Multiphase Modeling of Hydrosystems Using OpenFOAM

  • Tabea BroeckerEmail author
  • Katharina Teuber
  • Waldemar Elsesser
  • Reinhard Hinkelmann
Conference paper
Part of the Springer Water book series (SPWA)


This paper presents three computational fluid dynamics applications regarding multiphase modeling of hydro systems with the open source software OpenFOAM. The first model investigates flow processes of groundwater and surface water using an integral approach which solves the three-dimensional Navier–Stokes equations, extended by the consideration of porosities. For the validation, seepages through homogeneous dams with impervious foundations were compared with analytical and numerical solutions. A further application examines the water–air interface in sewer systems.The focus of the model lies on the description of in-sewer water–air flow and transformation processes, reaeration and hydrogen sulfide emission which highly depend on the three-dimensionality of the hydraulic behavior in the closed duct. A test case analyzing the hydraulic behavior in a sewer stretch showed a good agreement of the numerical results with measured water levels. In the third model, fluid–structure interaction is investigated applying FOAM Extend Project. Calculations of the fluid phase are linked with the solid phase via a coupling algorithm to achieve an equilibrium state. To describe the time-varying position of the fluid boundary, caused by the structural response, dynamic meshes are considered. A technical case, consisting of the air flow around a thin tower as well as a natural case, describing the water flow around aquatic vegetation and its response, were examined.


Computational fluid dynamics Fluid mechanics Groundwater–surface water interaction Sewer system Fluid–structure interaction 



The authors acknowledge the funding provided by the German Research Foundation (DFG) within the Research Training Group “Urban Water Interfaces”.

The simulations were partially computed on the supercomputers of Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen in Berlin.


  1. 1.
    Schwarze, R. (2013). CFD-modellierung. Berlin: Springer.CrossRefGoogle Scholar
  2. 2.
    Hinkelmann, R. (2005). Efficient numerical methods and information-processing techniques for modeling hydro- and environmental systems. Berlin: Springer.zbMATHGoogle Scholar
  3. 3.
    Maric, T., Höpken, J., & Mooney, K. (2014). The OpenFOAM Technology Primer, sourceflux.Google Scholar
  4. 4.
  5. 5.
    DWA. (2013). Wechselwirkungen zwischen Grund- und Oberflächenwasser - T 2/2013. Quedlinburg: Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.Google Scholar
  6. 6.
    Krause, S., et al. (2014). Understanding process dynamics at aquifer-surface water. Water Resources Research, 50, 1847–1855.CrossRefGoogle Scholar
  7. 7.
    Oxtoby, O. F., Heyns, J. A., & Suliman, R. (2013). A finite-volume solver for two-fluid flow in heterogeneous porous media based on OpenFOAM. In Open Source CFD International Conference, Hamburg. doi:
  8. 8.
    Thorenz, C. & Strybny, J. (2012). On the numerical modelling of filling-emptying systems for locks. In Proceedings of the 10th International Conference on Hydroinformatics (HIC), Hamburg. Google Scholar
  9. 9.
    Bayón-Barrachina., A., & López-Jiménez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 4(17), 662–677.Google Scholar
  10. 10.
    Kuntz, M., & Menter, F. R. (2004). Simulation of fluid-structure interactions in aeronautical applications. Eccomas Jyväskylä: European Congress on Computational Methods in Applied Sciences and Engineering.Google Scholar
  11. 11.
    Chakrabarti, S. K. (2005). Numerical Models in Fluid Structure Interaction. Advances in Fluid Mechanics, 42.Google Scholar
  12. 12.
    Dowell, E. H., & Hall, K. C. (2001). Modeling of fluid-structure interaction. Annual Review of Fluid Mechanics, 33, 445–490.CrossRefzbMATHGoogle Scholar
  13. 13.
    Morand, H. J.-P., & Ohayon, R. (1995). Fluid-structure interaction: Applied numerical methods. New York: Wiley.Google Scholar
  14. 14.
    Hou, G., Wang, J., & Layton, A. (2012). Numerical methods for fluid-structure. Communications in Computational Physics, 12(2), 337–377.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rusche, H. (2002). Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis. London, UK: Imperial College London (University of London).Google Scholar
  16. 16.
    Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48.Google Scholar
  17. 17.
    Van Gent, M. R. A. (1995). Wave interaction with permeable coastal structures. Doctoral Thesis. Delft University Press.Google Scholar
  18. 18.
    Donea, J., Huerta, A., Ponthot, J.-Ph., & Rodriguez-Ferran, A. (2004). Arbitrary Lagrangian-Eulerian methods. New York: Wiley.Google Scholar
  19. 19.
    Bertram, A. (2013). Festkörpermechanik. Deutsche Nationalbibliothek.Google Scholar
  20. 20.
    Issa, R. I. (1986). Solution of implicitly discretized fluid flow equations by operator-splitting. Journal of Computational Physics, 62, 40–65.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Greenshields, C. J. (2015). Openfoam user guide. OpenFOAM Foundation Ltd.Google Scholar
  22. 22.
    Caretto, L. S., Gosman, A. D., Patankar, S. V., & Spalding, D. B. (1972). Two calculation procedures for steady, three-dimensional flows with recirculation. In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics (pp. 60–68).Google Scholar
  23. 23.
    Broecker, T., Elsesser, W., Teuber, K., Özgen, I., & Hinkelmann, R. (2017). High-resolution simulation of free-surface flow and tracer retention over streambeds with ripples. Limnologica - Ecology and Management of Inland Waters (Epub ahead of print).Google Scholar
  24. 24.
    Lattermann, E. (2010). Wasserbau-Praxis: Mit Berechnungsbeispielen. Bauwerk-Basis-Bibliothek (pp. 128–131).Google Scholar
  25. 25.
    Casagrande, A. (1937). Seepage through dams. Journal of the New England Water Works Association., 51(2), 131–170.Google Scholar
  26. 26.
    Westbrook, D. R. (1985). Analysis of inequality and residual flow procedures and an iterative scheme for free surface seepage. International Journal for Numerical Methods in Engineering, 21, 1791–1802.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Aitchison, J. (1972). Numerical treatment of a singularity in a free boundary problem. Proceedings of the Royal Society of London Series A, 330(1583), 573–580.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kobus, H., & Keim, B. (2001). Grundwasser. Taschenbuch der Wasserwirtschaft: Blackwell Wissenschaftsverlag, 8, 277–313.Google Scholar
  29. 29.
    Di Nucci, C. (2015). A free boundary problem for fluid flow through porous media. Fluid Dynamics. arXiv:1507.0554.Google Scholar
  30. 30.
    Teuber, K., Broecker, T., Bayón-Barrachina., A., Nützmann, G., & Hinkelmann, R. (2017). CFD-Modelling of free-surface flows in closed conduits using the volume of fluid approach. Journal of Hydraulic Research (under submission).Google Scholar
  31. 31.
    Teuber, K., Broecker, T., Barjenbruch, M., & Hinkelmann, R. (2016). High-resolution numerical analysis of flow over a ground sill using OpenFOAM. Tainan, Taiwan. In Proceedings of the 12th International Conference on Hydroscience and Engineering (ICHE).Google Scholar
  32. 32.
    Bayón-Barrachina, A., Vallés-Morán, F. J., & López-Jiménez, P. A. (2015). Numerical analysis and validation of South Valencia sewage collection system diversion. In 36th IAHR World Congress, The Hague, Netherlands.Google Scholar
  33. 33.
    Beaudoin, M., & Jasak, H. (2008). Development of a generalized grid interface for turbomachinery simulations with OpenFOAM. In open Source CFD International Conference. Berlin, Germany, December 4–5, 2008.Google Scholar
  34. 34.
    González, A. O., Vallier, A., & Nilsson, H. (2009). Mesh motion alternatives in Open-FOAM. PhD course in CFD with OpenSource software.Google Scholar
  35. 35.
    Degroote, J., et al. (2009). An interface quasi-Newton algorithm for partitioned simulation of fluidstructure interaction. International Workshop on Fluid-Structure Interaction. Theory, Numerics and Applications. kassel university press GmbH (p. 55).Google Scholar
  36. 36.
    Förster, C., Wall, A., & Ramm, E. (2007). Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 196(7), 1278–1293.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Tabea Broecker
    • 1
    Email author
  • Katharina Teuber
    • 1
  • Waldemar Elsesser
    • 1
  • Reinhard Hinkelmann
    • 1
  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations