuschl T, Ohler U, Cullen BR (2011) Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10(5):515–526.  https://doi.org/10.1016/j.chom.2011.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Goulidaki N, Alarifi S, Alkahtani SH, Al-Qahtani A, Spandidos DA, Stournaras C, Sourvinos G (2015) RhoB is a component of the human cytomegalovirus assembly complex and is required for efficient viral production. Cell Cycle 14(17):2748–2763.  https://doi.org/10.1080/15384101.2015.1066535 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Grainger L, Cicchini L, Rak M, Petrucelli A, Fitzgerald KD, Semler BL, Goodrum F (2010) Stress-inducible alternative translation initiation of human cytomegalovirus latency protein pUL138. J Virol 84(18):9472–9486.  https://doi.org/10.1128/JVI.00855-10 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Grey F, Nelson J (2008) Identification and function of human cytomegalovirus microRNAs. J Clin Virol 41(3):186–191.  https://doi.org/10.1016/j.jcv.2007.11.024 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103(32):11821–11827.  https://doi.org/10.1073/pnas.0601617103 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gudleski-O'Regan N, Greco TM, Cristea IM, Shenk T (2012) Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. Cell Host Microbe 12(1):86–96.  https://doi.org/10.1016/j.chom.2012.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Guo H, Wang L, Peng L, Zhou ZH, Deng H (2009) Open reading frame 33 of a gammaherpesvirus encodes a tegument protein essential for virion morphogenesis and egress. J Virol 83(20):10582–10595.  https://doi.org/10.1128/JVI.00497-09 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Guo H, Shen S, Wang L, Deng H (2010) Role of tegument proteins in herpesvirus assembly and egress. Protein Cell 1(11):987–998.  https://doi.org/10.1007/s13238-010-0120-0 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Gurczynski SJ, Das S, Pellett PE (2014) Deletion of the human cytomegalovirus US17 gene increases the ratio of genomes per infectious unit and alters regulation of immune and endoplasmic reticulum stress response genes at early and late times after infection. J Virol 88(4):2168–2182.  https://doi.org/10.1128/JVI.02704-13 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Handley MT, Haynes LP, Burgoyne RD (2007) Differential dynamics of Rab3A and Rab27A on secretory granules. J Cell Sci 120(Pt 6):973–984.  https://doi.org/10.1242/jcs.03406 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Heineman TC, Hall SL (2002) Role of the varicella-zoster virus gB cytoplasmic domain in gB transport and viral egress. J Virol 76(2):591–599CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hertel L, Mocarski ES (2004) Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of Pseudomitosis independent of US28 function. J Virol 78(21):11988–12011.  https://doi.org/10.1128/JVI.78.21.11988-12011.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Higashio H, Satoh Y, Saino T (2016) Mast cell degranulation is negatively regulated by the Munc13-4-binding small-guanosine triphosphatase Rab37. Sci Rep 6:22539.  https://doi.org/10.1038/srep22539 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hobom U, Brune W, Messerle M, Hahn G, Koszinowski UH (2000) Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 74(17):7720–7729CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hogue IB, Bosse JB, Hu JR, Thiberge SY, Enquist LW (2014) Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis. PLoS Pathog 10(12):e1004535.  https://doi.org/10.1371/journal.ppat.1004535 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hogue IB, Scherer J, Enquist LW (2016) Exocytosis of alphaherpesvirus virions, light particles, and glycoproteins uses constitutive secretory mechanisms. MBio 7(3).  https://doi.org/10.1128/mBio.00820-16 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Hollinshead M, Johns HL, Sayers CL, Gonzalez-Lopez C, Smith GL, Elliott G (2012) Endocytic tubules regulated by Rab GTPases 5 and 11 are used for envelopment of herpes simplex virus. EMBO J 31(21):4204–4220.  https://doi.org/10.1038/emboj.2012.262 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Homman-Loudiyi M, Hultenby K, Britt W, Soderberg-Naucler C (2003) Envelopment of human cytomegalovirus occurs by budding into Golgi-derived vacuole compartments positive for gB, Rab 3, Trans-Golgi Network 46, and Mannosidase II. J Virol 77(5):3191–3203.  https://doi.org/10.1128/jvi.77.5.3191-3203.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Hook LM, Grey F, Grabski R, Tirabassi R, Doyle T, Hancock M, Landais I, Jeng S, McWeeney S, Britt W, Nelson JA (2014) Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 15(3):363–373.  https://doi.org/10.1016/j.chom.2014.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Huber MT, Compton T (1998) The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. J Virol 72(10):8191–8197PubMedPubMedCentralGoogle Scholar
  81. Hurley JH (2008) ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 20(1):4–11.  https://doi.org/10.1016/j.ceb.2007.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat Rev Mol Cell Biol 11(8):556–566.  https://doi.org/10.1038/nrm2937 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Hurley JH, Ren X (2009) The circuitry of cargo flux in the ESCRT pathway. J Cell Biol 185(2):185–187.  https://doi.org/10.1083/jcb.200903013 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Hutt-Fletcher LM (2015) EBV glycoproteins: where are we now? Future Virol 10(10):1155–1162.  https://doi.org/10.2217/fvl.15.80 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Jarvis MA, Fish KN, Soderberg-Naucler C, Streblow DN, Meyers HL, Thomas G, Nelson JA (2002) Retrieval of human cytomegalovirus glycoprotein B from cell surface Is not required for virus envelopment in astrocytoma cells. J Virol 76(10):5147–5155.  https://doi.org/10.1128/jvi.76.10.5147-5155.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Jarvis MA, Jones TR, Drummond DD, Smith PP, Britt WJ, Nelson JA, Baldick CJ (2003) Phosphorylation of human cytomegalovirus glycoprotein B (gB) at the acidic cluster casein kinase 2 site (Ser900) is required for localization of gB to the trans-Golgi network and efficient virus replication. J Virol 78(1):285–293.  https://doi.org/10.1128/jvi.78.1.285-293.2004 CrossRefGoogle Scholar
  87. Jean Beltran PM, Cristea IM (2014) The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics. Expert Rev Proteomics 11(6):697–711.  https://doi.org/10.1586/14789450.2014.971116 CrossRefPubMedGoogle Scholar
  88. Jean Beltran PM, Mathias RA, Cristea IM (2016) A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Syst 3(4):361–373. e366.  https://doi.org/10.1016/j.cels.2016.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Jiang XJ, Adler B, Sampaio KL, Digel M, Jahn G, Ettischer N, Stierhof YD, Scrivano L, Koszinowski U, Mach M, Sinzger C (2008) UL74 of human cytomegalovirus contributes to virus release by promoting secondary envelopment of virions. J Virol 82(6):2802–2812.  https://doi.org/10.1128/JVI.01550-07 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Johns HL, Gonzalez-Lopez C, Sayers CL, Hollinshead M, Elliott G (2014) Rab6 dependent post-Golgi trafficking of HSV1 envelope proteins to sites of virus envelopment. Traffic 15(2):157–178.  https://doi.org/10.1111/tra.12134 CrossRefPubMedGoogle Scholar
  91. Jones TR, Lee SW (2004) An acidic cluster of human cytomegalovirus UL99 tegument protein Is required for trafficking and function. J Virol 78(3):1488–1502.  https://doi.org/10.1128/jvi.78.3.1488-1502.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kharkwal H, Smith CG, Wilson DW (2016) Herpes simplex virus capsid localization to ESCRT-VPS4 complexes in the presence and absence of the large tegument protein UL36p. J Virol 90(16):7257–7267.  https://doi.org/10.1128/JVI.00857-16 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Kimura T, Niki I (2011) Rab27a in pancreatic beta-cells, a busy protein in membrane trafficking. Prog Biophys Mol Biol 107(2):219–223.  https://doi.org/10.1016/j.pbiomolbio.2011.06.016 CrossRefPubMedGoogle Scholar
  94. Kinzler ER, Theiler RN, Compton T (2002) Expression and reconstitution of the gH/gL/gO complex of human cytomegalovirus. J Clin Virol 25(Suppl 2):S87–S95CrossRefPubMedGoogle Scholar
  95. Klupp BG, Granzow H, Klopfleisch R, Fuchs W, Kopp M, Lenk M, Mettenleiter TC (2005) Functional analysis of the pseudorabies virus UL51 protein. J Virol 79(6):3831–3840.  https://doi.org/10.1128/JVI.79.6.3831-3840.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Klussmann JP, Krueger E, Sloots T, Berneman Z, Arnold G, Krueger GR (1997) Ultrastructural study of human herpesvirus-7 replication in tissue culture. Virchows Arch 430(5):417–426CrossRefPubMedGoogle Scholar
  97. Koyuncu E, Purdy JG, Rabinowitz JD, Shenk T (2013) Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny. PLoS Pathog 9(5):e1003333.  https://doi.org/10.1371/journal.ppat.1003333 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kropff B, Koedel Y, Britt W, Mach M (2010) Optimal replication of human cytomegalovirus correlates with endocytosis of glycoprotein gpUL132. J Virol 84(14):7039–7052.  https://doi.org/10.1128/JVI.01644-09 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Krug LT, Pellett PE (2014) Roseolovirus molecular biology: recent advances. Curr Opin Virol 9:170–177.  https://doi.org/10.1016/j.coviro.2014.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Krzyzaniak M, Mach M, Britt WJ (2007) The cytoplasmic tail of glycoprotein M (gpUL100) expresses trafficking signals required for human cytomegalovirus assembly and replication. J Virol 81(19):10316–10328.  https://doi.org/10.1128/JVI.00375-07 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Krzyzaniak MA, Mach M, Britt WJ (2009) HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 10(10):1439–1457.  https://doi.org/10.1111/j.1600-0854.2009.00967.x CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kumar B, Chandran B (2016) KSHV entry and trafficking in target cells-hijacking of cell signal pathways, actin and membrane dynamics. Viruses 8(11).  https://doi.org/10.3390/v8110305 CrossRefPubMedCentralGoogle Scholar
  103. Kumar B, Dutta D, Iqbal J, Ansari MA, Roy A, Chikoti L, Pisano G, Veettil MV, Chandran B (2016) ESCRT-I protein Tsg101 plays a role in the post-macropinocytic trafficking and infection of endothelial cells by Kaposi’s sarcoma-associated herpesvirus. PLoS Pathog 12(10):e1005960.  https://doi.org/10.1371/journal.ppat.1005960 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lake CM, Hutt-Fletcher LM (2000) Epstein-Barr virus that lacks glycoprotein gN is impaired in assembly and infection. J Virol 74(23):11162–11172CrossRefPubMedPubMedCentralGoogle Scholar
  105. Lake CM, Molesworth SJ, Hutt-Fletcher LM (1998) The Epstein-Barr virus (EBV) gN homolog BLRF1 encodes a 15-kilodalton glycoprotein that cannot be authentically processed unless it is coexpressed with the EBV gM homolog BBRF3. J Virol 72(7):5559–5564PubMedPubMedCentralGoogle Scholar
  106. Landini MP (1984) Early enhanced glucose uptake in human cytomegalovirus-infected cells. J Gen Virol 65(Pt 7):1229–1232.  https://doi.org/10.1099/0022-1317-65-7-1229 CrossRefPubMedGoogle Scholar
  107. Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19(22):R1046–R1052.  https://doi.org/10.1016/j.cub.2009.09.058 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Lee GE, Murray JW, Wolkoff AW, Wilson DW (2006) Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro. J Virol 80(9):4264–4275.  https://doi.org/10.1128/JVI.80.9.4264-4275.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Lee CP, Liu PT, Kung HN, Su MT, Chua HH, Chang YH, Chang CW, Tsai CH, Liu FT, Chen MR (2012) The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein-Barr Virus. PLoS Pathog 8(9):e1002904.  https://doi.org/10.1371/journal.ppat.1002904 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Lewis CA, Griffiths B, Santos CR, Pende M, Schulze A (2011) Regulation of the SREBP transcription factors by mTORC1. Biochem Soc Trans 39(2):495–499.  https://doi.org/10.1042/BST0390495 CrossRefPubMedGoogle Scholar
  111. Li G, Nguyen CC, Ryckman BJ, Britt WJ, Kamil JP (2015) A viral regulator of glycoprotein complexes contributes to human cytomegalovirus cell tropism. Proc Natl Acad Sci U S A 112(14):4471–4476.  https://doi.org/10.1073/pnas.1419875112 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Liao H, Lee JH, Kondo R, Katata M, Imadome K, Miyado K, Inoue N, Fujiwara S, Nakamura H (2014) The highly conserved human cytomegalovirus UL136 ORF generates multiple Golgi-localizing protein isoforms through differential translation initiation. Virus Res 179:241–246.  https://doi.org/10.1016/j.virusres.2013.11.002 CrossRefPubMedGoogle Scholar
  113. Liu Y, Biegalke BJ (2002) The human cytomegalovirus UL35 gene encodes two proteins with different functions. J Virol 76(5):2460–2468CrossRefPubMedPubMedCentralGoogle Scholar
  114. Liu ST, Sharon-Friling R, Ivanova P, Milne SB, Myers DS, Rabinowitz JD, Brown HA, Shenk T (2011) Synaptic vesicle-like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress. Proc Natl Acad Sci U S A 108(31):12869–12874.  https://doi.org/10.1073/pnas.1109796108 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Lucin P, Mahmutefendic H, Blagojevic Zagorac G, Ilic Tomas M (2015) Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cell Mol Immunol 12(2):154–169.  https://doi.org/10.1038/cmi.2014.85 CrossRefPubMedGoogle Scholar
  116. Luganini A, Cavaletto N, Raimondo S, Geuna S, Gribaudo G (2017) Loss of the human cytomegalovirus US16 protein abrogates virus entry into endothelial and epithelial cells by reducing the virion content of the pentamer. J Virol 91(11).  https://doi.org/10.1128/JVI.00205-17 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Mach M, Kropff B, Dal Monte P, Britt W (2000) Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J Virol 74(24):11881–11892CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mach M, Kropff B, Kryzaniak M, Britt W (2005) Complex formation by glycoproteins M and N of human cytomegalovirus: structural and functional aspects. J Virol 79(4):2160–2170.  https://doi.org/10.1128/JVI.79.4.2160-2170.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Mach M, Osinski K, Kropff B, Schloetzer-Schrehardt U, Krzyzaniak M, Britt W (2007) The carboxy-terminal domain of glycoprotein N of human cytomegalovirus is required for virion morphogenesis. J Virol 81(10):5212–5224.  https://doi.org/10.1128/JVI.01463-06 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Maeki T, Mori Y (2012) Features of human herpesvirus-6A and -6B entry. Adv Virol 2012:384069.  https://doi.org/10.1155/2012/384069 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Maninger S, Bosse JB, Lemnitzer F, Pogoda M, Mohr CA, von Einem J, Walther P, Koszinowski UH, Ruzsics Z (2011) M94 is essential for the secondary envelopment of murine cytomegalovirus. J Virol 85(18):9254–9267.  https://doi.org/10.1128/JVI.00443-11 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Maresova L, Pasieka TJ, Homan E, Gerday E, Grose C (2005) Incorporation of three endocytosed varicella-zoster virus glycoproteins, gE, gH, and gB, into the virion envelope. J Virol 79(2):997–1007.  https://doi.org/10.1128/JVI.79.2.997-1007.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  123. May JS, Smith CM, Gill MB, Stevenson PG (2008) An essential role for the proximal but not the distal cytoplasmic tail of glycoprotein M in murid herpesvirus 4 infection. PLoS One 3(5):e2131.  https://doi.org/10.1371/journal.pone.0002131 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Mazelova J, Ransom N, Astuto-Gribble L, Wilson MC, Deretic D (2009) Syntaxin 3 and SNAP-25 pairing, regulated by omega-3 docosahexaenoic acid, controls the delivery of rhodopsin for the biogenesis of cilia-derived sensory organelles, the rod outer segments. J Cell Sci 122(Pt 12):2003–2013.  https://doi.org/10.1242/jcs.039982 CrossRefPubMedPubMedCentralGoogle Scholar
  125. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596.  https://doi.org/10.1038/nature04396 CrossRefPubMedGoogle Scholar
  126. McMahon HT, Sudhof TC (1995) Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity alpha-SNAP binding site. J Biol Chem 270(5):2213–2217CrossRefPubMedGoogle Scholar
  127. Meissner CS, Suffner S, Schauflinger M, von Einem J, Bogner E (2012) A leucine zipper motif of a tegument protein triggers final envelopment of human cytomegalovirus. J Virol 86(6):3370–3382.  https://doi.org/10.1128/JVI.06556-11 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Mettenleiter TC (2006) Intriguing interplay between viral proteins during herpesvirus assembly or: the herpesvirus assembly puzzle. Vet Microbiol 113(3-4):163–169.  https://doi.org/10.1016/j.vetmic.2005.11.040 CrossRefPubMedGoogle Scholar
  129. Mettenleiter TC, Muller F, Granzow H, Klupp BG (2013) The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol 15(2):170–178.  https://doi.org/10.1111/cmi.12044 CrossRefPubMedGoogle Scholar
  130. Milbradt J, Webel R, Auerochs S, Sticht H, Marschall M (2010) Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus. J Biol Chem 285(18):13979–13989.  https://doi.org/10.1074/jbc.M109.063628 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Miranda-Saksena M, Boadle RA, Aggarwal A, Tijono B, Rixon FJ, Diefenbach RJ, Cunningham AL (2009) Herpes simplex virus utilizes the large secretory vesicle pathway for anterograde transport of tegument and envelope proteins and for viral exocytosis from growth cones of human fetal axons. J Virol 83(7):3187–3199.  https://doi.org/10.1128/JVI.01579-08 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Mizuno K, Tolmachova T, Ushakov DS, Romao M, Abrink M, Ferenczi MA, Raposo G, Seabra MC (2007) Rab27b regulates mast cell granule dynamics and secretion. Traffic 8(7):883–892.  https://doi.org/10.1111/j.1600-0854.2007.00571.x CrossRefPubMedPubMedCentralGoogle Scholar
  133. Mocarski ES (2007) Comparative analysis of herpesvirus-common proteins. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Copyright (c) Cambridge University Press 2007, CambridgeGoogle Scholar
  134. Mocarski ES, Shenk T, Griffiths PD, Pass RF (2013) In: Fields BN, Knipe DM, Howley PM (eds) Cytomegaloviruses, Fields virology, vol 2, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, c2013, PhiladelphiaGoogle Scholar
  135. Molesworth SJ, Lake CM, Borza CM, Turk SM, Hutt-Fletcher LM (2000) Epstein-Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J Virol 74(14):6324–6332CrossRefPubMedPubMedCentralGoogle Scholar
  136. Mori Y, Akkapaiboon P, Yang X, Yamanishi K (2003) The human herpesvirus 6 U100 gene product is the third component of the gH-gL glycoprotein complex on the viral envelope. J Virol 77(4):2452–2458CrossRefPubMedPubMedCentralGoogle Scholar
  137. Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, Uchiyama Y, Yamanishi K (2008) Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 9(10):1728–1742.  https://doi.org/10.1111/j.1600-0854.2008.00796.x CrossRefPubMedPubMedCentralGoogle Scholar
  138. Mori J, Kawabata A, Tang H, Tadagaki K, Mizuguchi H, Kuroda K, Mori Y (2015a) Human herpesvirus-6 U14 induces cell-cycle arrest in G2/M phase by associating with a cellular protein, EDD. PLoS One 10(9):e0137420.  https://doi.org/10.1371/journal.pone.0137420 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Mori J, Tang H, Kawabata A, Koike M, Mori Y (2015b) Human herpesvirus 6A U14 is important for virus maturation. J Virol 90(3):1677–1681.  https://doi.org/10.1128/jvi.02492-15 CrossRefPubMedGoogle Scholar
  140. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26(10):1179–1186.  https://doi.org/10.1038/nbt.1500 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Murphy E, Yu D, Grimwood J, Schmutz J, Dickson M, Jarvis MA, Hahn G, Nelson JA, Myers RM, Shenk TE (2003) Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A 100(25):14976–14981.  https://doi.org/10.1073/pnas.2136652100 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Nicholas J (1996) Determination and analysis of the complete nucleotide sequence of human herpesvirus. J Virol 70(9):5975–5989PubMedPubMedCentralGoogle Scholar
  143. Nozawa N, Daikoku T, Koshizuka T, Yamauchi Y, Yoshikawa T, Nishiyama Y (2003) Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting. J Virol 77(5):3204–3216CrossRefPubMedPubMedCentralGoogle Scholar
  144. Nozawa N, Kawaguchi Y, Tanaka M, Kato A, Kato A, Kimura H, Nishiyama Y (2005) Herpes simplex virus type 1 UL51 protein is involved in maturation and egress of virus particles. J Virol 79(11):6947–6956.  https://doi.org/10.1128/JVI.79.11.6947-6956.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Ohno H, Fournier MC, Poy G, Bonifacino JS (1996) Structural determinants of interaction of tyrosine-based sorting signals with the adaptor medium chains. J Biol Chem 271(46):29009–29015CrossRefPubMedGoogle Scholar
  146. Olson JK, Grose C (1997) Endocytosis and recycling of varicella-zoster virus Fc receptor glycoprotein gE: internalization mediated by a YXXL motif in the cytoplasmic tail. J Virol 71(5):4042–4054PubMedPubMedCentralGoogle Scholar
  147. Ortiz DA, Glassbrook JE, Pellett PE (2016) Protein-protein interactions suggest novel activities of human cytomegalovirus tegument protein pUL103. J Virol 90(17):7798–7810.  https://doi.org/10.1128/jvi.00097-16 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Pawliczek T, Crump CM (2009) Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression. J Virol 83(21):11254–11264.  https://doi.org/10.1128/jvi.00574-09 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Pellett PE, Roizman B (2013) In: Knipe DM, Howley PM, Cohen JI et al (eds) The family Herpesviridae: a brief introduction, Fields virology, vol 2, 6th edn, pp 1802–1822Google Scholar
  150. Phillips SL, Bresnahan WA (2011) Identification of binary interactions between human cytomegalovirus virion proteins. J Virol 85(1):440–447.  https://doi.org/10.1128/jvi.01551-10 CrossRefPubMedGoogle Scholar
  151. Phillips SL, Bresnahan WA (2012) The human cytomegalovirus (HCMV) tegument protein UL94 is essential for secondary envelopment of HCMV virions. J Virol 86(5):2523–2532.  https://doi.org/10.1128/JVI.06548-11 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Phillips SL, Cygnar D, Thomas A, Bresnahan WA (2012) Interaction between the human cytomegalovirus tegument proteins UL94 and UL99 is essential for virus replication. J Virol 86(18):9995–10005.  https://doi.org/10.1128/JVI.01078-12 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Poncet D, Pauleau AL, Szabadkai G, Vozza A, Scholz SR, Le Bras M, Briere JJ, Jalil A, Le Moigne R, Brenner C, Hahn G, Wittig I, Schagger H, Lemaire C, Bianchi K, Souquere S, Pierron G, Rustin P, Goldmacher VS, Rizzuto R, Palmieri F, Kroemer G (2006) Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA. J Cell Biol 174(7):985–996.  https://doi.org/10.1083/jcb.200604069 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Purdy JG, Shenk T, Rabinowitz JD (2015) Fatty acid elongase 7 catalyzes lipidome remodeling essential for human cytomegalovirus replication. Cell Rep 10(8):1375–1385.  https://doi.org/10.1016/j.celrep.2015.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Radsak K, Eickmann M, Mockenhaupt T, Bogner E, Kern H, Eis-Hubinger A, Reschke M (1996) Retrieval of human cytomegalovirus glycoprotein B from the infected cell surface for virus envelopment. Arch Virol 141(3-4):557–572CrossRefPubMedGoogle Scholar
  156. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452.  https://doi.org/10.1038/nature07961 CrossRefPubMedGoogle Scholar
  157. Rasmussen L, Geissler A, Cowan C, Chase A, Winters M (2002) The genes encoding the gCIII complex of human cytomegalovirus exist in highly diverse combinations in clinical isolates. J Virol 76(21):10841–10848CrossRefPubMedPubMedCentralGoogle Scholar
  158. Resh MD (2004a) Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem 37:217–232CrossRefPubMedGoogle Scholar
  159. Resh MD (2004b) A myristoyl switch regulates membrane binding of HIV-1 Gag. Proc Natl Acad Sci U S A 101(2):417–418.  https://doi.org/10.1073/pnas.0308043101 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15(7):665–674CrossRefPubMedPubMedCentralGoogle Scholar
  161. Roller RJ, Bjerke SL, Haugo AC, Hanson S (2010) Analysis of a charge cluster mutation of herpes simplex virus type 1 UL34 and its extragenic suppressor suggests a novel interaction between pUL34 and pUL31 that is necessary for membrane curvature around capsids. J Virol 84(8):3921–3934.  https://doi.org/10.1128/JVI.01638-09 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Roller RJ, Haugo AC, Yang K, Baines JD (2014) The herpes simplex virus 1 UL51 gene product has cell type-specific functions in cell-to-cell spread. J Virol 88(8):4058–4068.  https://doi.org/10.1128/JVI.03707-13 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Ryckman BJ, Jarvis MA, Drummond DD, Nelson JA, Johnson DC (2006) Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 80(2):710–722.  https://doi.org/10.1128/JVI.80.2.710-722.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Ryckman BJ, Rainish BL, Chase MC, Borton JA, Nelson JA, Jarvis MA, Johnson DC (2008) Characterization of the human cytomegalovirus gH/gL/UL128-131 complex that mediates entry into epithelial and endothelial cells. J Virol 82(1):60–70.  https://doi.org/10.1128/JVI.01910-07 CrossRefPubMedGoogle Scholar
  165. Sanchez V, Greis KD, Sztul E, Britt WJ (2000a) Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication: characterization of a potential site of virus assembly. J Virol 74(2):975–986CrossRefPubMedPubMedCentralGoogle Scholar
  166. Sanchez V, Sztul E, Britt WJ (2000b) Human cytomegalovirus pp28 (UL99) localizes to a cytoplasmic compartment which overlaps the endoplasmic reticulum-golgi-intermediate compartment. J Virol 74(8):3842–3851CrossRefPubMedPubMedCentralGoogle Scholar
  167. Schauflinger M, Fischer D, Schreiber A, Chevillotte M, Walther P, Mertens T, von Einem J (2011) The tegument protein UL71 of human cytomegalovirus is involved in late envelopment and affects multivesicular bodies. J Virol 85(8):3821–3832.  https://doi.org/10.1128/JVI.01540-10 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Schauflinger M, Villinger C, Mertens T, Walther P, von Einem J (2013) Analysis of human cytomegalovirus secondary envelopment by advanced electron microscopy. Cell Microbiol 15(2):305–314.  https://doi.org/10.1111/cmi.12077 CrossRefPubMedGoogle Scholar
  169. Schiavo G, Stenbeck G, Rothman JE, Sollner TH (1997) Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci U S A 94(3):997–1001CrossRefPubMedPubMedCentralGoogle Scholar
  170. Schierling K, Stamminger T, Mertens T, Winkler M (2004) Human cytomegalovirus tegument proteins ppUL82 (pp71) and ppUL35 interact and cooperatively activate the major immediate-early enhancer. J Virol 78(17):9512–9523.  https://doi.org/10.1128/JVI.78.17.9512-9523.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Schierling K, Buser C, Mertens T, Winkler M (2005) Human cytomegalovirus tegument protein ppUL35 is important for viral replication and particle formation. J Virol 79(5):3084–3096.  https://doi.org/10.1128/JVI.79.5.3084-3096.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Schleiss MR, McGregor A, Choi KY, Date SV, Cui X, McVoy MA (2008) Analysis of the nucleotide sequence of the guinea pig cytomegalovirus (GPCMV) genome. Virol J 5:139.  https://doi.org/10.1186/1743-422X-5-139 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Schnee M, Ruzsics Z, Bubeck A, Koszinowski UH (2006) Common and specific properties of herpesvirus UL34/UL31 protein family members revealed by protein complementation assay. J Virol 80(23):11658–11666.  https://doi.org/10.1128/JVI.01662-06 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Schultz EP, Lanchy JM, Ellerbeck EE, Ryckman BJ (2015) Scanning mutagenesis of human cytomegalovirus glycoprotein gH/gL. J Virol 90(5):2294–2305.  https://doi.org/10.1128/JVI.01875-15 CrossRefPubMedGoogle Scholar
  175. Seo JY, Britt WJ (2006) Sequence requirements for localization of human cytomegalovirus tegument protein pp28 to the virus assembly compartment and for assembly of infectious virus. J Virol 80(11):5611–5626.  https://doi.org/10.1128/JVI.02630-05 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Seo JY, Britt WJ (2007) Cytoplasmic envelopment of human cytomegalovirus requires the postlocalization function of tegument protein pp28 within the assembly compartment. J Virol 81(12):6536–6547.  https://doi.org/10.1128/jvi.02852-06 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Seo JY, Britt WJ (2008) Multimerization of tegument protein pp28 within the assembly compartment is required for cytoplasmic envelopment of human cytomegalovirus. J Virol 82(13):6272–6287.  https://doi.org/10.1128/JVI.02345-07 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Seo JY, Cresswell P (2013) Viperin regulates cellular lipid metabolism during human cytomegalovirus infection. PLoS Pathog 9(8):e1003497.  https://doi.org/10.1371/journal.ppat.1003497 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Sharon-Friling R, Shenk T (2014) Human cytomegalovirus pUL37x1-induced calcium flux activates PKCalpha, inducing altered cell shape and accumulation of cytoplasmic vesicles. Proc Natl Acad Sci U S A 111(12):E1140–E1148.  https://doi.org/10.1073/pnas.1402515111 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Sharon-Friling R, Goodhouse J, Colberg-Poley AM, Shenk T (2006) Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores. Proc Natl Acad Sci U S A 103(50):19117–19122.  https://doi.org/10.1073/pnas.0609353103 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379(6564):451–454.  https://doi.org/10.1038/379451a0 CrossRefPubMedGoogle Scholar
  182. Shields SB, Oestreich AJ, Winistorfer S, Nguyen D, Payne JA, Katzmann DJ, Piper R (2009) ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting. J Cell Biol 185(2):213–224.  https://doi.org/10.1083/jcb.200811130 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Silva MC, Yu QC, Enquist L, Shenk T (2003) Human cytomegalovirus UL99-encoded pp28 Is required for the cytoplasmic envelopment of tegument-associated capsids. J Virol 77(19):10594–10605.  https://doi.org/10.1128/jvi.77.19.10594-10605.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M, Nusbaum JD, Feederle R, Delecluse HJ, Luftig MA, Tuschl T, Ohler U, Cullen BR (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8(1):e1002484.  https://doi.org/10.1371/journal.ppat.1002484 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Smith RM, Kosuri S, Kerry JA (2014) Role of human cytomegalovirus tegument proteins in virion assembly. Viruses 6(2):582–605.  https://doi.org/10.3390/v6020582 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72(5):767–778CrossRefPubMedGoogle Scholar
  187. Spaderna S, Kropff B, Kodel Y, Shen S, Coley S, Lu S, Britt W, Mach M (2005) Deletion of gpUL132, a structural component of human cytomegalovirus, results in impaired virus replication in fibroblasts. J Virol 79(18):11837–11847.  https://doi.org/10.1128/JVI.79.18.11837-11847.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Spear PG, Longnecker R (2003) Herpesvirus entry: an update. J Virol 77(19):10179–10185CrossRefPubMedPubMedCentralGoogle Scholar
  189. Spencer CM, Schafer XL, Moorman NJ, Munger J (2011) Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. J Virol 85(12):5814–5824.  https://doi.org/10.1128/JVI.02630-10 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525.  https://doi.org/10.1038/nrm2728 CrossRefPubMedGoogle Scholar
  191. Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375(6533):645–653.  https://doi.org/10.1038/375645a0 CrossRefGoogle Scholar
  192. Sudhof TC (2013) A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat Med 19(10):1227–1231.  https://doi.org/10.1038/nm.3338 CrossRefPubMedGoogle Scholar
  193. Takemoto M, Koike M, Mori Y, Yonemoto S, Sasamoto Y, Kondo K, Uchiyama Y, Yamanishi K (2005) Human herpesvirus 6 open reading frame U14 protein and cellular p53 interact with each other and are contained in the virion. J Virol 79(20):13037–13046.  https://doi.org/10.1128/jvi.79.20.13037-13046.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Tandon R, Mocarski ES (2012) Viral and host control of cytomegalovirus maturation. Trends Microbiol 20(8):392–401.  https://doi.org/10.1016/j.tim.2012.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Tandon R, AuCoin DP, Mocarski ES (2009) Human cytomegalovirus exploits ESCRT machinery in the process of virion maturation. J Virol 83(20):10797–10807.  https://doi.org/10.1128/jvi.01093-09 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Tandon R, Mocarski ES, Conway JF (2015) The A, B, Cs of herpesvirus capsids. Viruses 7(3):899–914.  https://doi.org/10.3390/v7030899 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Theiler RN, Compton T (2002) Distinct glycoprotein O complexes arise in a post-Golgi compartment of cytomegalovirus-infected cells. J Virol 76(6):2890–2898CrossRefPubMedPubMedCentralGoogle Scholar
  198. Tirabassi RS, Enquist LW (1998) Role of envelope protein gE endocytosis in the pseudorabies virus life cycle. J Virol 72(6):4571–4579PubMedPubMedCentralGoogle Scholar
  199. Tirabassi RS, Enquist LW (1999) Mutation of the YXXL endocytosis motif in the cytoplasmic tail of pseudorabies virus gE. J Virol 73(4):2717–2728PubMedPubMedCentralGoogle Scholar
  200. Tirosh O, Cohen Y, Shitrit A, Shani O, Le-Trilling VT, Trilling M, Friedlander G, Tanenbaum M, Stern-Ginossar N (2015) The transcription and translation landscapes during human cytomegalovirus infection reveal novel host-pathogen interactions. PLoS Pathog 11(11):e1005288.  https://doi.org/10.1371/journal.ppat.1005288 CrossRefPubMedPubMedCentralGoogle Scholar
  201. To A, Bai Y, Shen A, Gong H, Umamoto S, Lu S, Liu F (2011) Yeast two hybrid analyses reveal novel binary interactions between human cytomegalovirus-encoded virion proteins. PLoS One 6(4):e17796.  https://doi.org/10.1371/journal.pone.0017796 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62(16):1784–1803.  https://doi.org/10.1007/s00018-005-5121-4 CrossRefPubMedGoogle Scholar
  203. Tooze J, Hollinshead M, Reis B, Radsak K, Kern H (1993) Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur J Cell Biol 60(1):163–178PubMedGoogle Scholar
  204. Tsuboi T, Fukuda M (2006) Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J Cell Sci 119(Pt 11):2196–2203.  https://doi.org/10.1242/jcs.02962 CrossRefPubMedGoogle Scholar
  205. Turcotte S, Letellier J, Lippe R (2005) Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress. J Virol 79(14):8847–8860.  https://doi.org/10.1128/JVI.79.14.8847-8860.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Umashankar M, Petrucelli A, Cicchini L, Caposio P, Kreklywich CN, Rak M, Bughio F, Goldman DC, Hamlin KL, Nelson JA, Fleming WH, Streblow DN, Goodrum F (2011) A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection. PLoS Pathog 7(12):e1002444.  https://doi.org/10.1371/journal.ppat.1002444 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Umashankar M, Rak M, Bughio F, Zagallo P, Caviness K, Goodrum FD (2014) Antagonistic determinants controlling replicative and latent states of human cytomegalovirus infection. J Virol 88(11):5987–6002.  https://doi.org/10.1128/JVI.03506-13 CrossRefPubMedPubMedCentralGoogle Scholar
  208. van Spriel AB, van den Bogaart G, Cambi A (2015) Editorial: membrane domains as new drug targets. Front Physiol 6:172.  https://doi.org/10.3389/fphys.2015.00172 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Vanarsdall AL, Chase MC, Johnson DC (2011) Human cytomegalovirus glycoprotein gO complexes with gH/gL, promoting interference with viral entry into human fibroblasts but not entry into epithelial cells. J Virol 85(22):11638–11645.  https://doi.org/10.1128/JVI.05659-11 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Varnum SM, Streblow DN, Monroe ME, Smith P, Auberry KJ, Pasa-Tolic L, Wang D, Camp DG 2nd, Rodland K, Wiley S, Britt W, Shenk T, Smith RD, Nelson JA (2004) Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol 78(20):10960–10966.  https://doi.org/10.1128/jvi.78.20.10960-10966.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD (2011) Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 7(7):e1002124.  https://doi.org/10.1371/journal.ppat.1002124 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Veettil MV, Kumar B, Ansari MA, Dutta D, Iqbal J, Gjyshi O, Bottero V, Chandran B (2016) ESCRT-0 component Hrs promotes macropinocytosis of Kaposi's sarcoma-associated herpesvirus in human dermal microvascular endothelial cells. J Virol 90(8):3860–3872.  https://doi.org/10.1128/JVI.02704-15 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Wakil SJ, Stoops JK, Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52:537–579.  https://doi.org/10.1146/annurev.bi.52.070183.002541 CrossRefPubMedGoogle Scholar
  214. Walzer SA, Egerer-Sieber C, Sticht H, Sevvana M, Hohl K, Milbradt J, Muller YA, Marschall M (2015) Crystal structure of the human cytomegalovirus pUL50-pUL53 core nuclear egress complex provides insight into a unique assembly scaffold for virus-host protein interactions. J Biol Chem 290(46):27452–27458.  https://doi.org/10.1074/jbc.C115.686527 CrossRefPubMedPubMedCentralGoogle Scholar
  215. Wang D, Shenk T (2005) Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci U S A 102(50):18153–18158.  https://doi.org/10.1073/pnas.0509201102 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Wille PT, Knoche AJ, Nelson JA, Jarvis MA, Johnson DC (2010) A human cytomegalovirus gO-null mutant fails to incorporate gH/gL into the virion envelope and is unable to enter fibroblasts and epithelial and endothelial cells. J Virol 84(5):2585–2596.  https://doi.org/10.1128/JVI.02249-09 CrossRefPubMedGoogle Scholar
  217. Williamson CD, Zhang A, Colberg-Poley AM (2011) The human cytomegalovirus protein UL37 exon 1 associates with internal lipid rafts. J Virol 85(5):2100–2111.  https://doi.org/10.1128/JVI.01830-10 CrossRefPubMedGoogle Scholar
  218. Womack A, Shenk T (2010) Human cytomegalovirus tegument protein pUL71 is required for efficient virion egress. MBio 1(5).  https://doi.org/10.1128/mBio.00282-10
  219. Wu JJ, Avey D, Li W, Gillen J, Fu B, Miley W, Whitby D, Zhu F (2015) ORF33 and ORF38 of Kaposi's sarcoma-associated herpesvirus interact and are required for optimal production of infectious progeny viruses. J Virol 90(4):1741–1756.  https://doi.org/10.1128/JVI.02738-15 CrossRefPubMedGoogle Scholar
  220. Yi Z, Yokota H, Torii S, Aoki T, Hosaka M, Zhao S, Takata K, Takeuchi T, Izumi T (2002) The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules. Mol Cell Biol 22(6):1858–1867CrossRefPubMedPubMedCentralGoogle Scholar
  221. Yu D, Silva MC, Shenk T (2003) Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc Natl Acad Sci U S A 100(21):12396–12401.  https://doi.org/10.1073/pnas.1635160100 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Yu X, Shah S, Lee M, Dai W, Lo P, Britt W, Zhu H, Liu F, Zhou ZH (2011) Biochemical and structural characterization of the capsid-bound tegument proteins of human cytomegalovirus. J Struct Biol 174(3):451–460.  https://doi.org/10.1016/j.jsb.2011.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  223. Yu Y, Maguire TG, Alwine JC (2012) Human cytomegalovirus infection induces adipocyte-like lipogenesis through activation of sterol regulatory element binding protein 1. J Virol 86(6):2942–2949.  https://doi.org/10.1128/JVI.06467-11 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Yu X, Jih J, Jiang J, Zhou ZH (2017) Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150. Science 356(6345).  https://doi.org/10.1126/science.aam6892
  225. Zhai Q, Landesman MB, Robinson H, Sundquist WI, Hill CP (2011) Identification and structural characterization of the ALIX-binding late domains of simian immunodeficiency virus SIVmac239 and SIVagmTan-1. J Virol 85(1):632–637.  https://doi.org/10.1128/JVI.01683-10 CrossRefPubMedGoogle Scholar
  226. Zhou ZH, Prasad BV, Jakana J, Rixon FJ, Chiu W (1994) Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. J Mol Biol 242(4):456–469.  https://doi.org/10.1006/jmbi.1994.1594 CrossRefPubMedGoogle Scholar
  227. Zhou M, Yu Q, Wechsler A, Ryckman BJ (2013) Comparative analysis of gO isoforms reveals that strains of human cytomegalovirus differ in the ratio of gH/gL/gO and gH/gL/UL128-131 in the virion envelope. J Virol 87(17):9680–9690.  https://doi.org/10.1128/JVI.01167-13 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • William L. Close
    • 1
    • 2
  • Ashley N. Anderson
    • 2
  • Philip E. Pellett
    • 2
  1. 1.Department of Microbiology & ImmunologyUniversity of Michigan School of MedicineAnn ArborUSA
  2. 2.Department of Biochemistry, Microbiology, & ImmunologyWayne State University School of MedicineDetroitUSA

Personalised recommendations