Application of Oncolytic Virus as a Therapy of Cancer

  • Sushil Kumar SahuEmail author
  • Mukesh Kumar


Cancer is one of the major threat to human society, which is the second leading global cause of mortality after cardiovascular diseases. Most popular chemo-therapy and radiation-therapy have a significant impact on cancer treatment but till date, they are not successful in many advanced cases and metastatic stage of cancer. This leads the researcher to investigate new strategies to combat by selectively killing cancer cells without damaging normal cells. Viral oncotherapy is such a hopeful treatment option that offers an opportunity for targeting cancer cells. In this therapy, wild type or engineered oncolytic viruses are use to infect and destroy cancer cells by oncolysis. As a result of this new infectious viral particles are release to facilitate the destruction of the remaining cancerous cells. These viruses with anticancer activity can be designed in many ways and use in combination with other cancer therapy to increase their tumor selectivity and improve oncolytic activity. Here, we will discuss the strategies for oncolytic viral engineering with the mechanisms by which these viruses specifically kill tumor cells that make a promising modality for cancer therapy.


Virus Oncolysis Natural host Viral engineering Anti-cancer Vaccine Immunity Tumor microenvironment Cancer therapy 


  1. Aghi M, Visted T, Depinho RA, Chiocca EA (2008) Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene 27(30):4249–4254PubMedCrossRefGoogle Scholar
  2. Ahmed M, Cramer SD, Lyles DS (2004) Sensitivity of prostate tumors to wild type and M protein mutant vesicular stomatitis viruses. Virology 330(1):34–49PubMedCrossRefGoogle Scholar
  3. Albelda SM, Thorne SH (2014) Giving oncolytic vaccinia virus more BiTE. Mol Ther J Am Soc Gen Ther 22(1):6–8CrossRefGoogle Scholar
  4. Alberts P, Olmane E, Brokane L, Krastina Z, Romanovska M, Kupcs K, Isajevs S, Proboka G, Erdmanis R, Nazarovs J, Venskus D (2016) Long-term treatment with the oncolytic ECHO-7 virus Rigvir of a melanoma stage IV M1c patient, a small cell lung cancer stage IIIA patient, and a histiocytic sarcoma stage IV patient-three case reports. APMIS: Acta Pathol Microbiol, Immunol Scand 124(10):896–904CrossRefGoogle Scholar
  5. Altomonte J, Marozin S, Schmid RM, Ebert O (2010) Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. Mol Ther J Am Soc Gen Ther 17(2):275–284CrossRefGoogle Scholar
  6. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Cranmer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH Jr, Zager JS, Ye Y, Yao B, Li A, Doleman S, VanderWalde A, Gansert J, Coffin RS (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol 33(25):2780–2788CrossRefGoogle Scholar
  7. Angelova AL, Aprahamian M, Balboni G, Delecluse HJ, Feederle R, Kiprianova I, Grekova SP, Galabov AS, Witzens-Harig M, Ho AD, Rommelaere J, Raykov Z (2009) Oncolytic rat parvovirus H-1PV, a candidate for the treatment of human lymphoma: in vitro and in vivo studies. Mol Ther J Am Soc Gen Ther 17(7):1164–1172CrossRefGoogle Scholar
  8. Atkins GJ, Sheahan BJ, Dimmock NJ (1985) Semliki Forest virus infection of mice: a model for genetic and molecular analysis of viral pathogenicity. J Gen Virol 66(3):395–408PubMedCrossRefGoogle Scholar
  9. Atkins GJ, Sheahan BJ, Liljestrom P (1999) The molecular pathogenesis of Semliki Forest virus: a model virus made useful? J Gen Virol 80(9):2287–2297PubMedCrossRefGoogle Scholar
  10. Au GG, Beagley LG, Haley ES, Barry RD, Shafren DR (2011) Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A17. Virol J 8:22PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bar S, Rommelaere J, Nuesch JP (2015) PKCeta/Rdx-driven phosphorylation of PDK1: a novel mechanism promoting cancer cell survival and permissiveness for parvovirus-induced lysis. PLoS Pathog 11(3):e1004703PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bergelson JM, Coyne CB (2013) Picornavirus entry. Adv Exp Med Biol 790:24–41PubMedCrossRefGoogle Scholar
  13. Bilbao R, Bustos M, Alzuguren P, Pajares MJ, Drozdzik M, Qian C, Prieto J (2000) A blood-tumor barrier limits gene transfer to experimental liver cancer: the effect of vasoactive compounds. Gene Ther 7(21):1724–1732CrossRefGoogle Scholar
  14. Bridle BW, Stephenson KB, Boudreau JE, Koshy S, Kazdhan N, Pullenayegum E, Brunelliere J, Bramson JL, Lichty BD, Wan Y (2010) Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther J Am Soc Gen Ther 17(8):1430–1439CrossRefGoogle Scholar
  15. Brostrom CO, Brostrom MA (1998) Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 58:79–125PubMedCrossRefGoogle Scholar
  16. Brown MC, Dobrikova EY, Dobrikov MI, Walton RW, Gemberling SL, Nair SK, Desjardins A, Sampson JH, Friedman HS, Friedman AH, Tyler DS, Bigner DD, Gromeier M (2014) Oncolytic polio virotherapy of cancer. Cancer 120(21):3277–3286PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cassel WA, Garrett RE (1965) Newcastle disease virus as an antineoplastic agent. Cancer 17:863–868CrossRefGoogle Scholar
  18. Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila PT, Ugolini M, Nokisalmi P, Raki M, Laasonen L, Sarkioja M, Rajecki M, Kangasniemi L, Guse K, Helminen A, Ahtiainen L, Ristimaki A, Raisanen-Sokolowski A, Haavisto E, Oksanen M, Karli E, Karioja-Kallio A, Holm SL, Kouri M, Joensuu T, Kanerva A, Hemminki A (2010) Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res 70(11):4297–4309PubMedCrossRefGoogle Scholar
  19. Cerullo V, Diaconu I, Kangasniemi L, Rajecki M, Escutenaire S, Koski A, Romano V, Rouvinen N, Tuuminen T, Laasonen L, Partanen K, Kauppinen S, Joensuu T, Oksanen M, Holm SL, Haavisto E, Karioja-Kallio A, Kanerva A, Pesonen S, Arstila PT, Hemminki A (2011) Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol Ther J Am Soc Gen Ther 19(9):1737–1746CrossRefGoogle Scholar
  20. Chang J, Zhao X, Wu X, Guo Y, Guo H, Cao J, Lou D, Yu D, Li J (2009) A Phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers. Cancer Biol Ther 8(8):676–682PubMedCrossRefGoogle Scholar
  21. Chen Y, Yu DC, Charlton D, Henderson DR (2000) Pre-existent adenovirus antibody inhibits systemic toxicity and antitumor activity of CN706 in the nude mouse LNCaP xenograft model: implications and proposals for human therapy. Hum Gene Ther 11(11):1553–1567PubMedCrossRefGoogle Scholar
  22. Chumakov PM, Morozova VV, Babkin IV, Baikov IK, Netesov SV, Tikunova NV (2012) Oncolytic enteroviruses. Mol Biol 46(5):712–725Google Scholar
  23. Coffey MC, Strong JE, Forsyth PA, Lee PW (1998) Reovirus therapy of tumors with activated Ras pathway. Science 282(5392):1332–1334PubMedCrossRefGoogle Scholar
  24. Connolly JL, Dermody TS (2002) Virion disassembly is required for apoptosis induced by reovirus. J Virol 76(4):1632–1641PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cripe TP, Ngo MC, Geller JI, Louis CU, Currier MA, Racadio JM, Towbin AJ, Rooney CM, Pelusio A, Moon A, Hwang TH, Burke JM, Bell JC, Kirn DH, Breitbach CJ (2015) Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients. Mol Ther J Am Soc Gen Ther 23(3):602–608CrossRefGoogle Scholar
  26. DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M, Hamper U, DeJong R, Detorie N, Rodriguez R, Haulk T, DeMarzo AM, Piantadosi S, Yu DC, Chen Y, Henderson DR, Carducci MA, Nelson WG, Simons JW (2001) A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 61(20):7464–7472PubMedGoogle Scholar
  27. de Haro C, Mendez R, Santoyo J (1996) The eIF-2alpha kinases and the control of protein synthesis. FASEB J Off Publ Fed Am Soc Exp Biol 10(12):1378–1387Google Scholar
  28. Dock G (1904) Rabies virus vaccination in a patient with cervical carcinoma. Am J Med Sci 127:563CrossRefGoogle Scholar
  29. Donina S, Strele I, Proboka G, Auzins J, Alberts P, Jonsson B, Venskus D, Muceniece A (2015) Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res 25(5):421–426PubMedPubMedCentralCrossRefGoogle Scholar
  30. Donnelly OG, Errington-Mais F, Prestwich R, Harrington K, Pandha H, Vile R, Melcher AA (2012) Recent clinical experience with oncolytic viruses. Curr Pharm Biotechnol 13(9):1734–1741CrossRefGoogle Scholar
  31. Ebert O, Harbaran S, Shinozaki K, Woo SL (2005) Systemic therapy of experimental breast cancer metastases by mutant vesicular stomatitis virus in immune-competent mice. Cancer Gene Ther 12(4):350–358PubMedCrossRefGoogle Scholar
  32. Elankumaran S, Rockemann D, Samal SK (2006) Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J Virol 80(15):7522–7534PubMedPubMedCentralCrossRefGoogle Scholar
  33. Elankumaran S, Chavan V, Qiao D, Shobana R, Moorkanat G, Biswas M, Samal SK (2010) Type I interferon-sensitive recombinant newcastle disease virus for oncolytic virotherapy. J Virol 84(8):3835–3844PubMedPubMedCentralCrossRefGoogle Scholar
  34. Escamilla-Tilch M, Filio-Rodriguez G, Garcia-Rocha R, Mancilla-Herrera I, Mitchison NA, Ruiz-Pacheco JA, Sanchez-Garcia FJ, Sandoval-Borrego D, Vazquez-Sanchez EA (2013) The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol 91(10):601–610PubMedCrossRefGoogle Scholar
  35. Feng GS, Chong K, Kumar A, Williams BR (1992) Identification of double-stranded RNA-binding domains in the interferon-induced double-stranded RNA-activated p68 kinase. Proc Natl Acad Sci U S A 89(12):5447–5451PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ferguson MS, Lemoine NR, Wang Y (2012) Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol 2012:805629PubMedPubMedCentralCrossRefGoogle Scholar
  37. Freeman AI, Zakay-Rones Z, Gomori JM, Linetsky E, Rasooly L, Greenbaum E, Rozenman-Yair S, Panet A, Libson E, Irving CS, Galun E, Siegal T (2006) Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther J Am Soc Gen Ther 13(1):221–228CrossRefGoogle Scholar
  38. Galanis E, Atherton PJ, Maurer MJ, Knutson KL, Dowdy SC, Cliby WA, Haluska P Jr, Long HJ, Oberg A, Aderca I, Block MS, Bakkum-Gamez J, Federspiel MJ, Russell SJ, Kalli KR, Keeney G, Peng KW, Hartmann LC (2015) Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res 75(1):22–30PubMedCrossRefGoogle Scholar
  39. Geletneky K, Nuesch JP, Angelova A, Kiprianova I, Rommelaere J (2015) Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 13:17–24PubMedCrossRefGoogle Scholar
  40. Goetz C, Gromeier M (2010) Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 21(2–3):197–203PubMedPubMedCentralCrossRefGoogle Scholar
  41. Goldsmith K, Chen W, Johnson DC, Hendricks RL (1998) Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. J Exp Med 177(3):341–348CrossRefGoogle Scholar
  42. Gong J, Sachdev E, Mita AC, Mita MM (2016) Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol 6(1):25–42PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E (2000) Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A 97(12):6803–6808PubMedPubMedCentralCrossRefGoogle Scholar
  44. Guo ZS, Thorne SH, Bartlett DL (2008) Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta 1785(2):217–231PubMedPubMedCentralGoogle Scholar
  45. Guse K, Cerullo V, Hemminki A (2011) Oncolytic vaccinia virus for the treatment of cancer. Expert Opin Biol Ther 11(5):595–608PubMedCrossRefGoogle Scholar
  46. Hales LM, Knowles NJ, Reddy PS, Xu L, Hay C, Hallenbeck PL (2008) Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. J Gen Virol 89(Pt 5):1265–1275PubMedCrossRefGoogle Scholar
  47. Hastie E, Grdzelishvili VZ (2012) Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol 93(12):2529–2545PubMedPubMedCentralCrossRefGoogle Scholar
  48. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH (1997) ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3(6):639–645PubMedCrossRefGoogle Scholar
  49. Hemminki O, Diaconu I, Cerullo V, Pesonen SK, Kanerva A, Joensuu T, Kairemo K, Laasonen L, Partanen K, Kangasniemi L, Lieber A, Pesonen S, Hemminki A (2012) Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus, in patients with chemotherapy refractory cancer. Mol Ther J Am Soc Gen Ther 20(9):1721–1730Google Scholar
  50. Hernandez-Alcoceba R, Pihalja M, Qian D, Clarke MF (2002) New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum Gene Ther 13(14):1737–1750PubMedCrossRefGoogle Scholar
  51. Huang Z, Krishnamurthy S, Panda A, Samal SK (2003) Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 77(16):8676–8685PubMedPubMedCentralCrossRefGoogle Scholar
  52. Huang TT, Parab S, Burnett R, Diago O, Ostertag D, Hofman FM, Espinoza FL, Martin B, Ibanez CE, Kasahara N, Gruber HE, Pertschuk D, Jolly DJ, Robbins JM (2015) Intravenous administration of retroviral replicating vector, Toca 511, demonstrates therapeutic efficacy in orthotopic immune-competent mouse glioma model. Hum Gen Ther 26(2):82–93CrossRefGoogle Scholar
  53. Huebner RJ, Rowe WP, Schatten WE, Smith RR, Thomas LB (1956) Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9(6):1211–1217PubMedCrossRefGoogle Scholar
  54. Imani F, Jacobs BL (1988) Inhibitory activity for the interferon-induced protein kinase is associated with the reovirus serotype 1 sigma 3 protein. Proc Natl Acad Sci U S A 85(21):7887–7891PubMedPubMedCentralCrossRefGoogle Scholar
  55. Johansson ES, Xing L, Cheng RH, Shafren DR (2004) Enhanced cellular receptor usage by a bioselected variant of coxsackievirus a21. J Virol 78(22):12603–12612PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17(3):717–730CrossRefGoogle Scholar
  57. Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14(9):642–662PubMedCrossRefGoogle Scholar
  58. Kemball CC, Alirezaei M, Whitton JL (2010) Type B coxsackieviruses and their interactions with the innate and adaptive immune systems. Future Microbiol 5(9):1329–1347PubMedPubMedCentralCrossRefGoogle Scholar
  59. Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I, Nokisalmi P, Raki M, Rajecki M, Guse K, Ranki T, Oksanen M, Holm SL, Haavisto E, Karioja-Kallio A, Laasonen L, Partanen K, Ugolini M, Helminen A, Karli E, Hannuksela P, Joensuu T, Kanerva A, Hemminki A (2010) Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther J Am Soc Gen Ther 17(10):1774–1784Google Scholar
  60. Krasnykh V, Dmitriev I, Navarro JG, Belousova N, Kashentseva E, Xiang J, Douglas JT, Curiel DT (2000) Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity. Cancer Res 60(24):6784–6787PubMedGoogle Scholar
  61. Kuhn I, Harden P, Bauzon M, Chartier C, Nye J, Thorne S, Reid T, Ni S, Lieber A, Fisher K, Seymour L, Rubanyi GM, Harkins RN, Hermiston TW (2008) Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 3(6):e2409PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lal R, Harris D, Postel-Vinay S, de Bono J (2009) Reovirus: rationale and clinical trial update. Curr Opin Mol Ther 11(5):532–539PubMedGoogle Scholar
  63. Laliberte JP, Weisberg AS, Moss B (2011) The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components. PLoS Pathog 7(12):e1002446PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lanson NA Jr, Friedlander PL, Schwarzenberger P, Kolls JK, Wang G (2003) Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res 63(22):7936–7941PubMedGoogle Scholar
  65. Lichty BD, Power AT, Stojdl DF, Bell JC (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10(5):210–216PubMedCrossRefGoogle Scholar
  66. Lichty BD, Breitbach CJ, Stojdl DF, Bell JC (2014) Going viral with cancer immunotherapy. Nat Rev Cancer 14(8):559–567PubMedCrossRefGoogle Scholar
  67. Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P, McGrath Y, Thomas SK, Thornton M, Bullock P, Love CA, Coffin RS (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10(4):292–303PubMedCrossRefGoogle Scholar
  68. Marcato P, Shmulevitz M, Pan D, Stoltz D, Lee PW (2007) Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther J Am Soc Gen Ther 15(8):1522–1530CrossRefGoogle Scholar
  69. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG (2001) Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49(2):236–240PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mathiot CC, Grimaud G, Garry P, Bouquety JC, Mada A, Daguisy AM, Georges AJ (1990) An outbreak of human Semliki Forest virus infections in Central African Republic. Am J Trop Med Hyg 42(4):386–393PubMedCrossRefGoogle Scholar
  71. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284PubMedCrossRefGoogle Scholar
  72. Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD, Gromeier M (2004) Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol 6(3):208–217PubMedPubMedCentralCrossRefGoogle Scholar
  73. Msaouel P, Dispenzieri A, Galanis E (2009) Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr Opin Mol Ther 11(1):43–53PubMedPubMedCentralGoogle Scholar
  74. Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E (2013) Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 13(4):483–502PubMedCrossRefGoogle Scholar
  75. Muik A, Stubbert LJ, Jahedi RZ, Geibeta Y, Kimpel J, Dold C, Tober R, Volk A, Klein S, Dietrich U, Yadollahi B, Falls T, Miletic H, Stojdl D, Bell JC, von Laer D (2014) Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res 74(13):3567–3578PubMedCrossRefGoogle Scholar
  76. Newman W, Southam CM (1954) Virus treatment in advanced cancer; a pathological study of fifty-seven cases. Cancer 7(1):106–117PubMedCrossRefGoogle Scholar
  77. Norman KL, Hirasawa K, Yang AD, Shields MA, Lee PW (2004) Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci U S A 101(30):11099–11104PubMedPubMedCentralCrossRefGoogle Scholar
  78. Obuchi M, Fernandez M, Barber GN (2003) Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J Virol 77(16):8843–8856PubMedPubMedCentralCrossRefGoogle Scholar
  79. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Kunich J, Shen Y, Habets G, Ginzinger D, McCormick F (2004) Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6(6):611–623PubMedCrossRefGoogle Scholar
  80. Ozduman K, Wollmann G, Piepmeier JM, van den Pol AN (2008) Systemic vesicular stomatitis virus selectively destroys multifocal glioma and metastatic carcinoma in brain. J Neurosci Off J Soc Neurosci 28(8):1782–1793CrossRefGoogle Scholar
  81. Park MS, Garcia-Sastre A, Cros JF, Basler CF, Palese P (2003) Newcastle disease virus V protein is a determinant of host range restriction. J Virol 77(17):9522–9532PubMedPubMedCentralCrossRefGoogle Scholar
  82. Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL, Goldberg S, Gross P, O'Neil JD, Groene WS, Roberts MS, Rabin H, Bamat MK, Lorence RM (2002) Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol Off J Am Soc Clin Oncol 20(9):2251–2266CrossRefGoogle Scholar
  83. Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334(6170):320–325PubMedCrossRefGoogle Scholar
  84. Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R, Inagaki A, Jolson D, Amundson K, Buckley T, Lohse D, Lin A, Burrascano C, Ibanez C, Kasahara N, Gruber HE, Jolly DJ (2012) Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther J Am Soc Gen Ther 20(9):1689–1698CrossRefGoogle Scholar
  85. Puhlmann J, Puehler F, Mumberg D, Boukamp P, Beier R (2010) Rac1 is required for oncolytic NDV replication in human cancer cells and establishes a link between tumorigenesis and sensitivity to oncolytic virus. Oncogene 29(15):2205–2216PubMedCrossRefGoogle Scholar
  86. Ramachandran M, Yu D, Dyczynski M, Baskaran S, Zhang L, Lulla A, Lulla V, Saul S, Nelander S, Dimberg A, Merits A, Leja-Jarblad J, Essand M (2017) Safe and effective treatment of experimental neuroblastoma and glioblastoma using systemically delivered triple microRNA-detargeted oncolytic Semliki Forest virus. Clin Cancer Res Off J Am Assoc Cancer Res 23(6):1519–1530CrossRefGoogle Scholar
  87. Reddy PS, Burroughs KD, Hales LM, Ganesh S, Jones BH, Idamakanti N, Hay C, Li SS, Skele KL, Vasko AJ, Yang J, Watkins DN, Rudin CM, Hallenbeck PL (2007) Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J Natl Cancer Inst 99(21):1623–1633PubMedPubMedCentralCrossRefGoogle Scholar
  88. Roberts MS, Lorence RM, Groene WS, Bamat MK (2006) Naturally oncolytic viruses. Curr Opin Mol Ther 8(4):314–321PubMedGoogle Scholar
  89. Rudin CM, Poirier JT, Senzer NN, Stephenson J Jr, Loesch D, Burroughs KD, Reddy PS, Hann CL, Hallenbeck PL (2011) Phase I clinical study of Seneca Valley Virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res Off J Am Assoc Cancer Res 17(4):888–895CrossRefGoogle Scholar
  90. Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30(7):658–670PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sabin AB (1959) Reoviruses. A new group of respiratory and enteric viruses formerly classified as ECHO type 10 is described. Science 130(3386):1387–1389PubMedCrossRefGoogle Scholar
  92. Sarkioja M, Pesonen S, Raki M, Hakkarainen T, Salo J, Ahonen MT, Kanerva A, Hemminki A (2008) Changing the adenovirus fiber for retaining gene delivery efficacy in the presence of neutralizing antibodies. Gen Ther 15(12):921–929CrossRefGoogle Scholar
  93. Sauthoff H, Hu J, Maca C, Goldman M, Heitner S, Yee H, Pipiya T, Rom WN, Hay JG (2003) Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther 14(5):425–433PubMedCrossRefGoogle Scholar
  94. Singh PK, Doley J, Kumar GR, Sahoo AP, Tiwari AK (2012) Oncolytic viruses & their specific targeting to tumour cells. Indian J Med Res 136(4):571–584PubMedPubMedCentralGoogle Scholar
  95. Sinkovics J, Horvath J (1993) New developments in the virus therapy of cancer: a historical review. Intervirology 36(4):193–214PubMedCrossRefGoogle Scholar
  96. Southam CM, Hilleman MR, Werner JH (1956) Pathogenicity and oncolytic capacity of RI virus strain RI-67 in man. J Lab Clin Med 47(4):573–582PubMedGoogle Scholar
  97. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, Bell JC (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6(7):821–825PubMedCrossRefGoogle Scholar
  98. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17(12):3351–3362PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tai CK, Kasahara N (2008) Replication-competent retrovirus vectors for cancer gene therapy. Front Biosci J Virtual Libr 13:3083–3095CrossRefGoogle Scholar
  100. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249(1):158–175PubMedPubMedCentralCrossRefGoogle Scholar
  101. Trinh HV, Lesage G, Chennamparampil V, Vollenweider B, Burckhardt CJ, Schauer S, Havenga M, Greber UF, Hemmi S (2012) Avidity binding of human adenovirus serotypes 3 and 7 to the membrane cofactor CD46 triggers infection. J Virol 86(3):1623–1637PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tuve S, Wang H, Ware C, Liu Y, Gaggar A, Bernt K, Shayakhmetov D, Li Z, Strauss R, Stone D, Lieber A (2006) A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J Virol 80(24):12109–12120PubMedPubMedCentralCrossRefGoogle Scholar
  103. Venkataraman S, Reddy SP, Loo J, Idamakanti N, Hallenbeck PL, Reddy VS (2008a) Crystallization and preliminary X-ray diffraction studies of Seneca Valley virus-001, a new member of the Picornaviridae family. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 4):293–296PubMedPubMedCentralCrossRefGoogle Scholar
  104. Venkataraman S, Reddy SP, Loo J, Idamakanti N, Hallenbeck PL, Reddy VS (2008b) Structure of Seneca Valley Virus-001: an oncolytic picornavirus representing a new genus. Structure 16(10):1555–1561PubMedPubMedCentralCrossRefGoogle Scholar
  105. Vigil A, Park MS, Martinez O, Chua MA, Xiao S, Cros JF, Martinez-Sobrido L, Woo SL, Garcia-Sastre A (2007) Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res 67(17):8285–8292PubMedCrossRefGoogle Scholar
  106. Vorburger SA, Pataer A, Swisher SG, Hunt KK (2004) Genetically targeted cancer therapy: tumor destruction by PKR activation. Am J Pharmacogenomics Genomics-Related Res Drug Dev Clin Pract 4(3):179–198Google Scholar
  107. Wang H, Li ZY, Liu Y, Persson J, Beyer I, Moller T, Koyuncu D, Drescher MR, Strauss R, Zhang XB, Wahl JK 3rd, Urban N, Drescher C, Hemminki A, Fender P, Lieber A (2011) Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 17(1):96–104PubMedCrossRefGoogle Scholar
  108. Wek RC (1994) eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem Sci 19(11):491–496PubMedCrossRefGoogle Scholar
  109. Willems WR, Kaluza G, Boschek CB, Bauer H, Hager H, Schutz HJ, Feistner H (1979) Semliki forest virus: cause of a fatal case of human encephalitis. Science 203(4385):1127–1129PubMedCrossRefGoogle Scholar
  110. Woolhouse M, Scott F, Hudson Z, Howey R, Chase-Topping M (2012) Human viruses: discovery and emergence. Phil Trans R Soc Lond Ser B Biol Sci 367(1604):2864–2871CrossRefGoogle Scholar
  111. Yanagi Y, Takeda M, Ohno S, Hashiguchi T (2009) Measles virus receptors. Curr Top Microbiol Immunol 329:13–30PubMedGoogle Scholar
  112. Zamarin D, Palese P (2012) Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 7(3):347–367PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zamarin D, Martinez-Sobrido L, Kelly K, Mansour M, Sheng G, Vigil A, Garcia-Sastre A, Palese P, Fong Y (2009) Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol Ther J Am Soc Gen Ther 17(4):697–706CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Johns Hopkins UniversityBaltimoreUSA
  2. 2.Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations