Microbes in the Treatment of Diabetes and Its Complications

  • Suneeta Narumanchi
  • Yashavanthi Mysore
  • Nidhina Haridas Pachakkil AntharaparambathEmail author


Diabetes mellitus is a metabolic disease affecting millions of people worldwide. Hyperglycemia is the hallmark of all kind of diabetes including Type 1, 2 and gestational diabetes. Long term hyperglycemia leads to several vascular complications including cardiovascular diseases, renal disorders, neuropathic disorders like diabetic foot ulcers and retinopathy. This can be prevented by altering the lifestyle and by using therapeutic agents. These therapeutic agents are either chemically or biologically synthesized or obtained from natural sources like plants or microbes. Recent studies have shown that gut microbiota has a role in development of metabolic diseases. Also many new strategies have been suggested, using probiotics or microbial formulations to treat such diseases. There are several secondary metabolites currently in use for the treatments of diabetes and its complications and many small molecules have been identified which are potential therapeutics. In this chapter, we discuss about microbes, microbial products and genetically engineered microbes and its mechanisms for the treatment of diabetes and its comorbidities.


Diabetes Hyperglycemia Gut microbiota Secondary metabolites 


  1. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A 77(7):3957–3961PubMedPubMedCentralCrossRefGoogle Scholar
  2. American Diabetes Association: clinical practice recommendations 1997 (1997) Diabetes Care 20(Suppl 1):S1–70Google Scholar
  3. Arora T, Backhed F (2016) The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 280(4):339–349PubMedCrossRefGoogle Scholar
  4. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet (Lond) 383(9911):69–82CrossRefGoogle Scholar
  5. Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MM, Ramadan HA, Saini KS, Redwan EM (2014) Cell factories for insulin production. Microb Cell Factories 13:141-014-0141-0CrossRefGoogle Scholar
  6. Boue SM, Isakova IA, Burow ME, Cao H, Bhatnagar D, Sarver JG, Shinde KV, Erhardt PW, Heiman ML (2012) Glyceollins, soy isoflavone phytoalexins, improve oral glucose disposal by stimulating glucose uptake. J Agric Food Chem 60(25):6376–6382PubMedCrossRefGoogle Scholar
  7. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772PubMedCrossRefGoogle Scholar
  8. Cernea S, Dobreanu M (2013) Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochem Med 23(3):266–280CrossRefGoogle Scholar
  9. Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu JD, Zhang QY, Mi MT (2016) Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 7(2):e02210–e02215PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanovic A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163(6):1360–1374PubMedCrossRefGoogle Scholar
  11. Dabhi AS, Bhatt NR, Shah MJ (2013) Voglibose: an alpha glucosidase inhibitor. J Clin Diagn Res JCDR 7(12):3023–3027PubMedGoogle Scholar
  12. de Mello VD, Paananen J, Lindstrom J, Lankinen MA, Shi L, Kuusisto J, Pihlajamaki J, Auriola S, Lehtonen M, Rolandsson O, Bergdahl IA, Nordin E, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Landberg R, Eriksson JG, Tuomilehto J, Hanhineva K, Uusitupa M (2017) Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep 7:46337PubMedPubMedCentralCrossRefGoogle Scholar
  13. Deshpande BS, Ambedkar SS, Shewale JG (1988) Biologically active secondary metabolites from Streptomyces. Enzym Microb Technol 10(8):455–473CrossRefGoogle Scholar
  14. Duan FF, Liu JH, March JC (2015) Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64(5):1794–1803PubMedPubMedCentralCrossRefGoogle Scholar
  15. Endo A (1979) Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32(8):852–854PubMedCrossRefGoogle Scholar
  16. Endo A (2010) A historical perspective on the discovery of statins. Proc Jpn Acad Ser B Phys Biol Sci 86(5):484–493PubMedPubMedCentralCrossRefGoogle Scholar
  17. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188PubMedCrossRefGoogle Scholar
  18. Geng P, Qiu F, Zhu Y, Bai G (2008) Four acarviosin-containing oligosaccharides identified from Streptomyces coelicoflavus ZG0656 are potent inhibitors of alpha-amylase. Carbohydr Res 343(5):882–892PubMedCrossRefGoogle Scholar
  19. Ginsberg HN (2006) REVIEW: efficacy and mechanisms of action of statins in the treatment of diabetic dyslipidemia. J Clin Endocrinol Metab 91(2):383–392PubMedCrossRefGoogle Scholar
  20. Goke B, Herrmann-Rinke C (1998) The evolving role of alpha-glucosidase inhibitors. Diabetes Metab Rev 14(Suppl 1):S31–S38PubMedCrossRefGoogle Scholar
  21. Göke B, Fuder H, Wieckhorst G, Theiss U, Stridde E, Littke T, Kleist P, Arnold R, Lücker PW (1995) Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 56(6):493–501PubMedCrossRefGoogle Scholar
  22. Greiner TU, Backhed F (2016) Microbial regulation of GLP-1 and L-cell biology. Mol Metab 5(9):753–758PubMedPubMedCentralCrossRefGoogle Scholar
  23. Grundy SM (2016) Dyslipidaemia in 2015: advances in treatment of dyslipidaemia. Nat Rev Cardiol 13(2):74–75PubMedCrossRefGoogle Scholar
  24. Guaraldi F, Salvatori G (2012) Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol 2:94PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hamada Y, Nagasaki H, Fuchigami M, Furuta S, Seino Y, Nakamura J, Oiso Y (2013) The alpha-glucosidase inhibitor miglitol affects bile acid metabolism and ameliorates obesity and insulin resistance in diabetic mice. Metab Clin Exp 62(5):734–742PubMedCrossRefGoogle Scholar
  26. Harris R (2005) Angiotensin-converting enzyme inhibition in diabetic nephropathy: it’s all the RAGE. J Am Soc Nephrol JASN 16(8):2251–2253PubMedCrossRefGoogle Scholar
  27. Hegde V, Na HN, Dubuisson O, Burke SJ, Collier JJ, Burk D, Mendoza T, Dhurandhar NV (2016) An adenovirus-derived protein: a novel candidate for anti-diabetic drug development. Biochimie 121:140–150PubMedCrossRefGoogle Scholar
  28. Hill JO, Wyatt HR, Peters JC (2012) Energy balance and obesity. Circulation 126(1):126–132PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hirayama K, Takahashi R, Akashi S, Fukuhara K, Oouchi N, Murai A, Arai M, Murao S, Tanaka K, Nojima I (1987) Primary structure of Paim I, an alpha-amylase inhibitor from Streptomyces corchorushii, determined by the combination of Edman degradation and fast atom bombardment mass spectrometry. Biochemistry 26(20):6483–6488PubMedCrossRefGoogle Scholar
  30. Horii A, Emi M, Tomita N, Nishide T, Ogawa M, Mori T, Matsubara K (1987) Primary structure of human pancreatic alpha-amylase gene: its comparison with human salivary alpha-amylase gene. Gene 60(1):57–64PubMedCrossRefGoogle Scholar
  31. Jou PC, Ho BY, Hsu YW, Pan TM (2010) The effect of Monascus secondary polyketide metabolites, monascin and ankaflavin, on adipogenesis and lipolysis activity in 3T3-L1. J Agric Food Chem 58(24):12703–12709PubMedCrossRefGoogle Scholar
  32. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Neifing JL, Ward WK, Beard JC, Palmer JP (1993) Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42(11):1663–1672PubMedCrossRefGoogle Scholar
  33. Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet (Lond) 383(9922):1068–1083CrossRefGoogle Scholar
  34. Kassaian N, Aminorroaya A, Feizi A, Jafari P, Amini M (2017) The effects of probiotic and synbiotic supplementation on metabolic syndrome indices in adults at risk of type 2 diabetes: study protocol for a randomized controlled trial. Trials 18(1):148-017-1885-8CrossRefGoogle Scholar
  35. Katsuyama K, Iwata N, Shimazu A (1992) Purification and primary structure of proteinous alpha-amylase inhibitor from Streptomyces chartreusis. Biosci Biotechnol Biochem 56(12):1949–1954PubMedCrossRefGoogle Scholar
  36. Keenan HA, Sun JK, Levine J, Doria A, Aiello LP, Eisenbarth G, Bonner-Weir S, King GL (2010) Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 59(11):2846–2853PubMedPubMedCentralCrossRefGoogle Scholar
  37. Krishnan T, Chandra AK (1983) Purification and characterization of alpha-amylase from Bacillus licheniformis CUMC305. Appl Environ Microbiol 46(2):430–437PubMedPubMedCentralGoogle Scholar
  38. Kulkarni-Almeida AA, Brahma MK, Padmanabhan P, Mishra PD, Parab RR, Gaikwad NV, Thakkar CS, Tokdar P, Ranadive PV, Nair AS, Damre AA, Bahirat UA, Deshmukh NJ, Doshi LS, Dixit AV, George SD, Vishwakarma RA, Nemmani KV, Mahajan GB (2011) Fermentation, isolation, structure, and antidiabetic activity of NFAT-133 produced by Streptomyces strain PM0324667. AMB Express 1(1):42-0855-1-42CrossRefGoogle Scholar
  39. Ladisch MR, Kohlmann KL (1992) Recombinant human insulin. Biotechnol Prog 8(6):469–478PubMedCrossRefGoogle Scholar
  40. Lee CL, Wen JY, Hsu YW, Pan TM (2013) Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J Agric Food Chem 61(7):1493–1500PubMedCrossRefGoogle Scholar
  41. Lorentz K (1982) Properties of human alpha-amylases from urine, pancreas, and saliva. Enzyme 28(4):233–241PubMedCrossRefGoogle Scholar
  42. Matsui T, Ogunwande IA, Abesundara KJ, Matsumoto K (2006) Anti-hyperglycemic potential of natural products. Mini Rev Med Chem 6(3):349–356PubMedCrossRefGoogle Scholar
  43. Meng P, Guo Y, Zhang Q, Hou J, Bai F, Geng P, Bai G (2011) A novel amino-oligosaccharide isolated from the culture of Streptomyces strain PW638 is a potent inhibitor of alpha-amylase. Carbohydr Res 346(13):1898–1902PubMedCrossRefGoogle Scholar
  44. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, Writing Group Members, American Heart Association Statistics Committee & Stroke Statistics Subcommittee (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38–360PubMedGoogle Scholar
  45. Namiki S, Kangouri K, Nagate T, Hara H, Sugita K, Noda K, Tarumoto Y, Omura S (1982) Studies on the alpha-glucoside hydrolase inhibitor, adiposin. IV. Effect of adiposin on intestinal digestion of carbohydrates in experimental animals. J Antibiot 35(9):1167–1173PubMedCrossRefGoogle Scholar
  46. Negre-Salvayre A, Salvayre R, Auge N, Pamplona R, Portero-Otin M (2009) Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 11(12):3071–3109PubMedCrossRefGoogle Scholar
  47. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50PubMedCrossRefGoogle Scholar
  48. Park KY, Kim B, Hyun CK (2015) Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice. J Clin Biochem Nutr 56(3):240–246PubMedPubMedCentralCrossRefGoogle Scholar
  49. Porporato PE, Payen VL, De Saedeleer CJ, Preat V, Thissen JP, Feron O, Sonveaux P (2012) Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 15(4):581–592PubMedCrossRefGoogle Scholar
  50. Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ, Lakritz JR, Ibrahim YM, Chatzigiagkos A, Alm EJ, Erdman SE (2013) Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One 8(10):e78898PubMedPubMedCentralCrossRefGoogle Scholar
  51. Quigley EM (2013) Gut bacteria in health and disease. Gastroenterol Hepatol 9(9):560–569Google Scholar
  52. Rehm S, Han S, Hassani I, Sokocevic A, Jonker HR, Engels JW, Schwalbe H (2009) The high resolution NMR structure of parvulustat (Z-2685) from Streptomyces parvulus FH-1641: comparison with tendamistat from Streptomyces tendae 4158. Chembiochem Eur J Chem Biol 10(1):119–127CrossRefGoogle Scholar
  53. Sales PM, Souza PM, Simeoni LA, Silveira D (2012) alpha-amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci Publ Can Soc Pharm Sci Soc Can Sci Pharm 15(1):141–183Google Scholar
  54. Sels JP, Huijberts MS, Wolffenbuttel BH (1999) Miglitol, a new alpha-glucosidase inhibitor. Expert Opin Pharmacother 1(1):149–56Google Scholar
  55. Sato S, Okusa N, Ogawa A, Ikenoue T, Seki T, Tsuji T (2005) Identification and preliminary SAR studies of (+)-Geodin as a glucose uptake stimulator for rat adipocytes. J Antibiot 58(9):583–589PubMedCrossRefGoogle Scholar
  56. Schnell O, Cappuccio F, Genovese S, Standl E, Valensi P, Ceriello A (2013) Type 1 diabetes and cardiovascular disease. Cardiovasc Diabetol 12:156-2840-12-156CrossRefGoogle Scholar
  57. Suarez-Zamorano N, Fabbiano S, Chevalier C, Stojanovic O, Colin DJ, Stevanovic A, Veyrat-Durebex C, Tarallo V, Rigo D, Germain S, Ilievska M, Montet X, Seimbille Y, Hapfelmeier S, Trajkovski M (2015) Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med 21(12):1497–1501PubMedPubMedCentralCrossRefGoogle Scholar
  58. Sumitani J, Tsujimoto Y, Kawaguchi T, Arai M (2000) Cloning and secretive expression of the gene encoding the proteinaceous alpha-amylase inhibitor paim from Streptomyces corchorusii. J Biosci Bioeng 90(2):214–216PubMedCrossRefGoogle Scholar
  59. Suzuki A, Nakauchi H, Taniguchi H (2003) Glucagon-like peptide 1 (1–37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci U S A 100(9):5034–5039PubMedPubMedCentralCrossRefGoogle Scholar
  60. Szkudelski T, Szkudelska K (2015) Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta 1852(6):1145–1154PubMedCrossRefGoogle Scholar
  61. Szkudlarek-Mikho M, Saunders RA, Yap SF, Ngeow YF, Chin KV (2012) Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis. Biochem Biophys Res Commun 428(4):487–493PubMedPubMedCentralCrossRefGoogle Scholar
  62. Tang WH, Hazen SL (2014) The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 124(10):4204–4211PubMedPubMedCentralCrossRefGoogle Scholar
  63. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584PubMedPubMedCentralCrossRefGoogle Scholar
  64. Tobert JA (1987) New developments in lipid-lowering therapy: the role of inhibitors of hydroxymethylglutaryl-coenzyme A reductase. Circulation 76(3):534–538PubMedCrossRefGoogle Scholar
  65. Tobert JA (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2(7):517–526PubMedCrossRefGoogle Scholar
  66. Truscheit E, Frommer W, Junge B, Müller L, Schmidt DD, Wingender W (1981) Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angew Chem Int Ed Engl 20(9):744–761CrossRefGoogle Scholar
  67. Tucci SA, Boyland EJ, Halford JC (2010) The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes Metab Syndr Obes Targets Ther 3:125–143CrossRefGoogle Scholar
  68. Udayappan SD, Hartstra AV, Dallinga-Thie GM, Nieuwdorp M (2014) Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus. Clin Exp Immunol 177(1):24–29PubMedPubMedCentralCrossRefGoogle Scholar
  69. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444(7121):875–880PubMedCrossRefGoogle Scholar
  70. Vertesy L, Tripier D (1985) Isolation and structure elucidation of an alpha-amylase inhibitor, AI-3688, from Streptomyces aureofaciens. FEBS Lett 185(1):187–190PubMedCrossRefGoogle Scholar
  71. Vertesy L, Oeding V, Bender R, Zepf K, Nesemann G (1984) Tendamistat (HOE 467), a tight-binding alpha-amylase inhibitor from Streptomyces tendae 4158. Isolation, biochemical properties. Eur J Biochem 141(3):505–512PubMedCrossRefGoogle Scholar
  72. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63PubMedPubMedCentralCrossRefGoogle Scholar
  73. Yadav H, Jain S, Sinha PR (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition (Burbank, Los Angeles County, Calif) 23(1):62–68CrossRefGoogle Scholar
  74. Yokose K, Ogawa K, Suzuki Y, Umeda I, Suhara Y (1983) New alpha-amylase inhibitor, trestatins. II. Structure determination of trestatins A, B and C. J Antibiot 36(9):1166–1175PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Suneeta Narumanchi
    • 1
  • Yashavanthi Mysore
    • 2
  • Nidhina Haridas Pachakkil Antharaparambath
    • 1
    Email author
  1. 1.Minerva Foundation Institute for Medical ResearchHelsinkiFinland
  2. 2.Faculty of Health Sciences, School of Pharmacy, KuopioUniversity of Eastern FinlandKuopioFinland

Personalised recommendations