Advertisement

Glycoproteins of HHV-6A and HHV-6B

  • Huamin Tang
  • Yasuko Mori
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1045)

Abstract

Recently, human herpesvirus 6A and 6B (HHV-6A and HHV-6B) were classified into distinct species. Although these two viruses share many similarities, cell tropism is one of their striking differences, which is partially because of the difference in their entry machinery. Many glycoproteins of HHV-6A/B have been identified and analyzed in detail, especially in their functions during entry process into host cells. Some of these glycoproteins were unique to HHV-6A/B. The cellular factors associated with these viral glycoproteins (or glycoprotein complex) were also identified in recent years. Detailed interaction analyses were also conducted, which could partially prove the difference of entry machinery in these two viruses. Although there are still issues that should be addressed, all the knowledges that have been earned in recent years could not only help us to understand these viruses’ entry mechanism well but also would contribute to the development of the therapy and/or prophylaxis methods for HHV-6A/B-associated diseases.

Keywords

HHV-6 Glycoprotein Tropism Entry CD46 CD134 

Reference

  1. Ablashi DV, Balachandran N, Josephs SF, Hung CL, Krueger GR, Kramarsky B, Salahuddin SZ, Gallo RC (1991) Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates. Virology 184(2):545–552CrossRefPubMedGoogle Scholar
  2. Ablashi D, Agut H, Alvarez-Lafuente R, Clark DA, Dewhurst S, Diluca D, Flamand L, Frenkel N, Gallo R, Gompels UA, Hollsberg P, Jacobson S, Luppi M, Lusso P, Malnati M, Medveczky P, Mori Y, Pellett PE, Pritchett JC, Yamanishi K, Yoshikawa T (2013) Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol 159(5):863–870.  https://doi.org/10.1007/s00705-013-1902-5CrossRefPubMedPubMedCentralGoogle Scholar
  3. Achour A, Malet I, Le Gal F, Dehee A, Gautheret-Dejean A, Bonnafous P, Agut H (2008) Variability of gB and gH genes of human herpesvirus-6 among clinical specimens. J Med Virol 80(7):1211–1221.  https://doi.org/10.1002/jmv.21205CrossRefPubMedGoogle Scholar
  4. Akhtar J, Shukla D (2009) Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J 276(24):7228–7236.  https://doi.org/10.1111/j.1742-4658.2009.07402.xCrossRefPubMedPubMedCentralGoogle Scholar
  5. Akhtar J, Tiwari V, Oh MJ, Kovacs M, Jani A, Kovacs SK, Valyi-Nagy T, Shukla D (2008) HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium. Invest Ophthalmol Vis Sci 49(9):4026–4035.  https://doi.org/10.1167/iovs.08-1807CrossRefPubMedPubMedCentralGoogle Scholar
  6. Akkapaiboon P, Mori Y, Sadaoka T, Yonemoto S, Yamanishi K (2004) Intracellular processing of human herpesvirus 6 glycoproteins Q1 and Q2 into tetrameric complexes expressed on the viral envelope. J Virol 78(15):7969–7983.  https://doi.org/10.1128/JVI.78.15.7969-7983.2004CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, Lund TC, Tolar J, De Meirleir K, Montoya JG, Komaroff AL, Ambros PF, Medveczky PG (2010) The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci U S A 107(12):5563–5568.  https://doi.org/10.1073/pnas.0913586107CrossRefPubMedPubMedCentralGoogle Scholar
  8. Atanasiu D, Whitbeck JC, Cairns TM, Reilly B, Cohen GH, Eisenberg RJ (2007) Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci U S A 104(47):18718–18723.  https://doi.org/10.1073/pnas.0707452104CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aubin JT, Collandre H, Candotti D, Ingrand D, Rouzioux C, Burgard M, Richard S, Huraux JM, Agut H (1991) Several groups among human herpesvirus 6 strains can be distinguished by Southern blotting and polymerase chain reaction. J Clin Microbiol 29(2):367–372PubMedPubMedCentralGoogle Scholar
  10. Baines JD, Roizman B (1991) The open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture. J Virol 65(2):938–944PubMedPubMedCentralGoogle Scholar
  11. Bechtel JT, Winant RC, Ganem D (2005) Host and viral proteins in the virion of Kaposi’s sarcoma-associated herpesvirus. J Virol 79(8):4952–4964.  https://doi.org/10.1128/JVI.79.8.4952-4964.2005CrossRefPubMedPubMedCentralGoogle Scholar
  12. Beitia Ortiz de Zarate I, Cantero-Aguilar L, Longo M, Berlioz-Torrent C, Rozenberg F (2007) Contribution of endocytic motifs in the cytoplasmic tail of herpes simplex virus type 1 glycoprotein B to virus replication and cell-cell fusion. J Virol 81(24):13889–13903.  https://doi.org/10.1128/JVI.01231-07CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brecher M, Schornberg KL, Delos SE, Fusco ML, Saphire EO, White JM (2012) Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change. J Virol 86(1):364–372.  https://doi.org/10.1128/JVI.05708-11CrossRefPubMedPubMedCentralGoogle Scholar
  14. Browne H, Bell S, Minson T (2004) Analysis of the requirement for glycoprotein m in herpes simplex virus type 1 morphogenesis. J Virol 78(2):1039–1041CrossRefPubMedPubMedCentralGoogle Scholar
  15. Campadelli-Fiume G, Guerrini S, Liu X, Foa-Tomasi L (1993) Monoclonal antibodies to glycoprotein B differentiate human herpesvirus 6 into two clusters, variants A and B. J Gen Virol 74(Pt 10):2257–2262CrossRefPubMedGoogle Scholar
  16. Caruso A, Rotola A, Comar M, Favilli F, Galvan M, Tosetti M, Campello C, Caselli E, Alessandri G, Grassi M, Garrafa E, Cassai E, Di Luca D (2002) HHV-6 infects human aortic and heart microvascular endothelial cells, increasing their ability to secrete proinflammatory chemokines. J Med Virol 67(4):528–533.  https://doi.org/10.1002/jmv.10133CrossRefPubMedGoogle Scholar
  17. Cermelli C, Concari M, Carubbi F, Fabio G, Sabbatini AM, Pecorari M, Pietrosemoli P, Meacci M, Guicciardi E, Carulli N, Portolani M (1996) Growth of human herpesvirus 6 in HEPG2 cells. Virus Res 45(2):75–85CrossRefPubMedGoogle Scholar
  18. Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, Rose TM, Schultz ER, Bennett JL, Garber RL, Chang M et al (1995) Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A 92(16):7440–7444CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89(2):263–273CrossRefPubMedGoogle Scholar
  20. Chan PK, Ng HK, Hui M, Cheng AF (2001) Prevalence and distribution of human herpesvirus 6 variants A and B in adult human brain. J Med Virol 64(1):42–46CrossRefPubMedGoogle Scholar
  21. Chandramouli S, Ciferri C, Nikitin PA, Calo S, Gerrein R, Balabanis K, Monroe J, Hebner C, Lilja AE, Settembre EC, Carfi A (2015) Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody. Nat Commun 6:8176.  https://doi.org/10.1038/ncomms9176CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM (2005) Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308(5728):1643–1645.  https://doi.org/10.1126/science.1110656CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chapenko S, Krumina A, Kozireva S, Nora Z, Sultanova A, Viksna L, Murovska M (2006) Activation of human herpesviruses 6 and 7 in patients with chronic fatigue syndrome. J Clin Virol 37(Suppl 1):S47–S51.  https://doi.org/10.1016/S1386-6532(06)70011-7CrossRefPubMedGoogle Scholar
  24. Chen M, Popescu N, Woodworth C, Berneman Z, Corbellino M, Lusso P, Ablashi DV, DiPaolo JA (1994) Human herpesvirus 6 infects cervical epithelial cells and transactivates human papillomavirus gene expression. J Virol 68(2):1173–1178PubMedPubMedCentralGoogle Scholar
  25. Chou S, Marousek GI (1992) Homology of the envelope glycoprotein B of human herpesvirus-6 and cytomegalovirus. Virology 191(1):523–528CrossRefPubMedGoogle Scholar
  26. Chouljenko DV, Kim IJ, Chouljenko VN, Subramanian R, Walker JD, Kousoulas KG (2012) Functional hierarchy of herpes simplex virus 1 viral glycoproteins in cytoplasmic virion envelopment and egress. J Virol 86(8):4262–4270.  https://doi.org/10.1128/JVI.06766-11CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cirone M, Zompetta C, Angeloni A, Ablashi DV, Salahuddin SZ, Pavan A, Torrisi MR, Frati L, Faggioni A (1992) Infection by human herpesvirus 6 (HHV-6) of human lymphoid T-cells occurs through an endocytic pathway. AIDS Res Hum Retroviruses 8(12):2031–2037.  https://doi.org/10.1089/aid.1992.8.2031CrossRefPubMedGoogle Scholar
  28. Conti C, Cirone M, Sgro R, Altieri F, Zompetta C, Faggioni A (2000) Early interactions of human herpesvirus 6 with lymphoid cells: role of membrane protein components and glycosaminoglycans in virus binding. J Med Virol 62(4):487–497CrossRefPubMedGoogle Scholar
  29. Cote M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J (2011) Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477(7364):344–348.  https://doi.org/10.1038/nature10380CrossRefPubMedPubMedCentralGoogle Scholar
  30. Crump CM, Bruun B, Bell S, Pomeranz LE, Minson T, Browne HM (2004) Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. J Gen Virol 85(Pt 12):3517–3527.  https://doi.org/10.1099/vir.0.80361-0CrossRefPubMedGoogle Scholar
  31. Cuomo L, Trivedi P, Cardillo MR, Gagliardi FM, Vecchione A, Caruso R, Calogero A, Frati L, Faggioni A, Ragona G (2001) Human herpesvirus 6 infection in neoplastic and normal brain tissue. J Med Virol 63(1):45–51CrossRefPubMedGoogle Scholar
  32. Daibata M, Hatakeyama N, Kamioka M, Nemoto Y, Hiroi M, Miyoshi I, Taguchi H (2001) Detection of human herpesvirus 6 and JC virus in progressive multifocal leukoencephalopathy complicating follicular lymphoma. Am J Hematol 67(3):200–205.  https://doi.org/10.1002/ajh.1108CrossRefPubMedGoogle Scholar
  33. De Bolle L, Van Loon J, De Clercq E, Naesens L (2005) Quantitative analysis of human herpesvirus 6 cell tropism. J Med Virol 75(1):76–85.  https://doi.org/10.1002/jmv.20240CrossRefPubMedGoogle Scholar
  34. Dijkstra JM, Visser N, Mettenleiter TC, Klupp BG (1996) Identification and characterization of pseudorabies virus glycoprotein gM as a nonessential virion component. J Virol 70(8):5684–5688PubMedPubMedCentralGoogle Scholar
  35. Dohner K, Wolfstein A, Prank U, Echeverri C, Dujardin D, Vallee R, Sodeik B (2002) Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell 13(8):2795–2809.  https://doi.org/10.1091/mbc.01-07-0348CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE (1999) Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol 73(10):8040–8052PubMedPubMedCentralGoogle Scholar
  37. Doms RW, Moore JP (2000) HIV-1 membrane fusion: targets of opportunity. J Cell Biol 151(2):F9–14CrossRefPubMedPubMedCentralGoogle Scholar
  38. Donati D, Akhyani N, Fogdell-Hahn A, Cermelli C, Cassiani-Ingoni R, Vortmeyer A, Heiss JD, Cogen P, Gaillard WD, Sato S, Theodore WH, Jacobson S (2003) Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology 61(10):1405–1411CrossRefPubMedPubMedCentralGoogle Scholar
  39. Downing RG, Sewankambo N, Serwadda D, Honess R, Crawford D, Jarrett R, Griffin BE (1987) Isolation of human lymphotropic herpesviruses from Uganda. Lancet 2(8555):390CrossRefPubMedGoogle Scholar
  40. Ellinger K, Neipel F, Foa-Tomasi L, Campadelli-Fiume G, Fleckenstein B (1993) The glycoprotein B homologue of human herpesvirus 6. J Gen Virol 74(Pt 3):495–500.  https://doi.org/10.1099/0022-1317-74-3-495CrossRefPubMedGoogle Scholar
  41. Foa-Tomasi L, Guerrini S, Huang T, Campadelli-Fiume G (1992) Characterization of human herpesvirus-6(U1102) and (GS) gp112 and identification of the Z29-specified homolog. Virology 191(1):511–516CrossRefPubMedGoogle Scholar
  42. Foster TP, Melancon JM, Kousoulas KG (2001) An alpha-helical domain within the carboxyl terminus of herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is associated with cell fusion and resistance to heparin inhibition of cell fusion. Virology 287(1):18–29.  https://doi.org/10.1006/viro.2001.1004CrossRefPubMedGoogle Scholar
  43. Fox JD, Briggs M, Ward PA, Tedder RS (1990) Human herpesvirus 6 in salivary glands. Lancet 336(8715):590–593. doi:0140-6736(90)93392-3 [pii]CrossRefPubMedGoogle Scholar
  44. Furuta RA, Wild CT, Weng Y, Weiss CD (1998) Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol 5(4):276–279CrossRefPubMedGoogle Scholar
  45. Gaggar A, Shayakhmetov DM, Lieber A (2003) CD46 is a cellular receptor for group B adenoviruses. Nat Med 9(11):1408–1412.  https://doi.org/10.1038/nm952CrossRefPubMedGoogle Scholar
  46. Garcia NJ, Chen J, Longnecker R (2013) Modulation of Epstein-Barr virus glycoprotein B (gB) fusion activity by the gB cytoplasmic tail domain. MBio 4(1):e00571-00512.  https://doi.org/10.1128/mBio.00571-12CrossRefGoogle Scholar
  47. Gentile I, Talamo M, Borgia G (2010) Is the drug-induced hypersensitivity syndrome (DIHS) due to human herpesvirus 6 infection or to allergy-mediated viral reactivation? Report of a case and literature review. BMC Infect Dis 10:49. doi: 1471-2334-10-49 [pii] 10.1186/1471-2334-10-49CrossRefPubMedPubMedCentralGoogle Scholar
  48. Glosson NL, Hudson AW (2007) Human herpesvirus-6A and -6B encode viral immunoevasins that downregulate class I MHC molecules. Virology 365(1):125–135.  https://doi.org/10.1016/j.virol.2007.03.048CrossRefPubMedGoogle Scholar
  49. Gompels UA, Macaulay HA (1995) Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J Gen Virol 76(Pt 2):451–458.  https://doi.org/10.1099/0022-1317-76-2-451CrossRefPubMedGoogle Scholar
  50. Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, Efstathiou S, Craxton M, Macaulay HA (1995) The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209(1):29–51.  https://doi.org/10.1006/viro.1995.1228CrossRefPubMedGoogle Scholar
  51. Greenstone HL, Santoro F, Lusso P, Berger EA (2002) Human Herpesvirus 6 and Measles Virus employ distinct CD46 domains for receptor function. J Biol Chem 277(42):39112–39118.  https://doi.org/10.1074/jbc.M206488200CrossRefPubMedGoogle Scholar
  52. Grivel JC, Santoro F, Chen S, Faga G, Malnati MS, Ito Y, Margolis L, Lusso P (2003) Pathogenic effects of human herpesvirus 6 in human lymphoid tissue ex vivo. J Virol 77(15):8280–8289CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360(6402):358–361.  https://doi.org/10.1038/360358a0CrossRefPubMedGoogle Scholar
  54. Hansen AS, Bundgaard BB, Biltoft M, Rossen LS, Hollsberg P (2017) Divergent tropism of HHV-6AGS and HHV-6BPL1 in T cells expressing different CD46 isoform patterns. Virology 502:160–170.  https://doi.org/10.1016/j.virol.2016.12.027CrossRefPubMedGoogle Scholar
  55. Harma M, Hockerstedt K, Lautenschlager I (2003) Human herpesvirus-6 and acute liver failure. Transplantation 76(3):536–539.  https://doi.org/10.1097/01.TP.0000069233.13409.DFCrossRefPubMedGoogle Scholar
  56. Harrison SC (2008) The pH sensor for flavivirus membrane fusion. J Cell Biol 183(2):177–179.  https://doi.org/10.1083/jcb.200809175CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hayashi M, Yoshida K, Tang H, Sadaoka T, Kawabata A, Jasirwan C, Mori Y (2014) Characterization of the human herpesvirus 6A U23 gene. Virology 450–451:98–105.  https://doi.org/10.1016/j.virol.2013.12.004CrossRefPubMedGoogle Scholar
  58. He J, McCarthy M, Zhou Y, Chandran B, Wood C (1996) Infection of primary human fetal astrocytes by human herpesvirus 6. J Virol 70(2):1296–1300PubMedPubMedCentralGoogle Scholar
  59. Herold BC, WuDunn D, Soltys N, Spear PG (1991) Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol 65(3):1090–1098PubMedPubMedCentralGoogle Scholar
  60. Higgins LM, McDonald SA, Whittle N, Crockett N, Shields JG, MacDonald TT (1999) Regulation of T cell activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: amelioration of ongoing inflammatory bowel disease with an OX40-IgG fusion protein, but not with an OX40 ligand-IgG fusion protein. J Immunol 162(1):486–493PubMedPubMedCentralGoogle Scholar
  61. Hobom U, Brune W, Messerle M, Hahn G, Koszinowski UH (2000) Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 74(17):7720–7729CrossRefPubMedPubMedCentralGoogle Scholar
  62. Isegawa Y, Mukai T, Nakano K, Kagawa M, Chen J, Mori Y, Sunagawa T, Kawanishi K, Sashihara J, Hata A, Zou P, Kosuge H, Yamanishi K (1999) Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J Virol 73(10):8053–8063PubMedPubMedCentralGoogle Scholar
  63. Ishikawa K, Hasegawa K, Naritomi T, Kanai N, Ogawa M, Kato Y, Kobayashi M, Torii N, Hayashi N (2002) Prevalence of herpesviridae and hepatitis virus sequences in the livers of patients with fulminant hepatitis of unknown etiology in Japan. J Gastroenterol 37(7):523–530.  https://doi.org/10.1007/s005350200081CrossRefPubMedGoogle Scholar
  64. Ivanovic T, Choi JL, Whelan SP, van Oijen AM, Harrison SC (2013) Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. Elife 2:e00333.  https://doi.org/10.7554/eLife.00333CrossRefPubMedPubMedCentralGoogle Scholar
  65. Jasirwan C, Furusawa Y, Tang H, Maeki T, Mori Y (2014) Human herpesvirus-6A gQ1 and gQ2 are critical for human CD46 usage. Microbiol Immunol 58(1):22–30.  https://doi.org/10.1111/1348-0421.12110CrossRefPubMedGoogle Scholar
  66. Jiang XJ, Adler B, Sampaio KL, Digel M, Jahn G, Ettischer N, Stierhof YD, Scrivano L, Koszinowski U, Mach M, Sinzger C (2008) UL74 of human cytomegalovirus contributes to virus release by promoting secondary envelopment of virions. J Virol 82(6):2802–2812.  https://doi.org/10.1128/JVI.01550-07CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kabanova A, Marcandalli J, Zhou T, Bianchi S, Baxa U, Tsybovsky Y, Lilleri D, Silacci-Fregni C, Foglierini M, Fernandez-Rodriguez BM, Druz A, Zhang B, Geiger R, Pagani M, Sallusto F, Kwong PD, Corti D, Lanzavecchia A, Perez L (2016) Platelet-derived growth factor-alpha receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nat Microbiol 1(8):16082.  https://doi.org/10.1038/nmicrobiol.2016.82CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kakimoto M, Hasegawa A, Fujita S, Yasukawa M (2002) Phenotypic and functional alterations of dendritic cells induced by human herpesvirus 6 infection. J Virol 76(20):10338–10345CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kallstrom H, Liszewski MK, Atkinson JP, Jonsson AB (1997) Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol 25(4):639–647CrossRefPubMedGoogle Scholar
  70. Kallstrom H, Blackmer Gill D, Albiger B, Liszewski MK, Atkinson JP, Jonsson AB (2001) Attachment of Neisseria gonorrhoeae to the cellular pilus receptor CD46: identification of domains important for bacterial adherence. Cell Microbiol 3(3):133–143CrossRefPubMedGoogle Scholar
  71. Kasolo FC, Mpabalwani E, Gompels UA (1997) Infection with AIDS-related herpesviruses in human immunodeficiency virus-negative infants and endemic childhood Kaposi’s sarcoma in Africa. J Gen Virol 78(Pt 4):847–855.  https://doi.org/10.1099/0022-1317-78-4-847CrossRefPubMedGoogle Scholar
  72. Kaufer BB, Flamand L (2014) Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Curr Opin Virol 9:111–118.  https://doi.org/10.1016/j.coviro.2014.09.010CrossRefPubMedGoogle Scholar
  73. Kawabata A, Oyaizu H, Maeki T, Tang H, Yamanishi K, Mori Y (2011) Analysis of a neutralizing antibody for human herpesvirus 6B reveals a role for glycoprotein Q1 in viral entry. J Virol 85(24):12962–12971.  https://doi.org/10.1128/JVI.05622-11CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kawabata A, Jasirwan C, Yamanishi K, Mori Y (2012) Human herpesvirus 6 glycoprotein M is essential for virus growth and requires glycoprotein N for its maturation. Virology 429(1):21–28.  https://doi.org/10.1016/j.virol.2012.03.027CrossRefPubMedGoogle Scholar
  75. Kawabata A, Serada S, Naka T, Mori Y (2014) Human herpesvirus 6 gM/gN complex interacts with v-SNARE in infected cells. J Gen Virol 95(Pt 12):2769–2777.  https://doi.org/10.1099/vir.0.069336-0CrossRefPubMedGoogle Scholar
  76. Kemper C, Atkinson JP (2009) Measles virus and CD46. Curr Top Microbiol Immunol 329:31–57PubMedGoogle Scholar
  77. Kim IJ, Chouljenko VN, Walker JD, Kousoulas KG (2013) Herpes simplex virus 1 glycoprotein M and the membrane-associated protein UL11 are required for virus-induced cell fusion and efficient virus entry. J Virol 87(14):8029–8037.  https://doi.org/10.1128/JVI.01181-13CrossRefPubMedPubMedCentralGoogle Scholar
  78. Klupp BG, Nixdorf R, Mettenleiter TC (2000) Pseudorabies virus glycoprotein M inhibits membrane fusion. J Virol 74(15):6760–6768CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kofod-Olsen E, Ross-Hansen K, Schleimann MH, Jensen DK, Moller JM, Bundgaard B, Mikkelsen JG, Hollsberg P (2012) U20 is responsible for human herpesvirus 6B inhibition of tumor necrosis factor receptor-dependent signaling and apoptosis. J Virol 86(21):11483–11492.  https://doi.org/10.1128/JVI.00847-12CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kondo K, Shimada K, Sashihara J, Tanaka-Taya K, Yamanishi K (2002) Identification of human herpesvirus 6 latency-associated transcripts. J Virol 76(8):4145–4151CrossRefPubMedPubMedCentralGoogle Scholar
  81. Koyano S, Mar EC, Stamey FR, Inoue N (2003) Glycoproteins M and N of human herpesvirus 8 form a complex and inhibit cell fusion. J Gen Virol 84(Pt 6):1485–1491.  https://doi.org/10.1099/vir.0.18941-0CrossRefPubMedGoogle Scholar
  82. Land A, Braakman I (2001) Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. Biochimie 83(8):783–790CrossRefPubMedGoogle Scholar
  83. Lau SY, Crump CM (2015) HSV-1 gM and the gK/pUL20 complex are important for the localization of gD and gH/L to viral assembly sites. Viruses 7(3):915–938.  https://doi.org/10.3390/v7030915CrossRefPubMedPubMedCentralGoogle Scholar
  84. Leibovitch EC, Jacobson S (2014) Evidence linking HHV-6 with multiple sclerosis: an update. Curr Opin Virol 9:127–133.  https://doi.org/10.1016/j.coviro.2014.09.016CrossRefPubMedGoogle Scholar
  85. Leibovitch E, Wohler JE, Cummings Macri SM, Motanic K, Harberts E, Gaitan MI, Maggi P, Ellis M, Westmoreland S, Silva A, Reich DS, Jacobson S (2013) Novel marmoset (Callithrix jacchus) model of human Herpesvirus 6A and 6B infections: immunologic, virologic and radiologic characterization. PLoS Pathog 9(1):e1003138.  https://doi.org/10.1371/journal.ppat.1003138CrossRefPubMedPubMedCentralGoogle Scholar
  86. Liszewski MK, Kemper C, Price JD, Atkinson JP (2005) Emerging roles and new functions of CD46. Springer Semin Immunopathol 27(3):345–358.  https://doi.org/10.1007/s00281-005-0002-3CrossRefPubMedGoogle Scholar
  87. Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455(7209):109–113.  https://doi.org/10.1038/nature07159CrossRefPubMedPubMedCentralGoogle Scholar
  88. Lopez C, Pellett P, Stewart J, Goldsmith C, Sanderlin K, Black J, Warfield D, Feorino P (1988) Characteristics of human herpesvirus-6. J Infect Dis 157(6):1271–1273CrossRefPubMedGoogle Scholar
  89. Luppi M, Barozzi P, Maiorana A, Marasca R, Trovato R, Fano R, Ceccherini-Nelli L, Torelli G (1995) Human herpesvirus-6: a survey of presence and distribution of genomic sequences in normal brain and neuroglial tumors. J Med Virol 47(1):105–111CrossRefPubMedGoogle Scholar
  90. Luppi M, Barozzi P, Morris C, Maiorana A, Garber R, Bonacorsi G, Donelli A, Marasca R, Tabilio A, Torelli G (1999) Human herpesvirus 6 latently infects early bone marrow progenitors in vivo. J Virol 73(1):754–759PubMedPubMedCentralGoogle Scholar
  91. Lusso P, Salahuddin SZ, Ablashi DV, Gallo RC, Di Marzo Veronese F, Markham PD (1987) Diverse tropism of HBLV (human herpesvirus 6). Lancet 2(8561):743CrossRefPubMedGoogle Scholar
  92. Lusso P, Markham PD, Tschachler E, di Marzo Veronese F, Salahuddin SZ, Ablashi DV, Pahwa S, Krohn K, Gallo RC (1988) In vitro cellular tropism of human B-lymphotropic virus (human herpesvirus-6). J Exp Med 167(5):1659–1670CrossRefPubMedGoogle Scholar
  93. Lusso P, Malnati MS, Garzino-Demo A, Crowley RW, Long EO, Gallo RC (1993) Infection of natural killer cells by human herpesvirus 6. Nature 362(6419):458–462.  https://doi.org/10.1038/362458a0CrossRefPubMedGoogle Scholar
  94. MacLean CA, Efstathiou S, Elliott ML, Jamieson FE, McGeoch DJ (1991) Investigation of herpes simplex virus type 1 genes encoding multiply inserted membrane proteins. J Gen Virol 72(Pt 4):897–906.  https://doi.org/10.1099/0022-1317-72-4-897CrossRefPubMedGoogle Scholar
  95. Maeki T, Hayashi M, Kawabata A, Tang H, Yamanishi K, Mori Y (2013) Identification of the human herpesvirus 6A gQ1 domain essential for its functional conformation. J Virol 87(12):7054–7063.  https://doi.org/10.1128/JVI.00611-13CrossRefPubMedPubMedCentralGoogle Scholar
  96. Mahmoud NF, Jasirwan C, Kanemoto S, Wakata A, Wang B, Hata Y, Nagamata S, Kawabata A, Tang H, Mori Y (2016) Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection. Virology 490:1–5.  https://doi.org/10.1016/j.virol.2015.12.018CrossRefPubMedGoogle Scholar
  97. Marsters SA, Frutkin AD, Simpson NJ, Fendly BM, Ashkenazi A (1992) Identification of cysteine-rich domains of the type 1 tumor necrosis factor receptor involved in ligand binding. J Biol Chem 267(9):5747–5750PubMedGoogle Scholar
  98. May NA, Glosson NL, Hudson AW (2010) Human herpesvirus 7 u21 downregulates classical and nonclassical class I major histocompatibility complex molecules from the cell surface. J Virol 84(8):3738–3751.  https://doi.org/10.1128/JVI.01782-09CrossRefPubMedPubMedCentralGoogle Scholar
  99. Mirandola P, Menegazzi P, Merighi S, Ravaioli T, Cassai E, Di Luca D (1998) Temporal mapping of transcripts in herpesvirus 6 variants. J Virol 72(5):3837–3844PubMedPubMedCentralGoogle Scholar
  100. Mock DJ, Powers JM, Goodman AD, Blumenthal SR, Ergin N, Baker JV, Mattson DH, Assouline JG, Bergey EJ, Chen B, Epstein LG, Blumberg BM (1999) Association of human herpesvirus 6 with the demyelinative lesions of progressive multifocal leukoencephalopathy. J Neurovirol 5(4):363–373CrossRefPubMedGoogle Scholar
  101. Moller-Tank S, Maury W (2015) Ebola virus entry: a curious and complex series of events. PLoS Pathog 11(4):e1004731.  https://doi.org/10.1371/journal.ppat.1004731CrossRefPubMedPubMedCentralGoogle Scholar
  102. Mori Y, Seya T, Huang HL, Akkapaiboon P, Dhepakson P, Yamanishi K (2002) Human herpesvirus 6 variant A but not variant B induces fusion from without in a variety of human cells through a human herpesvirus 6 entry receptor, CD46. J Virol 76(13):6750–6761CrossRefPubMedPubMedCentralGoogle Scholar
  103. Mori Y, Akkapaiboon P, Yang X, Yamanishi K (2003a) The human herpesvirus 6 U100 gene product is the third component of the gH-gL glycoprotein complex on the viral envelope. J Virol 77(4):2452–2458CrossRefPubMedPubMedCentralGoogle Scholar
  104. Mori Y, Yang X, Akkapaiboon P, Okuno T, Yamanishi K (2003b) Human herpesvirus 6 variant A glycoprotein H-glycoprotein L-glycoprotein Q complex associates with human CD46. J Virol 77(8):4992–4999CrossRefPubMedPubMedCentralGoogle Scholar
  105. Mori Y, Akkapaiboon P, Yonemoto S, Koike M, Takemoto M, Sadaoka T, Sasamoto Y, Konishi S, Uchiyama Y, Yamanishi K (2004) Discovery of a second form of tripartite complex containing gH-gL of human herpesvirus 6 and observations on CD46. J Virol 78(9):4609–4616CrossRefPubMedPubMedCentralGoogle Scholar
  106. Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, Uchiyama Y, Yamanishi K (2008) Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 9(10):1728–1742.  https://doi.org/10.1111/j.1600-0854.2008.00796.xCrossRefPubMedPubMedCentralGoogle Scholar
  107. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343(13):938–952.  https://doi.org/10.1056/NEJM200009283431307CrossRefPubMedGoogle Scholar
  108. Okuno T, Takahashi K, Balachandra K, Shiraki K, Yamanishi K, Takahashi M, Baba K (1989) Seroepidemiology of human herpesvirus 6 infection in normal children and adults. J Clin Microbiol 27(4):651–653PubMedPubMedCentralGoogle Scholar
  109. Ota M, Serada S, Naka T, Mori Y (2014) MHC class I molecules are incorporated into human herpesvirus-6 viral particles and released into the extracellular environment. Microbiol Immunol 58(2):119–125.  https://doi.org/10.1111/1348-0421.12121CrossRefPubMedGoogle Scholar
  110. Owen DJ, Evans PR (1998) A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282(5392):1327–1332CrossRefPubMedPubMedCentralGoogle Scholar
  111. Oyaizu H, Tang H, Ota M, Takenaka N, Ozono K, Yamanishi K, Mori Y (2012) Complementation of the function of glycoprotein H of human herpesvirus 6 variant A by glycoprotein H of variant B in the virus life cycle. J Virol 86(16):8492–8498.  https://doi.org/10.1128/JVI.00504-12CrossRefPubMedPubMedCentralGoogle Scholar
  112. Ozaki Y, Tajiri H, Tanaka-Taya K, Mushiake S, Kimoto A, Yamanishi K, Okada S (2001) Frequent detection of the human herpesvirus 6-specific genomes in the livers of children with various liver diseases. J Clin Microbiol 39(6):2173–2177.  https://doi.org/10.1128/JCM.39.6.2173-2177.2001CrossRefPubMedPubMedCentralGoogle Scholar
  113. Pedersen SM, Oster B, Bundgaard B, Hollsberg P (2006) Induction of cell-cell fusion from without by human herpesvirus 6B. J Virol 80(19):9916–9920.  https://doi.org/10.1128/JVI.02693-05CrossRefPubMedPubMedCentralGoogle Scholar
  114. Pfeiffer B, Berneman ZN, Neipel F, Chang CK, Tirwatnapong S, Chandran B (1993) Identification and mapping of the gene encoding the glycoprotein complex gp82-gp105 of human herpesvirus 6 and mapping of the neutralizing epitope recognized by monoclonal antibodies. J Virol 67(8):4611–4620PubMedPubMedCentralGoogle Scholar
  115. Pfeiffer B, Thomson B, Chandran B (1995) Identification and characterization of a cDNA derived from multiple splicing that encodes envelope glycoprotein gp105 of human herpesvirus 6. J Virol 69(6):3490–3500PubMedPubMedCentralGoogle Scholar
  116. Prusty BK, Krohne G, Rudel T (2013) Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation. PLoS Genet 9(12):e1004033.  https://doi.org/10.1371/journal.pgen.1004033CrossRefPubMedPubMedCentralGoogle Scholar
  117. Reynaud JM, Jegou JF, Welsch JC, Horvat B (2014) Human herpesvirus 6A infection in CD46 transgenic mice: viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J Virol 88(10):5421–5436.  https://doi.org/10.1128/JVI.03763-13CrossRefPubMedPubMedCentralGoogle Scholar
  118. Rezcallah MS, Hodges K, Gill DB, Atkinson JP, Wang B, Cleary PP (2005) Engagement of CD46 and alpha5beta1 integrin by group A streptococci is required for efficient invasion of epithelial cells. Cell Microbiol 7(5):645–653.  https://doi.org/10.1111/j.1462-5822.2004.00497.xCrossRefPubMedGoogle Scholar
  119. Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK, Atkinson JP (2004) CD46: expanding beyond complement regulation. Trends Immunol 25(9):496–503.  https://doi.org/10.1016/j.it.2004.07.004CrossRefPubMedGoogle Scholar
  120. Roizmann B, Desrosiers RC, Fleckenstein B, Lopez C, Minson AC, Studdert MJ (1992) The family Herpesviridae: an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses. Arch Virol 123(3–4):425–449CrossRefPubMedGoogle Scholar
  121. Roush KS, Domiati-Saad RK, Margraf LR, Krisher K, Scheuermann RH, Rogers BB, Dawson DB (2001) Prevalence and cellular reservoir of latent human herpesvirus 6 in tonsillar lymphoid tissue. Am J Clin Pathol 116(5):648–654.  https://doi.org/10.1309/Y2HH-B1CK-0F5L-U7B8CrossRefPubMedGoogle Scholar
  122. Ryckman BJ, Jarvis MA, Drummond DD, Nelson JA, Johnson DC (2006) Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 80(2):710–722.  https://doi.org/10.1128/JVI.80.2.710-722.2006CrossRefPubMedPubMedCentralGoogle Scholar
  123. Sadaoka T, Yamanishi K, Mori Y (2006) Human herpesvirus 7 U47 gene products are glycoproteins expressed in virions and associate with glycoprotein H. J Gen Virol 87(Pt 3):501–508.  https://doi.org/10.1099/vir.0.81374-0CrossRefPubMedGoogle Scholar
  124. Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA (2010) Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 6(9):e1001110.  https://doi.org/10.1371/journal.ppat.1001110CrossRefPubMedPubMedCentralGoogle Scholar
  125. Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S, Kaplan M, Halligan G, Biberfeld P, Wong-Staal F, Kramarsky B et al (1986) Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234(4776):596–601CrossRefPubMedGoogle Scholar
  126. Santoro F, Kennedy PE, Locatelli G, Malnati MS, Berger EA, Lusso P (1999) CD46 is a cellular receptor for human herpesvirus 6. Cell 99(7):817–827CrossRefPubMedGoogle Scholar
  127. Santoro F, Greenstone HL, Insinga A, Liszewski MK, Atkinson JP, Lusso P, Berger EA (2003) Interaction of glycoprotein H of human herpesvirus 6 with the cellular receptor CD46. J Biol Chem 278(28):25964–25969.  https://doi.org/10.1074/jbc.M302373200CrossRefPubMedGoogle Scholar
  128. Saxinger C, Polesky H, Eby N, Grufferman S, Murphy R, Tegtmeir G, Parekh V, Memon S, Hung C (1988) Antibody reactivity with HBLV (HHV-6) in U.S. populations. J Virol Methods 21(1–4):199–208CrossRefPubMedGoogle Scholar
  129. Schiewe U, Neipel F, Schreiner D, Fleckenstein B (1994) Structure and transcription of an immediate-early region in the human herpesvirus 6 genome. J Virol 68(5):2978–2985PubMedPubMedCentralGoogle Scholar
  130. Schmiedel D, Tai J, Levi-Schaffer F, Dovrat S, Mandelboim O (2016) Human Herpesvirus 6 downregulates the expression of activating ligands during lytic infection to escape elimination by natural killer cells. J Virol 90:9608–9617.  https://doi.org/10.1128/JVI.01164-16CrossRefPubMedPubMedCentralGoogle Scholar
  131. Scrivano L, Esterlechner J, Muhlbach H, Ettischer N, Hagen C, Grunewald K, Mohr CA, Ruzsics Z, Koszinowski U, Adler B (2010) The m74 gene product of murine cytomegalovirus (MCMV) is a functional homolog of human CMV gO and determines the entry pathway of MCMV. J Virol 84(9):4469–4480.  https://doi.org/10.1128/JVI.02441-09CrossRefPubMedPubMedCentralGoogle Scholar
  132. Secchiero P, Sun D, De Vico AL, Crowley RW, Reitz MS Jr, Zauli G, Lusso P, Gallo RC (1997) Role of the extracellular domain of human herpesvirus 7 glycoprotein B in virus binding to cell surface heparan sulfate proteoglycans. J Virol 71(6):4571–4580PubMedPubMedCentralGoogle Scholar
  133. Seya T, Hara T, Matsumoto M, Sugita Y, Akedo H (1990) Complement-mediated tumor cell damage induced by antibodies against membrane cofactor protein (MCP, CD46). J Exp Med 172(6):1673–1680CrossRefPubMedGoogle Scholar
  134. Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, Palese P (2008) Cellular proteins in influenza virus particles. PLoS Pathog 4(6):e1000085.  https://doi.org/10.1371/journal.ppat.1000085CrossRefPubMedPubMedCentralGoogle Scholar
  135. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569.  https://doi.org/10.1146/annurev.biochem.69.1.531CrossRefPubMedGoogle Scholar
  136. Skrincosky D, Hocknell P, Whetter L, Secchiero P, Chandran B, Dewhurst S (2000) Identification and analysis of a novel heparin-binding glycoprotein encoded by human herpesvirus 7. J Virol 74(10):4530–4540CrossRefPubMedPubMedCentralGoogle Scholar
  137. Soroceanu L, Akhavan A, Cobbs CS (2008) Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature 455(7211):391–395.  https://doi.org/10.1038/nature07209CrossRefPubMedGoogle Scholar
  138. Spear PG (2004) Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6(5):401–410.  https://doi.org/10.1111/j.1462-5822.2004.00389.xCrossRefPubMedGoogle Scholar
  139. Stamey FR, Dominguez G, Black JB, Dambaugh TR, Pellett PE (1995) Intragenomic linear amplification of human herpesvirus 6B oriLyt suggests acquisition of oriLyt by transposition. J Virol 69(1):589–596PubMedPubMedCentralGoogle Scholar
  140. Stegen C, Yakova Y, Henaff D, Nadjar J, Duron J, Lippe R (2013) Analysis of virion-incorporated host proteins required for herpes simplex virus type 1 infection through a RNA interference screen. PLoS One 8(1):e53276.  https://doi.org/10.1371/journal.pone.0053276CrossRefPubMedPubMedCentralGoogle Scholar
  141. Steinhauer DA (1999) Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258(1):1–20.  https://doi.org/10.1006/viro.1999.9716CrossRefPubMedGoogle Scholar
  142. Stiasny K, Fritz R, Pangerl K, Heinz FX (2011) Molecular mechanisms of flavivirus membrane fusion. Amino Acids 41(5):1159–1163.  https://doi.org/10.1007/s00726-009-0370-4CrossRefPubMedGoogle Scholar
  143. Tal-Singer R, Peng C, Ponce De Leon M, Abrams WR, Banfield BW, Tufaro F, Cohen GH, Eisenberg RJ (1995) Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol 69(7):4471–4483PubMedPubMedCentralGoogle Scholar
  144. Tanaka Y, Suenaga T, Matsumoto M, Seya T, Arase H (2013) Herpesvirus 6 glycoproteins B (gB), gH, gL, and gQ are necessary and sufficient for cell-to-cell fusion. J Virol 87(19):10900–10903.  https://doi.org/10.1128/JVI.01427-13CrossRefPubMedPubMedCentralGoogle Scholar
  145. Tang H, Mori Y (2015) Determinants of Human CD134 Essential for Entry of Human Herpesvirus 6B. J Virol 89(19):10125–10129.  https://doi.org/10.1128/JVI.01606-15CrossRefPubMedPubMedCentralGoogle Scholar
  146. Tang H, Hayashi M, Maeki T, Yamanishi K, Mori Y (2011) Human herpesvirus 6 glycoprotein complex formation is required for folding and trafficking of the gH/gL/gQ1/gQ2 complex and its cellular receptor binding. J Virol 85(21):11121–11130.  https://doi.org/10.1128/JVI.05251-11CrossRefPubMedPubMedCentralGoogle Scholar
  147. Tang H, Serada S, Kawabata A, Ota M, Hayashi E, Naka T, Yamanishi K, Mori Y (2013) CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci U S A 110(22):9096–9099. doi:10.1073/pnas.1305187110 1305187110 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  148. Tang H, Wang J, Mahmoud NF, Mori Y (2014) Detailed study of the interaction between human herpesvirus 6B glycoprotein complex and its cellular receptor, human CD134. J Virol 88(18):10875–10882.  https://doi.org/10.1128/JVI.01447-14CrossRefPubMedPubMedCentralGoogle Scholar
  149. Tang H, Mahmoud NF, Mori Y (2015) Maturation of human herpesvirus 6A glycoprotein O requires coexpression of glycoprotein H and glycoprotein L. J Virol 89(9):5159–5163.  https://doi.org/10.1128/JVI.00140-15CrossRefPubMedPubMedCentralGoogle Scholar
  150. Tanner A, Carlson SA, Nukui M, Murphy EA, Berges BK (2013) Human herpesvirus 6A infection and immunopathogenesis in humanized Rag2(-)/(-) gammac(-)/(-) mice. J Virol 87(22):12020–12028.  https://doi.org/10.1128/JVI.01556-13CrossRefPubMedPubMedCentralGoogle Scholar
  151. Torrisi MR, Gentile M, Cardinali G, Cirone M, Zompetta C, Lotti LV, Frati L, Faggioni A (1999) Intracellular transport and maturation pathway of human herpesvirus 6. Virology 257(2):460–471.  https://doi.org/10.1006/viro.1999.9699CrossRefPubMedGoogle Scholar
  152. Trybala E, Liljeqvist JA, Svennerholm B, Bergstrom T (2000) Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J Virol 74(19):9106–9114CrossRefPubMedPubMedCentralGoogle Scholar
  153. Vanarsdall AL, Johnson DC (2012) Human cytomegalovirus entry into cells. Curr Opin Virol 2(1):37–42.  https://doi.org/10.1016/j.coviro.2012.01.001CrossRefPubMedGoogle Scholar
  154. Vanarsdall AL, Chase MC, Johnson DC (2011) Human cytomegalovirus glycoprotein gO complexes with gH/gL, promoting interference with viral entry into human fibroblasts but not entry into epithelial cells. J Virol 85(22):11638–11645.  https://doi.org/10.1128/JVI.05659-11CrossRefPubMedPubMedCentralGoogle Scholar
  155. Voorhees P, Deignan E, van Donselaar E, Humphrey J, Marks MS, Peters PJ, Bonifacino JS (1995) An acidic sequence within the cytoplasmic domain of furin functions as a determinant of trans-Golgi network localization and internalization from the cell surface. EMBO J 14(20):4961–4975PubMedPubMedCentralCrossRefGoogle Scholar
  156. Weinberg AD, Bourdette DN, Sullivan TJ, Lemon M, Wallin JJ, Maziarz R, Davey M, Palida F, Godfrey W, Engleman E, Fulton RJ, Offner H, Vandenbark AA (1996) Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med 2(2):183–189CrossRefPubMedPubMedCentralGoogle Scholar
  157. Wille PT, Knoche AJ, Nelson JA, Jarvis MA, Johnson DC (2010) A human cytomegalovirus gO-null mutant fails to incorporate gH/gL into the virion envelope and is unable to enter fibroblasts and epithelial and endothelial cells. J Virol 84(5):2585–2596.  https://doi.org/10.1128/JVI.02249-09CrossRefPubMedGoogle Scholar
  158. Williams RK, Straus SE (1997) Specificity and affinity of binding of herpes simplex virus type 2 glycoprotein B to glycosaminoglycans. J Virol 71(2):1375–1380PubMedPubMedCentralGoogle Scholar
  159. Wyatt LS, Balachandran N, Frenkel N (1990) Variations in the replication and antigenic properties of human herpesvirus 6 strains. J Infect Dis 162(4):852–857CrossRefPubMedGoogle Scholar
  160. Yamanishi K, Okuno T, Shiraki K, Takahashi M, Kondo T, Asano Y, Kurata T (1988) Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet 1(8594):1065–1067CrossRefPubMedGoogle Scholar
  161. Zhang N, Yan J, Lu G, Guo Z, Fan Z, Wang J, Shi Y, Qi J, Gao GF (2011) Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat Commun 2:577.  https://doi.org/10.1038/ncomms1571CrossRefPubMedGoogle Scholar
  162. Zhou M, Lanchy JM, Ryckman BJ (2015) Human Cytomegalovirus gH/gL/gO promotes the fusion step of entry into all cell types, whereas gH/gL/UL128-131 Broadens Virus tropism through a distinct mechanism. J Virol 89(17):8999–9009.  https://doi.org/10.1128/JVI.01325-15CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ImmunologyNanjing Medical UniversityNanjingChina
  2. 2.Division of Clinical Virology, Center for Infectious DiseasesKobe University Graduate School of MedicineKobeJapan

Personalised recommendations