Advertisement

Molecular Pathogenesis of Uterine Fibroids

  • Fuminori Kimura
  • Shunichiro Tsuji
  • Takashi Murakami
Chapter
Part of the Comprehensive Gynecology and Obstetrics book series (CGO)

Abstract

Researchers investigated aberrant gene expression in uterine fibroids to elucidate their molecular pathogenesis. Complex networks of multiple factors such as growth factors and WNT/β-catenin signaling have been shown to be involved in the pathogenesis of uterine fibroids. This chapter will focus on the current knowledge of molecular mechanism that are involved in the generation or development of uterine leiomyomas.

Keywords

Genetics Molecular mechanism Uterine fibroid 

References

  1. 1.
    Chang HL, Senaratne TN, Zhang L, Szotek PP, Stewart E, Dombkowski D, Preffer F, Donahoe PK, Teixeira J. Uterine leiomyomas exhibit fewer stem/progenitor cell characteristics when compared with corresponding normal myometrium. Reprod Sci. 2010;17:158–67.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ono M, Maruyama T, Masuda H, Kajitani T, Nagashima T, Arase T, Ito M, Ohta K, Uchida H, Asada H, Yoshimura Y, Okano H, Matsuzaki Y. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007;104:18700–5.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Galvez BG, Martín NS, Salama-Cohen P, Lazcano JJ, Coronado MJ, Lamelas ML, Alvarez-Barrientes A, Eiró N, Vizoso F, Rodríguez C. An adult myometrial pluripotential precursor that promotes healing of damaged muscular tissues. In Vivo. 2010;24:431–41.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhou S, Yi T, Shen K, Zhang B, Huang F, Zhao X. Hypoxia: the driving force of uterine myometrial stem cells differentiation into leiomyoma cells. Med Hypotheses. 2011;77(6):985.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J. Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol. 2005;288:276–83.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Szotek PP, Chang HL, Zhang L, Preffer F, Dombkowski D, Donahoe PK, Teixeira J. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells. 2007;25:1317–25.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ono M, Qiang W, Serna VA, Yin P, Coon JS V, Navarro A, Monsivais D, Kakinuma T, Dyson M, Druschitz S, Unno K, Kurita T, Bulun SE. Role of stem cells in human uterine leiomyoma growth. PLoS One. 2012;7:e36935.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hodge JC, Kim TM, Dreyfuss JM, Somasundaram P, Christacos NC, Rousselle M, Quade BJ, Park PJ, Stewart EA, Morton CC. Expression profiling of uterine leiomyomata cytogenetic subgroups reveals distinct signatures in matched myometrium: transcriptional profiling of the t(12;14) and evidence in support of predisposing genetic heterogeneity. Hum Mol Genet. 2012;21:2312–29.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Markowski DN, Helmke BM, Belge G, Nimzyk R, Bartnitzke S, Deichert U, Bullerdiek J. HMGA2 and p14Arf: major roles in cellular senescence of fibroids and therapeutic implications. Anticancer Res. 2011;31:753–61.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Peng Y, Laser J, Shi G, et al. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res. 2008;6:663–73.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, Wei JJ. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252–5.CrossRefGoogle Scholar
  12. 12.
    Pérot G, Croce S, Ribeiro A, et al. MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 2012;7(6):e40015.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ravegnini G, Mariño-Enriquez A, Slater J, Eilers G, Wang Y, Zhu M, Nucci MR, George S, Angelini S, Raut CP, Fletcher JA. MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 2013;26:743–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hammond SM, Sharpless NE. HMGA2, microRNAs, and stem cell aging. Cell. 2008;135(6):1013.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bulun SE. Uterine fibroids. N Engl J Med. 2013;369:1344–55.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 2012;7:e33251.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Markowski DN, Bartnitzke S, Löning T, Drieschner N, Helmke BM, Bullerdiek J. MED12 mutations in uterine fibroids—their relationship to cytogenetic subgroups. Int J Cancer. 2012;131:1528–36.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kim S, Xu X, Hecht A, Boyer TG. Mediator is a transducer of Wnt/beta-catenin signaling. J Biol Chem. 2006;281:14066–75.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rocha PP, Scholze M, Bleiss W, Schrewe H. Med12 is essential for early mouse development and for canonical Wnt and Wnt/PCP signaling. Development. 2010;137:2723–31.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lin X, Rinaldo L, Fazly AF, Xu X. Depletion of Med10 enhances Wnt and suppresses Nodal signaling during zebrafish embryogenesis. Dev Biol. 2007;303:536–48.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Huang S, Hölzel M, Knijnenburg T, Schlicker A, Roepman P, McDermott U, Garnett M, Grernrum W, Sun C, Prahallad A, Groenendijk FH, Mittempergher L, Nijkamp W, Neefjes J, Salazar R, Ten Dijke P, Uramoto H, Tanaka F, Beijersbergen RL, Wessels LF, Bernards R. MED12 controls the response to multiple cancer drugs through regulation of TGF-beta receptor signaling. Cell. 2012;151:937–50.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Guo X, Wang XF. A mediator lost in the war on cancer. Cell. 2012;151:927–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001;86:913–20.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Al-Hendy A, Laknaur A, Diamond MP, Ismail N, Boyer TG, Halder SK. Silencing Med12 gene reduces proliferation of human leiomyoma cells mediated via Wnt/β-catenin signaling pathway. Endocrinology. 2017;158:592–603.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Marsh EE, Bulun SE. Steroid hormones and leiomyomas. Obstet Gynecol Clin N Am. 2006;33:59–67.CrossRefGoogle Scholar
  26. 26.
    Bulun SE, Simpson ER, Word RA. Expression of the CYP19 gene and its product aromatase cytochrome P450 in human uterine leiomyoma tissues and cells in culture. J Clin Endocrinol Metab. 1994;78:736–43.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Maruo T, Ohara N, Wang J, Matsuo H. Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update. 2004;10:207–20.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Borahay MA, Al-Hendy A, Kilic GS, Boehning D. Signaling pathways in leiomyoma: understanding pathobiology and implications for therapy. Mol Med. 2015;21:242–56.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kim JJ, Kurita T, Bulun SE. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr Rev. 2013;34:130–62.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Friedman AJ, Lobel SM, Rein MS, Barbieri RL. Efficacy and safety considerations in women with uterine leiomyomas treated with gonadotropin-releasing hormone agonists: the estrogen threshold hypothesis. Am J Obstet Gynecol. 1990;163:1114–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Schlaff WD, Zerhouni EA, Huth JA, Chen J, Damewood MD, Rock JA. A placebo-controlled trial of a depot gonadotropin-releasing hormone analogue (leuprolide) in the treatment of uterine leiomyomata. Obstet Gynecol. 1989;74:856–62.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Adamson GD. Treatment of uterine fibroids: current findings with gonadotropin-releasing hormone agonists. Am J Obstet Gynecol. 1992;166:746–51.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Levin ER. Extranuclear steroid receptors are essential for steroid hormone actions. Annu Rev Med. 2015;66:271–80.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Soltysik K, Czekaj P. Membrane estrogen receptors—is it an alternative way of estrogen action? J Physiol Pharmacol. 2013;64(2):129–42.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Fox EM, Andrade J, Shupnik MA. Novel actions of estrogen to promote proliferation: integration of cytoplasmic and nuclear pathways. Steroids. 2009;74:622–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006;116:561–70.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Menasce LP, White GR, Harrison CJ, Boyle JM. Localization of the estrogen receptor locus(ESR) to chromosome 6q25.1 by FISH and a simple post-FISH banding technique. Genomics. 1993;17:263–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, Nordenskjöld M, Gustafsson JA. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab. 1997;82:4258–65.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997;138:863–70.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Dechering K, Boersma C, Mosselman S. Estrogen receptors alpha and beta: two receptors of a kind. Curr Med Chem. 2000;7:561–76.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Matthews J, Gustafsson JA. Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv. 2003;3:281–92.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Smith AW, Rønnekleiv OK, Kelly MJ. Gq-mER signaling has opposite effects on hypothalamic orexigenic and anorexigenic neurons. Steroids. 2014;81:31–5.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ishikawa H, Reierstad S, Demura M, Rademaker AW, Kasai T, Inoue M, Usui H, Shozu M, Bulun SE. High aromatase expression in uterine leiomyoma tissues of African-American women. J Clin Endocrinol Metab. 2009;94:1752–6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sumitani H, Shozu M, Segawa T, Murakami K, Yang HJ, Shimada K, Inoue M. In situ estrogen synthesized by aromatase P450 in uterine leiomyoma cells promotes cell growth probably via an autocrine/intracrine mechanism. Endocrinology. 2000;141:3852–61.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kasai T, Shozu M, Murakami K, Segawa T, Shinohara K, Nomura K, Inoue M. Increased expression of type I 17beta-hydroxysteroid dehydrogenase enhances in situ production of estradiol in uterine leiomyoma. J Clin Endocrinol Metab. 2004;89:5661–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Bulun SE, Imir G, Utsunomiya H, Thung S, Gurates B, Tamura M, Lin Z. Aromatase in endometriosis and uterine leiomyomata. J Steroid Biochem Mol Biol. 2005;95:57–62.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Benassayag C, Leroy MJ, Rigourd V, Robert B, Honoré JC, Mignot TM, Vacher-Lavenu MC, Chapron C, Ferré F. Estrogen receptors (ERalpha/ERbeta) in normal and pathological growth of the human myometrium: pregnancy and leiomyoma. Am J Phys. 1999;276:E1112–8.Google Scholar
  48. 48.
    Kovacs KA, Oszter A, Gocze PM, Kornyei JL, Szabo I. Comparative analysis of cyclin D1 and oestrogen receptor (alpha and beta) levels in human leiomyoma and adjacent myometrium. Mol Hum Reprod. 2001;7:1085–91.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tian R, Wang Z, Shi Z, Li D, Wang Y, Zhu Y, Lin W, Gui Y, Zheng XL. Differential expression of G-protein coupled estrogen receptor-30 in human myometrial and uterine leiomyoma smooth muscle. Fertil Steril. 2013;99:256–63.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308:1589–92.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Maekawa R, Sato S, Yamagata Y, Asada H, Tamura I, Lee L, Okada M, Tamura H, Takaki E, Nakai A, Sugino N. Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas. PLoS One. 2013;8:e66632.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Huang PC, Li WF, Liao PC, Sun CW, Tsai EM, Wang SL. Risk for estrogen-dependent diseases in relation to phthalate exposure and polymorphisms of CYP17A1 and estrogen receptor genes. Environ Sci Pollut Res Int. 2014;21:13964–73.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Hsieh YY, Wang YK, Chang CC, Lin CS. Estrogen receptor alpha-351 XbaI*G and -397 PvuII*C-related genotypes and alleles are associated with higher susceptibilities of endometriosis and leiomyoma. Mol Hum Reprod. 2007;13:117–22.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kitawaki J, Obayashi H, Ishihara H, Koshiba H, Kusuki I, Kado N, Tsukamoto K, Hasegawa G, Nakamura N, Honjo H. Oestrogen receptor-alpha gene polymorphism is associated with endometriosis, adenomyosis and leiomyomata. Hum Reprod. 2001;16:51–5.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151:2433–42.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hassan MH, Salama SA, Arafa HM, Hamada FM, Al-Hendy A. Adenovirus-mediated delivery of a dominant-negative estrogen receptor gene in uterine leiomyoma cells abrogates estrogen- and progesterone-regulated gene expression. J Clin Endocrinol Metab. 2007;92:3949–57.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Barbarisi A, Petillo O, Di Lieto A, Melone MA, Margarucci S, Cannas M, Peluso G. 17-beta estradiol elicits an autocrine leiomyoma cell proliferation: evidence for a stimulation of protein kinase-dependent pathway. J Cell Physiol. 2001;186:414–24.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Nierth-Simpson EN, Martin MM, Chiang TC, Melnik LI, Rhodes LV, Muir SE, Burow ME, McLachlan JA. Human uterine smooth muscle and leiomyoma cells differ in their rapid 17beta-estradiol signaling: implications for proliferation. Endocrinology. 2009;150:2436–45.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Farber M, Conrad S, Heinrichs WL, Herrmann WL. Estradiol binding by fibroid tumors and normal myometrium. Obstet Gynecol. 1972;40:479–86.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Puukka MJ, Kontula KK, Kauppila AJ, Janne OA, Vihko RK. Estrogen receptor in human myoma tissue. Mol Cell Endocrinol. 1976;6:35–44.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kim JJ, Sefton EC, Bulun SE. Progesterone receptor action in leiomyoma and endometrial cancer. Prog Mol Biol Transl Sci. 2009;87:53–85.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kawaguchi K, Fujii S, Konishi I, Nanbu Y, Nonogaki H, Mori T. Mitotic activity in uterine leiomyomas during the menstrual cycle. Am J Obstet Gynecol. 1989;160:637–41.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Graham JD, Yeates C, Balleine RL, Harvey SS, Milliken JS, Bilous AM, Clarke CL. Progesterone receptor A and B protein expression in human breast cancer. J Steroid Biochem Mol Biol. 1996;56:93–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Conneely OM, Lydon JP. Progesterone receptors in reproduction: functional impact of the A and B isoforms. Steroids. 2000;65:571–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P. Two distinct estrogen regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990;9:1603–14.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci U S A. 2003;100:2237–42.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Dressing GE, Goldberg JE, Charles NJ, Schwertfeger KL, Lange CA. Membrane progesterone receptor expression in mammalian tissues: a review of regulation and physiological implications. Steroids. 2011;76:11–7.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Yamada T, Nakago S, Kurachi O, Wang J, Takekida S, Matsuo H, Maruo T. Progesterone down-regulates insulin-like growth factor-I expression in cultured human uterine leiomyoma cells. Hum Reprod. 2004;19:815–21.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Shimomura Y, Matsuo H, Samoto T, Maruo T. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab. 1998;83:2192–8.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Maruo T, Matsuo H, Shimomura Y, Kurachi O, Gao Z, Nakago S, Yamada T, Chen W, Wang J. Effects of progesterone on uterine leiomyoma growth and apoptosis. Steroids. 2000;65:585–92.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hoekstra AV, Sefton EC, Berry E, Lu Z, Hardt J, Marsh E, Yin P, Clardy J, Chakravarti D, Bulun S, Kim JJ. Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab. 2009;94:1768–74.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Donnez J, Tatarchuk TF, Bouchard P, Puscasiu L, Zakharenko NF, Ivanova T, Ugocsai G, Mara M, Jilla MP, Bestel E, Terrill P, Osterloh I, Loumaye E, PEARL I Study Group. Ulipristal acetate versus placebo for fibroid treatment before surgery. N Engl J Med. 2012;366:409–20.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, Chouaib S. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol. 2015;309:C569–79.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tal R, Segars JH. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy. Hum Reprod Update. 2014;20:194–216.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Deng W, Feng X, Li X, Wang D, Sun L. Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol. 2016;303:7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Kumar V, Gabrilovich DI. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology. 2014;143:512–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Matsumura A, Kubota T, Taiyoh H, Fujiwara H, Okamoto K, Ichikawa D, Shiozaki A, Komatsu S, Nakanishi M, Kuriu Y, Murayama Y, Ikoma H, Ochiai T, Kokuba Y, Nakamura T, Matsumoto K, Otsuji E. HGF regulates VEGF expression via the c-Met receptor downstream pathways, PI3K/Akt, MAPK and STAT3, in CT26 murine cells. Int J Oncol. 2013;42:535–42.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Lin YM, Huang YL, Fong YC, Tsai CH, Chou MC, Tang CH. Hepatocyte growth factor increases vascular endothelial growth factor-A production in human synovial fibroblasts through c-Met receptor pathway. PLoS One. 2012;7:e50924.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12:9–22.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cramer SF, Mann L, Calianese E, Daley J, Williamson K. Association of seedling myomas with myometrial hyperplasia. Hum Pathol. 2009;40:218–25.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Shynlova O, Oldenhof A, Dorogin A, Xu Q, Mu J, Nashman N, Lye SJ. Myometrial apoptosis: activation of the caspase cascade in the pregnant rat myometrium at midgestation. Biol Reprod. 2006;74:839–49.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Shynlova O, Dorogin A, Lye SJ. Stretch-induced uterine myocyte differentiation during rat pregnancy: involvement of caspase activation. Biol Reprod. 2010;82:1248–55.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Mayer A, Hockel M, Wree A, Leo C, Horn LC, Vaupel P. Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. Cancer Res. 2008;68:4719–26.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Mayer A, Hoeckel M, von Wallbrunn A, Horn LC, Wree A, Vaupel P. HIF-mediated hypoxic response is missing in severely hypoxic uterine leiomyomas. Adv Exp Med Biol. 2010;662:399–405.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Uluer ET, Inan S, Ozbilgin K, Karaca F, Dicle N, Sancı M. The role of hypoxia related angiogenesis in uterine smooth muscle tumors. Biotech Histochem. 2015;90:102–10.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394:485–90.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Guri Y, Hall MN. mTOR signaling confers resistance to targeted cancer drugs. Trends Cancer. 2016;2:688–97.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Showkat M, Beigh MA, Andrabi KI. mTOR signaling in protein translation regulation: implications in cancer genesis and therapeutic interventions. Mol Biol Int. 2014;2014:686984.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT. Regulation of hypoxia inducible factor 1 alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22:7004–701.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep. 2015;42:841–51.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Toschi A, Lee E, Gadir N, Ohh M, Foster DA. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J Biol Chem. 2008;283:34495–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dhingra S, Rodriguez ME, Shen Q, Duan X, Stanton ML, Chen L, Zhang R, Brown RE. Constitutive activation with overexpression of the mTORC2-phospholipase D1 pathway in uterine leiomyosarcoma and STUMP: morphoproteomic analysis with therapeutic implications. Int J Clin Exp Pathol. 2011;4:134–46.Google Scholar
  96. 96.
    Sperandio S, Fortin J, Sasik R, Robitaille L, Corbeil J, de Belle I. The transcription factor Egr1 regulates the HIF-1alpha gene during hypoxia. Mol Carcinog. 2009;48:38–44.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Yan SF, Lu J, Zou YS, Soh-Won J, Cohen DM, Buttrick PM, Cooper DR, Steinberg SF, Mackman N, Pinsky DJ, et al. Hypoxia-associated induction of early growth response-1 gene expression. J Biol Chem. 1999;274:15030–40.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Lucerna M, Mechtcheriakova D, Kadl A, Schabbauer G, Schafer R, Gruber F, Koshelnick Y, Muller HD, Issbrucker K, Clauss M, et al. NAB2, a corepressor of EGR-1, inhibits vascular endothelial growth factor-mediated gene induction and angiogenic responses of endothelial cells. J Biol Chem. 2003;278:11433–40.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med. 2003;9:1026–32.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Pambuccian CA, Oprea GM, Lakatua DJ. Reduced expression of early growth response-1 gene in leiomyoma as identified by mRNA differential display. Gynecol Oncol. 2002;84:431–6.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Shozu M, Murakami K, Segawa T, Kasai T, Ishikawa H, Shinohara K, Okada M, Inoue M. Decreased expression of early growth response-1 and its role in uterine leiomyoma growth. Cancer Res. 2004;64:4677–84.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ciarmela P, Islam MS, Reis FM, Gray PC, Bloise E, Petraglia F, Vale W, Castellucci M. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications. Hum Reprod Update. 2011;17:772–90.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):pii: a021873.CrossRefGoogle Scholar
  104. 104.
    Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Elliott RL, Blobe GC. Role of transforming growth factor Beta in human cancer. J Clin Oncol. 2005;23:2078–93.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Dou Q, Zhao Y, Tarnuzzer RW, Rong H, Williams RS, Schultz GS, Chegini N. Suppression of transforming growth factor-beta (TGF beta) and TGF beta receptor messenger ribonucleic acid and protein expression in leiomyomata in women receiving gonadotropin-releasing hormone agonist therapy. J Clin Endocrinol Metab. 1996;81:3222–30.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Di X, Andrews DM, Tucker CJ, Yu L, Moore AB, Zheng X, Castro L, Hermon T, Xiao H, Dixon D. A high concentration of genistein down-regulates activin A, Smad3 and other TGF-β pathway genes in human uterine leiomyoma cells. Exp Mol Med. 2012;44:281–92.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Chegini N, Luo X, Ding L, Ripley D. The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol. 2003;209:9–16.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73:1006–11.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Ding L, Xu J, Luo X, Chegini N. Gonadotropin releasing hormone and transforming growth factor beta activate mitogen-activated protein kinase/extracellularly regulated kinase and differentially regulate fibronectin, type I collagen, and plasminogen activator inhibitor-1 expression in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 2004;89:5549–57.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, Catherino WH. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci. 2009;16:1153–64.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Malik M, Webb J, Catherino WH. Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol. 2008;69:462–70.CrossRefGoogle Scholar
  113. 113.
    Wang J, Ohara N, Wang Z, Chen W, Morikawa A, Sasaki H, DeManno DA, Chwalisz K, Maruo T. A novel selective progesterone receptor modulator asoprisnil (J867) down-regulates the expression of EGF, IGF-I, TGFbeta3 and their receptors in cultured uterine leiomyoma cells. Hum Reprod. 2006;21:1869–77.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Chegini N, Ma C, Tang XM, Williams RS. Effects of GnRH analogues, ‘add-back’ steroid therapy, antiestrogen and antiprogestins on leiomyoma and myometrial smooth muscle cell growth and transforming growth factor-beta expression. Mol Hum Reprod. 2002;8:1071–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. Biomed Res Int. 2015;2015:538019.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gkioka E, Msaouel P, Philippou A, Vlaghogiannis NI, Vogkou CT, Margiolis A, Koutsilieris M. Review: the role of insulin-like growth factor-1 signaling pathways in uterine leiomyoma. In Vivo. 2015;29:637–49.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Bach LA. Insulin-like growth factor binding proteins—an update. Pediatr Endocrinol Rev. 2015;13:521–30.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Englund K, Lindblom B, Carlström K, Gustavsson I, Sjöblom P, Blanck A. Gene expression and tissue concentrations of IGFI in human myometrium and fibroids under different hormonal conditions. Mol Hum Reprod. 2000;6:915–20.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Zhao Y, Zhang W, Wang S. The expression of estrogen receptor isoforms alpha, beta and insulin-like growth factor-I in uterine leiomyoma. Gynecol Endocrinol. 2008;24:549–54.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Peng L, Wen Y, Han Y, Wei A, Shi G, Mizuguchi M, Lee P, Hernando E, Mittal K, Wei JJ. Expression of insulin-like growth factors (IGFs) and IGF signaling: molecular complexity in uterine leiomyomas. Fertil Steril. 2009;91:2664–75.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Dixon D, He H, Haseman JK. Immunohistochemical localization of growth factors and their receptors in uterine leiomyomas and matched myometrium. Environ Health Perspect. 2000;108:795–802.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Van der Ven LT, Roholl PJ, Gloudemans T, Van Buul-Offers SC, Welters MJ, Bladergroen BA, Faber JA, Sussenbach JS, Den Otter W. Expression of insulin-like growth factors (IGFs), their receptors and IGF binding protein-3 in normal, benign and malignant smooth muscle tissues. Br J Cancer. 1997;75:1631–40.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Giudice LC, Irwin JC, Dsupin BA, Pannier EM, Jin IH, Vu TH, Hoffman AR. Insulin-like growth factor (IGF), IGF binding protein (IGFBP), and IGF receptor gene expression and IGFBP synthesis in human uterine leiomyomata. Hum Reprod. 1993;8:1796–806.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Burroughs KD, Howe SR, Okubo Y, Fuchs-Young R, LeRoith D, Walker CL. Dysregulation of IGF-I signaling in uterine leiomyoma. J Endocrinol. 2002;172:83–93.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem. 1990;265:7709–12.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Yeh J, Rein M, Nowak R. Presence of messenger ribonucleic acid for epidermal growth factor (EGF) and EGF receptor demonstrable in monolayer cell cultures of myometria and leiomyomata. Fertil Steril. 1991;56:997–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Ren Y, Yin H, Tian R, Cui L, Zhu Y, Lin W, Tang XD, Gui Y, Zheng XL. Different effects of epidermal growth factor on smooth muscle cells derived from human myometrium and from leiomyoma. Fertil Steril. 2011;96:1015–20.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Fayed YM, Tsibris JC, Langenberg PW, Robertson AL Jr. Human uterine leiomyoma cells: binding and growth responses to epidermal growth factor, platelet-derived growth factor, and insulin. Lab Investig. 1989;60:30–7.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Rossi MJ, Chegini N, Masterson BJ. Presence of epidermal growth factor, platelet-derived growth factor, and their receptors in human myometrial tissue and smooth muscle cells: their action in smooth muscle cells in vitro. Endocrinology. 1992;130:1716–27.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Shushan A, Rojansky N, Laufer N, Klein BY, Shlomai Z, Levitzki R, Hartzstark Z, Ben-Bassat H. The AG1478 tyrosine kinase inhibitor is an effective suppressor of leiomyoma cell growth. Hum Reprod. 2004;19:1957–67.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Shushan A, Ben-Bassat H, Mishani E, Laufer N, Klein BY, Rojansky N. Inhibition of leiomyoma cell proliferation in vitro by genistein and the protein tyrosine kinase inhibitor TKS050. Fertil Steril. 2007;87:127–35.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Matsuo H, Kurachi O, Shimomura Y, Samoto T, Maruo T. Molecular bases for the actions of ovarian sex steroids in the regulation of proliferation and apoptosis of human uterine leiomyoma. Oncology. 1999;57(Suppl 2):49–58.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991;251:936–9.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Nishi E, Klagsbrun M. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a mediator of multiple physiological and pathological pathways. Growth Factors. 2004;22:253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Nowak RA. Novel therapeutic strategies for leiomyomas: targeting growth factors and their receptors. Environ Health Perspect. 2000;108(Suppl 5):849–53.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Mangrulkar RS, Ono M, Ishikawa M, Takashima S, Klagsbrun M, Nowak RA. Isolation and characterization of heparin-binding growth factors in human leiomyomas and normal myometrium. Biol Reprod. 1995;53:636–46.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Wang J, Ohara N, Takekida S, Xu Q, Maruo T. Comparative effects of heparin-binding epidermal growth factor-like growth factor on the growth of cultured human uterine leiomyoma cells and myometrial cells. Hum Reprod. 2005;20:1456–65.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Siveen KS, Prabhu K, Krishnankutty R, Kuttikrishnan S, Tsakou M, Alali FQ, Dermime S, Mohammad RM, Uddin S. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: potential and challenges. Curr Vasc Pharmacol. 2017;15:339–51.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem. 2014;156:1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I, Keshet E, Neufeld G. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem. 1997;272:7151–8.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem. 1991;266:11947–54.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Harrison-Woolrych ML, Sharkey AM, Charnock-Jones DS, Smith SK. Localization and quantification of vascular endothelial growth factor messenger ribonucleic acid in human myometrium and leiomyomata. J Clin Endocrinol Metab. 1995;80:1853–8.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Sanci M, Dikis C, Inan S, Turkoz E, Dicle N, Ispahi C. Immunolocalization of VEGF, VEGF receptors, EGF-R and Ki-67 in leiomyoma, cellular leiomyoma and leiomyosarcoma. Acta Histochem. 2011;113:317–25.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Brown LF, Detmar M, Tognazzi K, Abu-Jawdeh G, Iruela-Arispe ML. Uterine smooth muscle cells express functional receptors (flt-1 and KDR) for vascular permeability factor/vascular endothelial growth factor. Lab Investig. 1997;76:245–55.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Gentry CC, Okolo SO, Fong LF, Crow JC, Maclean AB, Perrett CW. Quantification of vascular endothelial growth factor-A in leiomyomas and adjacent myometrium. Clin Sci (Lond). 2001;101:691–5.CrossRefGoogle Scholar
  146. 146.
    Hassan MH, Eyzaguirre E, Arafa HM, Hamada FM, Salama SA, Al-Hendy A. Memy I: a novel murine model for uterine leiomyoma using adenovirus-enhanced human fibroid explants in severe combined immune deficiency mice. Am J Obstet Gynecol. 2008;199:156.e1–8.CrossRefGoogle Scholar
  147. 147.
    Hong T, Shimada Y, Uchida S, Itami A, Li Z, Ding Y, Kaganoi J, Komoto I, Sakurai T, Imamura M. Expression of angiogenic factors and apoptotic factors in leiomyosarcoma and leiomyoma. Int J Mol Med. 2001;8:141–8.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Akl MR, Nagpal P, Ayoub NM, Tai B, Prabhu SA, Capac CM, Gliksman M, Goy A, Suh KS. Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget. 2016;7:44735–62.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Fernig DG, Gallagher JT. Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res. 1994;5:353–77.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Flake GP, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: a review. Environ Health Perspect. 2003;111:1037–54.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Wolanska M, Bankowski E. Fibroblast growth factors (FGF) in human myometrium and uterine leiomyomas in various stages of tumour growth. Biochimie. 2006;88:141–6.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Rauk PN, Surti U, Roberts JM, Michalopoulos G. Mitogenic effect of basic fibroblast growth factor and estradiol on cultured human myometrial and leiomyoma cells. Am J Obstet Gynecol. 1995;173:571–7.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Betsholtz C, Johnsson A, Heldin CH, Westermark B, Lind P, Urdea MS, Eddy R, Shows TB, Philpott K, Mellor AL, et al. cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature. 1986;320:695–9.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Heldin CH, Eriksson U, Ostman A. New members of the platelet-derived growth factor family of mitogens. Arch Biochem Biophys. 2002;398:284–90.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Liang M, Wang H, Zhang Y, Lu S, Wang Z. Expression and functional analysis of platelet-derived growth factor in uterine leiomyomata. Cancer Biol Ther. 2006;5:28–33.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Boehm KD, Daimon M, Gorodeski IG, Sheean LA, Utian WH, Ilan J. Expression of the insulin-like and platelet-derived growth factor genes in human uterine tissues. Mol Reprod Dev. 1990;27:93–101.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Hwu YM, Li SH, Lee RK, Tsai YH, Yeh TS, Lin SY. Increased expression of platelet-derived growth factor C messenger ribonucleic acid in uterine leiomyomata. Fertil Steril. 2008;89:468–71.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Suo G, Jiang Y, Cowan B, Wang JY. Platelet-derived growth factor C is upregulated in human uterine fibroids and regulates uterine smooth muscle cell growth. Biol Reprod. 2009;81:749–58.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Taniguchi Y, Morita I, Kubota T, Murota S, Aso T. Human uterine myometrial smooth muscle cell proliferation and vascular endothelial growth-factor production in response to platelet-derived growth factor. J Endocrinol. 2001;169:79–86.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Nusse R, Clevers H. Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Tran FH, Zheng JJ. Modulating the wnt signaling pathway with small molecules. Protein Sci. 2017;26:650–61.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Mangioni S, Viganò P, Lattuada D, Abbiati A, Vignali M, Di Blasio AM. Overexpression of the Wnt5b gene in leiomyoma cells: implications for a role of the Wnt signaling pathway in the uterine benign tumor. J Clin Endocrinol Metab. 2005;90:5349–55.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Tanwar PS, Lee HJ, Zhang L, Zukerberg LR, Taketo MM, Rueda BR, Teixeira JM. Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol Reprod. 2009;81:545–52.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Ono M, Yin P, Navarro A, Moravek MB, Coon JS V, Druschitz SA, Serna VA, Qiang W, Brooks DC, Malpani SS, Ma J, Ercan CM, Mittal N, Monsivais D, Dyson MT, Yemelyanov A, Maruyama T, Chakravarti D, Kim JJ, Kurita T, Gottardi CJ, Bulun SE. Paracrine activation of WNT/beta-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci U S A. 2013;110:17053–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fuminori Kimura
    • 1
  • Shunichiro Tsuji
    • 1
  • Takashi Murakami
    • 1
  1. 1.Department of Obstetrics and GynecologyShiga University of Medical ScienceOtsuJapan

Personalised recommendations