Advertisement

Animal Models of Human Gammaherpesvirus Infections

  • Shigeyoshi Fujiwara
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1045)

Abstract

Humans are the only natural host of both Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), and this strict host tropism has hampered the development of animal models of these human gammaherpesviruses. To overcome this difficulty and develop useful models for these viruses, three main approaches have been employed: first, experimental infection of laboratory animals [mainly new-world non-human primates (NHPs)] with EBV or KSHV; second, experimental infection of NHPs (mainly old-world NHPs) with EBV- or KSHV-related gammaherpesviruses inherent to respective NHPs; and third, experimental infection of humanized mice, i.e., immunodeficient mice engrafted with functional human cells or tissues (mainly human immune system components) with EBV or KSHV. These models have recapitulated diseases caused by human gammaherpesviruses, their asymptomatic persistent infections, as well as both innate and adaptive immune responses to them, facilitating the development of novel therapeutic and prophylactic measures against these viruses.

Keywords

Animal model Human gammaherpesvirus Epstein-Barr virus Kaposi’s sarcoma-associated herpesvirus Rhesus lymphocryptovirus Rhesus rhadinovirus Murine gammaherpesvirus 68 Humanized mouse 

Notes

Acknowledgments

Work in my laboratory has been carried out in collaboration with many colleagues and students to whom I express my utmost gratitude. The work was supported by grants from the Ministry of Health, Labour and Welfare of Japan for the Research on Measures for Intractable Diseases (H21-Nanchi-094, H22-Nanchi-080, H24-Nanchi-046) and by the Practical Research Project for Rare/Intractable Diseases (16ek0109098) from Japan Agency for Medical Research and Development, AMED.

References

  1. Antsiferova O, Muller A, Ramer PC, Chijioke O, Chatterjee B, Raykova A, Planas R, Sospedra M, Shumilov A, Tsai MH, Delecluse HJ, Münz C (2014) Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog 10(8):e1004333.  https://doi.org/10.1371/journal.ppat.1004333 PPATHOGENS-D-14-00808 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azzi T, Lunemann A, Murer A, Ueda S, Beziat V, Malmberg KJ, Staubli G, Gysin C, Berger C, Münz C, Chijioke O, Nadal D (2014) Role for early-differentiated natural killer cells in infectious mononucleosis. Blood 124(16):2533–2543.  https://doi.org/10.1182/blood-2014-01-553024 blood-2014-01-553024 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HWT (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447 (7142):326–329. nature05762 [pii]  https://doi.org/10.1038/nature05762 CrossRefPubMedGoogle Scholar
  4. Barton E, Mandal P, Speck SH (2011) Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 29:351–397.  https://doi.org/10.1146/annurev-immunol-072710-081639 CrossRefPubMedGoogle Scholar
  5. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301(5900):527–530CrossRefGoogle Scholar
  6. Bruce AG, Ryan JT, Thomas MJ, Peng X, Grundhoff A, Tsai CC, Rose TM (2013) Next-generation sequence analysis of the genome of RFHVMn, the macaque homolog of Kaposi’s sarcoma (KS)-associated herpesvirus, from a KS-like tumor of a pig-tailed macaque. J Virol 87 (24):13676–13693.  https://doi.org/10.1128/JVI.02331-13 JVI.02331-13 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cannon MJ, Pisa P, Fox RI, Cooper NR (1990) Epstein-Barr virus induces aggressive lymphoproliferative disorders of human B cell origin in SCID/hu chimeric mice. J Clin Invest 85(4):1333–1337CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chang H, Wachtman LM, Pearson CB, Lee JS, Lee HR, Lee SH, Vieira J, Mansfield KG, Jung JU (2009) Non-human primate model of Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathog 5(10):e1000606.  https://doi.org/10.1371/journal.ppat.1000606 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, Marcenaro E, Leung CS, Antsiferova O, Landtwing V, Bossart W, Moretta A, Hassan R, Boyman O, Niedobitek G, Delecluse HJ, Capaul R, Münz C (2013) Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep 5(6):1489–1498.  https://doi.org/10.1016/j.celrep.2013.11.041 S2211-1247(13)00725-0 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  10. Damania B (2007) EBV and KSHV-related herpesviruses in non-human primates. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, New York, pp 1013–1114Google Scholar
  11. Damania BA, Cesarman E (2013) Kaposi’s sarcoma-associated herpesvirus. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (eds) Fields virology, vol II. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 2080–2128Google Scholar
  12. Dirmeier U, Neuhierl B, Kilger E, Reisbach G, Sandberg ML, Hammerschmidt W (2003) Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus. Cancer Res 63(11):2982–2989PubMedPubMedCentralGoogle Scholar
  13. Dittmer D, Stoddart C, Renne R, Linquist-Stepps V, Moreno ME, Bare C, McCune JM, Ganem D (1999) Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J Exp Med 190(12):1857–1868CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ensser A, Fleckenstein B (2007) Gammaherpesviruses of new world primates. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, New York, pp 1076–1092Google Scholar
  15. Epstein MA, Morgan AJ, Finerty S, Randle BJ, Kirkwood JK (1985) Protection of cottontop tamarins against Epstein-Barr virus-induced malignant lymphoma by a prototype subunit vaccine. Nature 318(6043):287–289CrossRefPubMedGoogle Scholar
  16. Estep RD, Wong SW (2013) Rhesus macaque rhadinovirus-associated disease. Curr Opin Virol 3(3):245–250.  https://doi.org/10.1016/j.coviro.2013.05.016 S1879-6257(13)00076-X [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  17. Estep RD, Rawlings SD, Li H, Manoharan M, Blaine ET, O’Connor MA, Messaoudi I, Axthelm MK, Wong SW (2014) The rhesus rhadinovirus CD200 homologue affects immune responses and viral loads during in vivo infection. J Virol 88 (18):10635–10654.  https://doi.org/10.1128/JVI.01276-14 JVI.01276-14 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  18. Falk L, Deinhardt F, Wolfe L, Johnson D, Hilgers J, de The G (1976) Epstein-Barr virus: experimental infection of Callithrix Jacchus marmosets. Int J Cancer 17(6):785–788CrossRefPubMedGoogle Scholar
  19. Foreman KE, Friborg J, Chandran B, Katano H, Sata T, Mercader M, Nabel GJ, Nickoloff BJ (2001) Injection of human herpesvirus-8 in human skin engrafted on SCID mice induces Kaposi’s sarcoma-like lesions. J Dermatol Sci 26(3):182–193 doi:S0923181101000871 [pii]Google Scholar
  20. Fujiwara S, Kimura H, Imadome K, Arai A, Kodama E, Morio T, Shimizu N, Wakiguchi H (2014) Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int 56(2):159–166.  https://doi.org/10.1111/ped.12314 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fujiwara S, Imadome K, Takei M (2015) Modeling EBV infection and pathogenesis in new-generation humanized mice. Exp Mol Med 47:e135.  https://doi.org/10.1038/emm.2014.88 emm201488 [pii]CrossRefGoogle Scholar
  22. Gregorovic G, Boulden EA, Bosshard R, Elgueta Karstegl C, Skalsky R, Cullen BR, Gujer C, Ramer P, Münz C, Farrell PJ (2015) Epstein-Barr Viruses (EBVs) deficient in EBV-encoded RNAs have higher levels of latent membrane protein 2 RNA expression in Lymphoblastoid cell lines and efficiently establish persistent infections in humanized mice. J Virol 89(22):11711–11714.  https://doi.org/10.1128/JVI.01873-15 JVI.01873-15 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:587–617.  https://doi.org/10.1146/annurev.immunol.25.022106.141553 CrossRefPubMedGoogle Scholar
  24. Imadome K, Yajima M, Arai A, Nakazawa A, Kawano F, Ichikawa S, Shimizu N, Yamamoto N, Morio T, Ohga S, Nakamura H, Ito M, Miura O, Komano J, Fujiwara S (2011) Novel mouse xenograft models reveal a critical role of CD4+ T cells in the proliferation of EBV-infected T and NK cells. PLoS Pathog 7(10):e1002326.  https://doi.org/10.1371/journal.ppat.1002326 PPATHOGENS-D-11-00208 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182CrossRefPubMedGoogle Scholar
  26. Johannessen I, Crawford DH (1999) In vivo models for Epstein-Barr virus (EBV)-associated B cell lymphoproliferative disease (BLPD). Rev Med Virol 9(4):263–277.  https://doi.org/10.1002/(SICI)1099-1654(199910/12)9:4<263::AID-RMV256>3.0.CO;2-D [pii]CrossRefPubMedGoogle Scholar
  27. Khan G, Ahmed W, Philip PS, Ali MH, Adem A (2015) Healthy rabbits are susceptible to Epstein-Barr virus infection and infected cells proliferate in immunosuppressed animals. Virol J 12:28.  https://doi.org/10.1186/s12985-015-0260-1 s12985-015-0260-1 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kutok JL, Klumpp S, Simon M, MacKey JJ, Nguyen V, Middeldorp JM, Aster JC, Wang F (2004) Molecular evidence for rhesus lymphocryptovirus infection of epithelial cells in immunosuppressed rhesus macaques. J Virol 78(7):3455–3461CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kuwana Y, Takei M, Yajima M, Imadome K, Inomata H, Shiozaki M, Ikumi N, Nozaki T, Shiraiwa H, Kitamura N, Takeuchi J, Sawada S, Yamamoto N, Shimizu N, Ito M, Fujiwara S (2011) Epstein-Barr virus induces erosive arthritis in humanized mice. PLoS One 6(10):e26630.  https://doi.org/10.1371/journal.pone.0026630 PONE-D-11-16695 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee EK, Joo EH, Song KA, Choi B, Kim M, Kim SH, Kim SJ, Kang MS (2015) Effects of lymphocyte profile on development of EBV-induced lymphoma subtypes in humanized mice. Proc Natl Acad Sci USA 112(42):13081–13086.  https://doi.org/10.1073/pnas.1407075112 1407075112 [pii]CrossRefGoogle Scholar
  31. Leskowitz R, Fogg MH, Zhou XY, Kaur A, Silveira EL, Villinger F, Lieberman PM, Wang F, Ertl HC (2014) Adenovirus-based vaccines against rhesus lymphocryptovirus EBNA-1 induce expansion of specific CD8+ and CD4+ T cells in persistently infected rhesus macaques. J Virol 88 9:4721–4735.  https://doi.org/10.1128/JVI.03744-13 JVI.03744-13 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liang X, Collins CM, Mendel JB, Iwakoshi NN, Speck SH (2009) Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes. PLoS Pathog 5(11):e1000677.  https://doi.org/10.1371/journal.ppat.1000677 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liang X, Paden CR, Morales FM, Powers RP, Jacob J, Speck SH (2011) Murine gamma-herpesvirus immortalization of fetal liver-derived B cells requires both the viral cyclin D homolog and latency-associated nuclear antigen. PLoS Pathog 7(9):e1002220.  https://doi.org/10.1371/journal.ppat.1002220 PPATHOGENS-D-11-00810 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lin X, Tsai MH, Shumilov A, Poirey R, Bannert H, Middeldorp JM, Feederle R, Delecluse HJ (2015) The Epstein-Barr virus BART miRNA cluster of the M81 strain modulates multiple functions in primary B cells. PLoS Pathog 11(12):e1005344.  https://doi.org/10.1371/journal.ppat.1005344 PPATHOGENS-D-15-01749 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  35. Longnecker RM, Kieff E, Cohen JI (2013) Epstein-Barr virus. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (eds) Fields virology, vol II, 6th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 1898–1959Google Scholar
  36. Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, Jankowska-Gan E, Burlingham WJ, Sun X, Gulley ML, Tang W, Gumperz JE, Kenney SC (2011) A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol 85(1):165–177.  https://doi.org/10.1128/JVI.01512-10 JVI.01512-10 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ma SD, Xu X, Plowshay J, Ranheim EA, Burlingham WJ, Jensen JL, Asimakopoulos F, Tang W, Gulley ML, Cesarman E, Gumperz JE, Kenney SC (2015) LMP1-deficient Epstein-Barr virus mutant requires T cells for lymphomagenesis. J Clin Invest 125(1):304–315.  https://doi.org/10.1172/JCI76357 76357 [pii]CrossRefPubMedGoogle Scholar
  38. Ma SD, Xu X, Jones R, Delecluse HJ, Zumwalde NA, Sharma A, Gumperz JE, Kenney SC (2016) PD-1/CTLA-4 blockade inhibits Epstein-Barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog 12(5):e1005642.  https://doi.org/10.1371/journal.ppat.1005642 PPATHOGENS-D-15-02021 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ma SD, Tsai MH, Romero-Masters JC, Ranheim EA, Huebner SM, Bristol J, Delecluse HJ, Kenney SC (2017) LMP1 and LMP2A collaborate to promote Epstein-Barr virus (EBV)-induced B cell lymphomas in a cord blood-humanized mouse model but are not essential. J Virol. JVI.01928-16 [pii]  https://doi.org/10.1128/JVI.01928-16
  40. Mansfield KG, Westmoreland SV, DeBakker CD, Czajak S, Lackner AA, Desrosiers RC (1999) Experimental infection of rhesus and pig-tailed macaques with macaque rhadinoviruses. J Virol 73(12):10320–10328PubMedPubMedCentralGoogle Scholar
  41. Matsuda G, Imadome K, Kawano F, Mochizuki M, Ochiai N, Morio T, Shimizu N, Fujiwara S (2015) Cellular immunotherapy with ex vivo expanded cord blood T cells in a humanized mouse model of EBV-associated lymphoproliferative disease. Immunotherapy 7(4):335–341.  https://doi.org/10.2217/imt.15.2 CrossRefPubMedGoogle Scholar
  42. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241(4873):1632–1639CrossRefGoogle Scholar
  43. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12(11):1316–1322CrossRefPubMedGoogle Scholar
  44. Moghaddam A, Rosenzweig M, Lee-Parritz D, Annis B, Johnson RP, Wang F (1997) An animal model for acute and persistent Epstein-Barr virus infection. Science 276(5321):2030–2033CrossRefPubMedGoogle Scholar
  45. Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335(6187):256–259CrossRefGoogle Scholar
  46. Mühe J, Wang F (2015) Non-human primate Lymphocryptoviruses: past, present, and future. Curr Top Microbiol Immunol 391:385–405.  https://doi.org/10.1007/978-3-319-22834-1_13 CrossRefPubMedGoogle Scholar
  47. Murata T, Iwata S, Siddiquey MN, Kanazawa T, Goshima F, Kawashima D, Kimura H, Tsurumi T (2013) Heat shock protein 90 inhibitors repress latent membrane protein 1 (LMP1) expression and proliferation of Epstein-Barr virus-positive natural killer cell lymphoma. PLoS One 8(5):e63566.  https://doi.org/10.1371/journal.pone.0063566 PONE-D-12-34778 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mutlu AD, Cavallin LE, Vincent L, Chiozzini C, Eroles P, Duran EM, Asgari Z, Hooper AT, La Perle KM, Hilsher C, Gao SJ, Dittmer DP, Rafii S, Mesri EA (2007) In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi’s sarcoma. Cancer Cell 11(3):245–258. S1535-6108(07)00031-1 [pii]  https://doi.org/10.1016/j.ccr.2007.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Niller HH, Wolf H, Ay E, Minarovits J (2011) Epigenetic dysregulation of Epstein-Barr virus latency and development of autoimmune disease. Adv Exp Med Biol 711:82–102CrossRefPubMedGoogle Scholar
  50. Ohashi M, Fogg MH, Orlova N, Quink C, Wang F (2012) An Epstein-Barr virus encoded inhibitor of Colony stimulating Factor-1 signaling is an important determinant for acute and persistent EBV infection. PLoS Pathog 8(12):e1003095.  https://doi.org/10.1371/journal.ppat.1003095 PPATHOGENS-D-12-02098 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  51. Okuno K, Takashima K, Kanai K, Ohashi M, Hyuga R, Sugihara H, Kuwamoto S, Kato M, Sano H, Sairenji T, Kanzaki S, Hayashi K (2010) Epstein-Barr virus can infect rabbits by the intranasal or peroral route: an animal model for natural primary EBV infection in humans. J Med Virol 82(6):977–986.  https://doi.org/10.1002/jmv.21597 CrossRefPubMedGoogle Scholar
  52. Orzechowska BU, Powers MF, Sprague J, Li H, Yen B, Searles RP, Axthelm MK, Wong SW (2008) Rhesus macaque rhadinovirus-associated non-Hodgkin lymphoma: animal model for KSHV-associated malignancies. Blood 112(10):4227–4234.  https://doi.org/10.1182/blood-2008-04-151498 blood-2008-04-151498 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  53. Parsons CH, Adang LA, Overdevest J, O’Connor CM, Taylor JR Jr, Camerini D, Kedes DH (2006) KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice. J Clin Invest 116(7):1963–1973.  https://doi.org/10.1172/JCI27249 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Picchio GR, Sabbe RE, Gulizia RJ, McGrath M, Herndier BG, Mosier DE (1997) The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in SCID mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology 238(1):22–29. S0042-6822(97)98822-X [pii]  https://doi.org/10.1006/viro.1997.8822 CrossRefPubMedGoogle Scholar
  55. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S (2016) Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 4(9):e609–e616.  https://doi.org/10.1016/S2214-109X(16)30143-7 S2214-109X(16)30143-7 [pii]CrossRefPubMedGoogle Scholar
  56. Qiu J, Smith P, Leahy L, Thorley-Lawson DA (2015) The Epstein-Barr virus encoded BART miRNAs potentiate tumor growth in vivo. PLoS Pathog 11(1):e1004561.  https://doi.org/10.1371/journal.ppat.1004561 PPATHOGENS-D-14-01638 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ramer JC, Garber RL, Steele KE, Boyson JF, O’Rourke C, Thomson JA (2000) Fatal lymphoproliferative disease associated with a novel gammaherpesvirus in a captive population of common marmosets. Comp Med 50(1):59–68PubMedGoogle Scholar
  58. Renne R, Dittmer D, Kedes D, Schmidt K, Desrosiers RC, Luciw PA, Ganem D (2004) Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SIV-positive and SIV-negative rhesus macaques. J Med Primatol 33(1):1–9.  https://doi.org/10.1046/j.1600-0684.2003.00043.x JMP043 [pii]CrossRefPubMedGoogle Scholar
  59. Rivailler P, Cho YG, Wang F (2002a) Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76(23):12055–12068CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rivailler P, Jiang H, Cho YG, Quink C, Wang F (2002b) Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. J Virol 76(1):421–426CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rivailler P, Carville A, Kaur A, Rao P, Quink C, Kutok JL, Westmoreland S, Klumpp S, Simon M, Aster JC, Wang F (2004) Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host. Blood 104(5):1482–1489.  https://doi.org/10.1182/blood-2004-01-0342 2004-01-0342 [pii]CrossRefPubMedGoogle Scholar
  62. Robinson BA, Estep RD, Messaoudi I, Rogers KS, Wong SW (2012) Viral interferon regulatory factors decrease the induction of type I and type II interferon during rhesus macaque rhadinovirus infection. J Virol 86(4):2197–2211.  https://doi.org/10.1128/JVI.05047-11 JVI.05047-11 [pii]CrossRefPubMedCentralGoogle Scholar
  63. Rohner E, Wyss N, Trelle S, Mbulaiteye SM, Egger M, Novak U, Zwahlen M, Bohlius J (2014) HHV-8 seroprevalence: a global view. Syst Rev 3:11.  https://doi.org/10.1186/2046-4053-3-11 2046-4053-3-11 [pii]
  64. Rose TM, Strand KB, Schultz ER, Schaefer G, Rankin GW Jr, Thouless ME, Tsai CC, Bosch ML (1997) Identification of two homologs of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in retroperitoneal fibromatosis of different macaque species. J Virol 71(5):4138–4144PubMedPubMedCentralGoogle Scholar
  65. Rowe M, Young LS, Crocker J, Stokes H, Henderson S, Rickinson AB (1991) Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: implications for the pathogenesis of EBV-positive lymphomas in man. J Exp Med 173(1):147–158CrossRefPubMedGoogle Scholar
  66. Sarosiek KA, Cavallin LE, Bhatt S, Toomey NL, Natkunam Y, Blasini W, Gentles AJ, Ramos JC, Mesri EA, Lossos IS (2010) Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci USA 107(29):13069–13074.  https://doi.org/10.1073/pnas.1002985107 1002985107 [pii]CrossRefGoogle Scholar
  67. Sashihara J, Hoshino Y, Bowman JJ, Krogmann T, Burbelo PD, Coffield VM, Kamrud K, Cohen JI (2011) Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge. PLoS Pathog 7(10):e1002308.  https://doi.org/10.1371/journal.ppat.1002308 PPATHOGENS-D-11-01479 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sato K, Misawa N, Nie C, Satou Y, Iwakiri D, Matsuoka M, Takahashi R, Kuzushima K, Ito M, Takada K, Koyanagi Y (2011) A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood 117(21):5663–5673.  https://doi.org/10.1182/blood-2010-09-305979 blood-2010-09-305979 [pii]CrossRefPubMedGoogle Scholar
  69. Searles RP, Bergquam EP, Axthelm MK, Wong SW (1999) Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 73(4):3040–3053PubMedPubMedCentralGoogle Scholar
  70. Shope T, Dechairo D, Miller G (1973) Malignant lymphoma in cottontop marmosets after inoculation with Epstein-Barr virus. Proc Natl Acad Sci USA 70(9):2487–2491CrossRefPubMedGoogle Scholar
  71. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174(10):6477–6489. doi:174/10/6477 [pii]Google Scholar
  72. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H, Yasukawa M, Ishikawa F (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci USA 107(29):13022–13027.  https://doi.org/10.1073/pnas.1000475107 1000475107 [pii]
  73. Smith PA, Merritt D, Barr L, Thorley-Lawson DA (2011) An orthotopic model of metastatic nasopharyngeal carcinoma and its application in elucidating a therapeutic target that inhibits metastasis. Genes Cancer 2(11):1023–1033.  https://doi.org/10.1177/1947601912440878 10.1177_1947601912440878 [pii]CrossRefGoogle Scholar
  74. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, Koo G, Rice CM, Young JW, Chadburn A, Cohen JI, Münz C (2009) Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 206(6):1423–1434.  https://doi.org/10.1084/jem.20081720 jem.20081720 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sun C, Schattgen SA, Pisitkun P, Jorgensen JP, Hilterbrand AT, Wang LJ, West JA, Hansen K, Horan KA, Jakobsen MR, O’Hare P, Adler H, Sun R, Ploegh HL, Damania B, Upton JW, Fitzgerald KA, Paludan SR (2015) Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. J Immunol 194 (4):1819–1831.  https://doi.org/10.4049/jimmunol.1402495 jimmunol.1402495 [pii]CrossRefPubMedGoogle Scholar
  76. Sunil-Chandra NP, Arno J, Fazakerley J, Nash AA (1994) Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol 145(4):818–826PubMedPubMedCentralGoogle Scholar
  77. Takashima K, Ohashi M, Kitamura Y, Ando K, Nagashima K, Sugihara H, Okuno K, Sairenji T, Hayashi K (2008) A new animal model for primary and persistent Epstein-Barr virus infection: human EBV-infected rabbit characteristics determined using sequential imaging and pathological analysis. J Med Virol 80(3):455–466.  https://doi.org/10.1002/jmv.21102 CrossRefPubMedGoogle Scholar
  78. Takei M, Mitamura K, Fujiwara S, Horie T, Ryu J, Osaka S, Yoshino S, Sawada S (1997) Detection of Epstein-Barr virus-encoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients. Int Immunol 9(5):739–743CrossRefPubMedGoogle Scholar
  79. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304(5667):104–107CrossRefPubMedGoogle Scholar
  80. Virgin HW, Latreille P, Wamsley P, Hallsworth K, Weck KE, Dal Canto AJ, Speck SH (1997) Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71(8):5894–5904PubMedPubMedCentralGoogle Scholar
  81. Wahl A, Linnstaedt SD, Esoda C, Krisko JF, Martinez-Torres F, Delecluse HJ, Cullen BR, Garcia JV (2013) A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J Virol 87 (10):5437–5446.  https://doi.org/10.1128/JVI.00281-13 JVI.00281-13 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wang LX, Kang G, Kumar P, Lu W, Li Y, Zhou Y, Li Q, Wood C (2014) Humanized-BLT mouse model of Kaposi's sarcoma-associated herpesvirus infection. Proc Natl Acad Sci USA 111(8):3146–3151.  https://doi.org/10.1073/pnas.1318175111 1318175111 [pii]CrossRefGoogle Scholar
  83. Westmoreland SV, Mansfield KG (2008) Comparative pathobiology of Kaposi sarcoma-associated herpesvirus and related primate rhadinoviruses. Comp Med 58(1):31–42PubMedPubMedCentralGoogle Scholar
  84. White DW, Keppel CR, Schneider SE, Reese TA, Coder J, Payton JE, Ley TJ, Virgin HW, Fehniger TA (2010) Latent herpesvirus infection arms NK cells. Blood 115(22):4377–4383.  https://doi.org/10.1182/blood-2009-09-245464 blood-2009-09-245464 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  85. White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C, Savoldo B, Coutinho R, Bodor C, Gribben J, Ibrahim HA, Bower M, Nourse JP, Gandhi MK, Middeldorp J, Cader FZ, Murray P, Münz C, Allday MJ (2012) EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest 122(4):1487–1502.  https://doi.org/10.1172/JCI58092 58092 [pii]CrossRefPubMedGoogle Scholar
  86. Whitehurst CB, Li G, Montgomery SA, Montgomery ND, Su L, Pagano JS (2015) Knockout of Epstein-Barr virus BPLF1 retards B-cell transformation and lymphoma formation in humanized mice. MBio 6(5):e01574–e01515.  https://doi.org/10.1128/mBio.01574-15 e01574-15 [pii] mBio.01574-15 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wong SW, Bergquam EP, Swanson RM, Lee FW, Shiigi SM, Avery NA, Fanton JW, Axthelm MK (1999) Induction of B cell hyperplasia in simian immunodeficiency virus-infected rhesus macaques with the simian homologue of Kaposi's sarcoma-associated herpesvirus. J Exp Med 190(6):827–840CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wu W, Vieira J, Fiore N, Banerjee P, Sieburg M, Rochford R, Harrington W, Jr., Feuer G (2006) KSHV/HHV-8 infection of human hematopoietic progenitor (CD34+) cells: persistence of infection during hematopoiesis in vitro and in vivo. Blood 108(1):141–151. 2005-04-1697 [pii]  https://doi.org/10.1182/blood-2005-04-1697 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wu TT, Qian J, Ang J, Sun R (2012) Vaccine prospect of Kaposi sarcoma-associated herpesvirus. Curr Opin Virol 2(4):482–488.  https://doi.org/10.1016/j.coviro.2012.06.005 S1879-6257(12)00100-9 [pii]CrossRefPubMedGoogle Scholar
  90. Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y, Hu H, Lam KT, Chan GC, Yang Y, Chen H, Tsao GS, Bonneville M, Lau YL, Tu W (2014) Targeted activation of human Vgamma9Vdelta2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell 26(4):565–576.  https://doi.org/10.1016/j.ccr.2014.07.026 S1535-6108(14)00314-6 [pii]CrossRefPubMedGoogle Scholar
  91. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Honda M, Yamamoto N, Fujiwara S (2008) A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 198(5):673–682.  https://doi.org/10.1086/590502 CrossRefPubMedGoogle Scholar
  92. Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Yamamoto N, Fujiwara S (2009) T cell-mediated control of Epstein-Barr virus infection in humanized mice. J Infect Dis 200(10):1611–1615.  https://doi.org/10.1086/644644 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Allergy and Clinical ImmunologyNational Research Institute for Child Health and DevelopmentTokyoJapan
  2. 2.Division of Hematology and Rheumatology, Department of MedicineNihon University School of MedicineTokyoJapan

Personalised recommendations