Skip to main content

An Insight into the Prevalence and Enzymatic Abatement of Urethane in Fermented Beverages

  • Chapter
  • First Online:
Book cover Microbial Biotechnology

Abstract

Urethane, also known as ethyl carbamate (NH2COOC2H5), is generally formed in fermented products, especially in alcoholic beverages, during the process of fermentation, distillation and/or long term storage at room temperature. In recent years, urethane has been classified as a Group 2A (probably carcinogenic to humans) compound by the International Agency for Research on Cancer (IARC). This reclassification of urethane brings attention of global regulatory agencies to reduce its concentration in alcoholic beverages via the development of green and cost-effective methods. Urethanase, which directly hydrolyzes urethane into ethanol, carbon dioxide and ammonia, has industrial potential for enzymatic removal of this carcinogen. This chapter provides an overview of the mechanisms involved in the formation of urethane in fermented beverages, and methods that have been recommended for urethane abatement. Additionally, the potential of microbial urethanase is discussed by reporting the comparative biocatalytic characteristics of free and chitosan nanoparticles immobilized urethanase of a novel bacterial strain Exiguobacterium species Alg-S5 (GenBank accession number KY009691) isolated from decomposed Sargassum seaweed off the coast of Barbados.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams P, Baron FA (1965) Esters of carbamic acid. Chem Rev 65:567–602

    Article  CAS  Google Scholar 

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28

    Article  CAS  Google Scholar 

  • An D, Ough CS (1993) Urea excretion and uptake by wine yeasts as affected by various factors. Am J Enol Vitic 44:35–40

    CAS  Google Scholar 

  • Andrich L, Esti M, Moresi M (2009) Urea degradation in model wine solutions by free or immobilized acid urease in a stirred bioreactor. J Agric Food Chem 57:3533–3542

    Article  CAS  Google Scholar 

  • Arena ME, Manca de Nadra MC (2005) Influence of ethanol and low pH on arginine and citrulline metabolism in lactic acid bacteria from wine. Res Microbiol 156:858–864

    Article  CAS  Google Scholar 

  • Aresta M, Boscolo M, Franco DW (2001) Copper(II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions. J Agric Food Chem 49:2819–2824

    Article  CAS  Google Scholar 

  • Azevedo Z, Couto JA, Hogg T (2002) Citrulline as the main precursor of ethyl carbamate in model fortified wines inoculated with Lactobacillus hilgardii: a marker of the levels in a spoiled fortified wine. Lett Appl Microbiol 34:32–36

    Article  CAS  Google Scholar 

  • Barbin A (2000) Etheno-adduct-forming chemicals: from mutagenicity testing to tumor mutation spectra. Mutat Res 462:55–69

    Article  CAS  Google Scholar 

  • Bower CE, Holm-Hansen T (1980) A salicylate–hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci 37:794–798

    Article  CAS  Google Scholar 

  • Butzke CE, Bisson LF (1997) Ethyl carbamate preventative action manual. University of California, Davis. Available from: http://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/UCM119802.pdf. Accessed 12 June 2017

    Google Scholar 

  • Cerreti M, Fidaleo M, Benucci I, Liburdi K, Tamborra P, Moresi M (2016) Assessing the potential content of ethyl carbamate in white, red, and rosé wines as a key factor for pursuing urea degradation by purified acid urease. J Food Sci 81:C1603–C1612

    Article  CAS  Google Scholar 

  • Chen XG, Liu CS, Liu CG, Meng XH, Lee CM, Park HJ (2006) Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem Eng J 27:269–274

    Article  CAS  Google Scholar 

  • de Carvalho CCCR (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29:75–83

    Article  Google Scholar 

  • de Carvalho CCCR (2017) Whole cell biocatalysts: essential workers from nature to the industry. Microb Biotechnol 10:250–263

    Article  Google Scholar 

  • EFSA (2007) Ethyl carbamate and hydrocyanic acid in food and beverages–scientific opinion of the panel on contaminants. EFSA J 551:1–44

    Google Scholar 

  • Guengerich FP, Kim DH (1991) Enzymic oxidation of ethyl carbamate to vinyl carbamate and its role as an intermediate in the formation of 1, N6-ethenoadenosine. Chem Res Toxicol 4:413–421

    Article  CAS  Google Scholar 

  • Ha M-S, Hu S-J, Hee R-P, Lee H, Kwon K-S, Han E-M, Kim K-M, Ko E-J, Ha S-D, Bae D-H (2006) Estimation of Korean adult’s daily intake of ethyl carbamate through Korean commercial alcoholic beverages based on the monitoring. Food Sci Biotechnol 15:112–116

    CAS  Google Scholar 

  • Hara K, Harris RA (2002) The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels. Anesth Analg 94:313–318

    CAS  PubMed  Google Scholar 

  • Hara S, Yoshizawa K, Nakamura KI (1988) Formation of ethyl carbamate in model alcoholic beverages containing urea or related compounds. J Brew Soc Japan 83:57–63. [In Japanese with English summary]. https://www.jstage.jst.go.jp/article/jbrewsocjapan1988/83/1/83_1_57/_pdf. Accessed 01 July 2017

    Article  CAS  Google Scholar 

  • Hasnip S, Crews C, Potter N, Christy J, Chan D, Bondu T, Matthews W, Walters B, Patel K (2007) Survey of ethyl carbamate in fermented foods sold in the United Kingdom in 2004. J Agric Food Chem 55:2755–2759

    Article  CAS  Google Scholar 

  • Health Canada (2013a) Health Canada’s maximum levels for chemical contaminants in foods. Available from: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/maximum-levels-chemical-contaminants-foods.html. Accessed 16 June 2017

  • Health Canada (2013b) List of permitted food enzymes. Available from: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/food-additives/lists-permitted/5-enzymes.html. Accessed 15 June 2017

  • IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans. Available from: http://monographs.iarc.fr/ENG/Monographs/vol96/index.php. Accessed 12 June 2017

  • Jiao Z, Dong Y, Chen Q (2014) Ethyl carbamate in fermented beverages: presence, analytical chemistry, formation mechanism, and mitigation proposals. Comp Rev Food Sci Food Safety 13:611–626

    Article  CAS  Google Scholar 

  • Kakimoto S, Sumino Y, Akiyama S, Nakao Y (1989) Purification and characterization of acid urease from Lactobacillus reuteri. Agric Biol Chem 53:1119–1125

    CAS  Google Scholar 

  • Kim Y-KL, Koh E, Chung H-J, Kwon H (2000) Determination of ethyl carbamate in some fermented Korean foods and beverages. Food Addit Contam 17:469–475

    Article  CAS  Google Scholar 

  • Kitamoto K, Oda K, Gomi K, Takahashi K (1991) Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. Appl Environ Microbiol 57:301–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein MP, Nunes MR, Rodrigues RC, Benvenutti EV, Costa TM, Hertz PF, Ninow JL (2012) Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13:2456–2464

    Article  CAS  Google Scholar 

  • Kobashi K, Takebe S, Sakai T (1988) Removal of urea from alcoholic beverages with an acid urease. J Appl Toxicol 8:73–74

    Article  CAS  Google Scholar 

  • Kobashi K, Takebe S, Sakai T (1990) Urethane-hydrolyzing enzyme from Citrobacter sp. Chem Pharm Bull 38:1326–1328

    Article  CAS  Google Scholar 

  • Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilization: a review. Enzym Microb Technol 35:126–139

    Article  CAS  Google Scholar 

  • Kumar S, Dwevedi A, Kayastha AM (2009) Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability. J Mol Catal B Enzym 58:138–145

    Article  CAS  Google Scholar 

  • Lachenmeier DW, Schehl B, Kuballa T, Frank W, Senn T (2005) Retrospective trends and current status of ethyl carbamate in German stone-fruit spirits. Food Addit Contam 22:397–405

    Article  CAS  Google Scholar 

  • Lachenmeier DW, Kanteres F, Kuballa T, Lopez MG, Rehm J (2009) Ethyl carbamate in alcoholic beverages from Mexico (tequila, mezcal, bacanora, sotol) and Guatemala (cuxa): market survey and risk assessment. Int J Environ Res Public Health 6:349–360

    Article  CAS  Google Scholar 

  • Matsumoto K (1993) Removal of urea from alcoholic beverages by immobilized acid urease. In: Tanaka A, Tosa T (eds) Industrial application of immobilized biocatalysts. Marcel Dekker, New York, pp 255–273

    Google Scholar 

  • Miyagawa K, Sumida M, Nakao M, Harada M, Yamamoto H, Kusumi T, Yoshizawa K, Amachi T, Nakayama T (1999) Purification, characterization, and application of an acid urease from Arthrobacter mobilis. J Biotechnol 68:227–236

    Article  CAS  Google Scholar 

  • Mohapatra BR (2017) Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5. Int J Biol Macromol 98:103–110

    Article  CAS  Google Scholar 

  • Mohapatra BR, Bapuji M (1997) Characterization of urethanase from Micrococcus species associated with the marine sponge (Spirastrella species). Lett Appl Microbiol 25:393–396

    Article  CAS  Google Scholar 

  • Nomura T (1975) Urethane (ethyl carbamate) as a co-solvent of drugs commonly used parenterally in humans. Cancer Res 35:2895–2899

    CAS  PubMed  Google Scholar 

  • NTP (2016) Urethane report on carcinogens. National Toxicology Program, 14th ed. Available from: https://ntp.niehs.nih.gov/ntp/roc/content/profiles/urethane.pdf. Accessed 16 June 2017

  • Ough CS (1976a) Ethylcarbamate in fermented beverages and foods. I. Naturally occurring ethylcarbamate. J Agric Food Chem 24:323–328

    Article  CAS  Google Scholar 

  • Ough CS (1976b) Ethylcarbamate in fermented beverages and foods. II. Possible formation of ethylcarbamate from diethyl dicarbonate addition to wine. J Agric Food Chem 24:328–331

    Article  CAS  Google Scholar 

  • Ough CS, Crowell EA, Gutlove BR (1988) Carbamyl compound reactions with ethanol. Am J Enol Vitic 39:239–242

    CAS  Google Scholar 

  • Park KK, Liem A, Stewart BC, Miller JA (1993) Vinyl carbamate epoxide, a major strong electrophilic, mutagenic and carcinogenic metabolite of vinyl carbamate and ethyl carbamate (urethane). Carcinogenesis 14:441–450

    Article  CAS  Google Scholar 

  • Polychroniadou E, Kanellaki M, Iconomopoulou M, Koutinas A, Marchant R, Banat I (2003) Grape and apple wines volatile fermentation products and possible relation to spoilage. Bioresour Technol 87:337–339

    Article  CAS  Google Scholar 

  • Ryu D, Choi B, Kim E, Park S, Paeng H, Kim C, Lee J, Yoon HJ, Koh E (2015) Determination of ethyl carbamate in alcoholic beverages and fermented foods sold in Korea. Toxicol Res 31:289–297

    Article  CAS  Google Scholar 

  • Sakano K, Oikawa S, Hiraku Y, Kawanishi S (2002) Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage. Free Radic Biol Med 33:703–714

    Article  CAS  Google Scholar 

  • Salmon AG, Zeise L (1991) Risks of carcinogenesis from urethane exposure. CRC Press, Boca Raton

    Google Scholar 

  • Schehl B, Senn T, Lachenmeier DW, Rodicio R, Heinisch JJ (2007) Contribution of the fermenting yeast strain to ethylcarbamate generation in stone fruit spirits. Appl Microbiol Biotechnol 74:843–850

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  Google Scholar 

  • Sen NP, Seaman SW, Boyle M, Weber D (1993) Methyl carbamate and ethyl carbamate in alcoholic beverages and other fermented foods. Food Chem 48:359–366

    Article  CAS  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  Google Scholar 

  • Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  Google Scholar 

  • Solymosy F, Antoni F, Fedorcsák I (1978) On the amounts of urethane formed in diethyl pyrocarbonate treated beverages. J Agric Food Chem 26:500–503

    Article  CAS  Google Scholar 

  • Suzuki K, Kamimura H, Ibe A, Tabata S, Yasuda K, Nishijima M (2001) Formation of ethyl carbamate in umeshu (plum liqueur). Shokuhin Eiseigaku Zasshi 42:354–358. [In Japanese with English summary]. https://www.jstage.jst.go.jp/article/shokueishi/42/6/42_6_354/_pdf. Accessed 5 June 2107

    Article  CAS  Google Scholar 

  • Taki N, Imamura L, Takebe S, Kobashi K (1992) Cyanate as a precursor of ethyl carbamate in alcoholic beverages. Jpn J Toxicol Environ Health 38:498–505

    Article  CAS  Google Scholar 

  • Thorgeirsson UP, Dalgard DW, Reeves J, Adamson RH (1994) Tumor incidence in a chemical carcinogenesis study of nonhuman primates. Regul Toxicol Pharmacol 19:130–151

    Article  CAS  Google Scholar 

  • Vahl M (1993) A survey of ethyl carbamate in beverages, bread and acidified milks sold in Denmark. Food Addit Contam 10:585–592

    Article  CAS  Google Scholar 

  • Wu Q, Zhao Y, Wang D, Xu Y (2013) Immobilized Rhodotorula mucilaginosa: a novel urethanase-producing strain for degrading ethyl carbamate. Appl Biochem Biotechnol 171:2220–2232

    Article  CAS  Google Scholar 

  • Yang LQ, Wang SH, Tian YP (2010) Purification, properties, and application of a novel acid urease from Enterobacter sp. Appl Biochem Biotechnol 160:303–313

    Article  CAS  Google Scholar 

  • Zhang Q, Zha X, Zhou N, Tian Y (2016) Preparation of crosslinked enzyme aggregates (CLEAs) of acid urease with urethanase activity and their application. J Basic Microbiol 56:422–431

    Article  CAS  Google Scholar 

  • Zhao CJ, Kobashi K (1994) Purification and characterization of iron-containing urethanase from Bacillus licheniformis. Biol Pharm Bull 17:773–778

    Article  CAS  Google Scholar 

  • Zhao CJ, Imamura L, Kobashi K (1991) Urethanase of Bacillus licheniformis sp. isolated from mouse gastrointestine. Chem Pharm Bull 39:3303–3306

    Article  CAS  Google Scholar 

  • Zhao X, Du G, Zou H, Fu J, Zhou J, Chen J (2013) Progress in preventing the accumulation of ethyl carbamate in alcoholic beverages. Trends Food Sci Technol 32:97–107

    Article  Google Scholar 

  • Zhou N, Gu X, Zha X, Tian Y (2014) Purification and characterization of a urethanase from Penicillium variabile. Appl Biochem Biotechnol 172:351–360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Orville Roachford for useful advice. This research was partly supported by the UWI Campus Research Award Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyut R. Mohapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohapatra, B.R. (2018). An Insight into the Prevalence and Enzymatic Abatement of Urethane in Fermented Beverages. In: Patra, J., Das, G., Shin, HS. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7140-9_8

Download citation

Publish with us

Policies and ethics