Pharmacological Applications of Metabolites of Mangrove Endophytes: A Review

  • Swagat Kumar Das
  • Dibyajyoti Samantray
  • Hrudayanath N. ThatoiEmail author


The mangroves represent one of the most productive ecosystems located in the transition zone between land and sea characterized by periodic flooding and high salinity that confers unique environmental conditions to this biome. This ecosystem is dominated particularly by mangrove plant species that provide a unique environment harbouring diverse groups of microorganisms, including the endophytic microorganisms. The mangrove plants are known for their unique and diverse metabolites and because of their intimate association with mangrove plants, the mangrove derived endophytic microorganisms are explored for structurally unprecedented bioactive natural products. Mangrove endophytes represent a rich source of bioactive metabolites and are promising source of novel constituents. A systematic investigation of their metabolites may lead to the discovery of novel bioactive agents with useful medicinal and pharmaceutical applications. Therefore, in this review article an attempt has been made to summarize the different metabolites derived from the mangrove endophytes along with their potential pharmacological role for possible pharmaceutical exploitations.


Mangroves Endophytes Metabolites Pharmacology 


  1. Andrew JH, Hirano SS (1991) Microbial ecology of leaves. Brock, LondonGoogle Scholar
  2. Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507Google Scholar
  3. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510PubMedGoogle Scholar
  4. Bharathidasan R, Panneerselvam A (2012) Antioxidant activity of the endophytic fungi isolated from mangrove environment of Karankadu, Ramanathapuram district. Int J Pharm Sci Res 3:2866–2869Google Scholar
  5. Bhimba BV, Franco DAAD, Jose GM, Mathew JM, Joel EL (2011) Characterization of cytotoxic compound from mangrove derived fungi Irpex hydnoides VB4. Asian Pac J Trop Biomed 1:223–226PubMedPubMedCentralGoogle Scholar
  6. Bin G, Yanping C, Hong Z, Zheng X, Yanqiu Z, Huaiyi F, Qiupin Z, Chenxiao Z (2014) Isolation, characterization and anti-multiple drug resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum. Trop J Pharm Res 13:593–599Google Scholar
  7. Calcul L, Waterman C, Ma WS, Lebar MD, Harter C, Mutka T, Morton L, Maignan P, Van Olphen A, Kyle DE, Vrijmoed L, Pang KL, Pearce C, Baker BJ (2013) Screening mangrove endophytic fungi for antimalarial natural products. Mar Drugs 11:5036–5050PubMedPubMedCentralGoogle Scholar
  8. Chaeprasert S, Piapukiew, Whalley AJS, Sihanonth P (2010) Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot Mar 53:555–564Google Scholar
  9. Chen YL, Mao WJ, Tao HW, Zhu WM, Yan MX, Liu X, Guo TT, Guo T (2015) Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus Fusarium oxysporum. Mar Biotechnol 16:219–228Google Scholar
  10. Chokpaiboon S, Sommit D, Teerawatananond T, Muangsin N, Bunyapaiboonsri T, Pudhom K (2010) Cytotoxic nor-chamigrane and chamigrane endoperoxides from a basidiomyce- tous fungus. J Nat Prod 73:1005–1007PubMedGoogle Scholar
  11. Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbaek L (1998) Antibacterial activity of marine derived fungi. Mycopathologia 143:135–138PubMedGoogle Scholar
  12. Ding L, Munch J, Goerls H, Maier A, Fiebig HH, Lin WH, Hertweck C (2010) Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett 20:6685–6687PubMedGoogle Scholar
  13. Ding L, Maier A, Fiebig HH, Lin WH, Hertweck C (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9:4029–4031PubMedGoogle Scholar
  14. Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P (2012) Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar Drugs 10:1081–1091PubMedPubMedCentralGoogle Scholar
  15. Elavarasi A, Sathiya Rathna G, Kalaiselvam M (2012) Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asian Pac J Trop Biomed:S1081–S1085Google Scholar
  16. Elavarasi A, Peninal S, Rathna GS, Kalaiselvam M (2014) Studies on antimicrobial compounds isolated from mangrove endophytic fungi. World J Pharm Pharm Sci 3:734–744Google Scholar
  17. Eldeen IMS (2014) Isolation of 12 bacterial endophytes from some mangrove plants and determination of, antimicrobial properties of the isolates and the plant extracts. Int J Phytomed 6:425–433Google Scholar
  18. Fisher PJ, Petrini O, Scott HL (1992) The distribution of some fungal and bacterial endophytes in maize (Zea mays L.) New Phytol 122:299–305Google Scholar
  19. Freeman EM (1904) The seed-fungus of Lolium temulentum, L., the Darnel. Philos Trans R Soc Lond B Containing Pap Biol Charact 196:1–27Google Scholar
  20. Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1203Google Scholar
  21. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104Google Scholar
  22. Huang Z, Cai X, Shao C, She Z, Xia X, Chen Y, Yang J, Zhou S, Lin Y (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69:1604–1608PubMedGoogle Scholar
  23. Huang Z, Guo Z, Yang R, Yin X, Li X, Luo W, She Z, Lin Y (2009) Chemistry and cytotoxic activities of polyketides produced by the mangrove endophytic fungus Phomopsis sp. ZSU-H76. Chem Nat Compd 45:625–628Google Scholar
  24. Huang HB, Feng XJ, Liu L, Chen B, Lu YJ, Ma L, She ZG, Lin YC (2010) Three dimeric naphtho-g-pyrones from the mangrove endophytic fungus Aspergillus tubingensis isolated from Pongamia pinnata. Planta Med 76:1888–1891PubMedGoogle Scholar
  25. Huang H, Feng X, Xiao ZE, Liu L, Li H, Ma L, Lu Y, Ju J, She Z, Lin Y (2011a) Azaphilones and p-terphenyls from the mangrove endophytic fungus Penicillium chermesinum (ZH4-E2) isolated from the South China Sea. J Nat Prod 74:997–1002PubMedGoogle Scholar
  26. Huang CH, Pan JH, Chen B, Yu M, Huang HB, Zhu X, Lu YJ, She ZG, Lin YC (2011b) Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9–6B from the South China Sea. Mar Drugs 9:832–843PubMedPubMedCentralGoogle Scholar
  27. Huang Z, Yang SZ, Lin Y (2012) A new isoflavone from the mangrove endophytic fungus Fusarium sp. (ZZF60). Nat Prod Res 26:11–15PubMedGoogle Scholar
  28. Jiny VK, Belzik N, Nisha AR, Resiya S, Resmi S, Silvipriya KS (2010) Pharmacognostical and phytochemical studies of a mangrove (Sonneratia caseolaris) from Kochi of Kerala state in India. J Pharm Res 3:2625–2627Google Scholar
  29. Job N, Manomi S, Philip R (2015) Isolation and characterisation of endophytic fungi from Avicennia officinalis. Int J Res Biomed Biotechnol 5:4–8Google Scholar
  30. Joel EL, Bhimba BV (2012) Fungi from mangrove plants: their antimicrobial and anticancer potentials. Int J Pharm Pharm Sci 3:139–142Google Scholar
  31. Jose AC, Christy PH (2013) Assessment of antimicrobial potential of endophytic bacteria isolated from Rhizophora mucronata. Int J Curr Microbiol App Sci 2:188–194Google Scholar
  32. Kandasamy S, Kandasamy K (2014) Antioxidant activity of the mangrove endophytic fungus (Trichoderma sp.) J Coast Life Med 2:566–570Google Scholar
  33. Khrueayu D, Pilantanapak A (2012) Antifungal activity of bioactive compound from endophytic fungi isolated from mangrove leaves. In: 1st Mae Fah Luang University international conferenceGoogle Scholar
  34. Kjer J (2009) New natural products from endophytic fungi from mangrove plants– structure elucidation and biological screening. PhD thesis, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, DusseldorfGoogle Scholar
  35. Klaiklay S, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Phongpaichit S, Buatong J, Sakayaroj J (2012) Chlorinated chromone and diphenyl ether derivatives from the mangrove-derived fungus Pestalotiopsis sp. PSU-MA69. Tetrahedron 68:2299–2305Google Scholar
  36. Li DL, Li XM, Li TG, Dang HY, Proksch P, Wang BG (2008) Benzaldehyde derivatives from Eurotium rubrum, an endophytic fungus derived from the mangrove plant Hibiscus tiliaceus. Chem Pharm Bull 56:1282–1285PubMedGoogle Scholar
  37. Li KK, Lu YJ, Song XH, She ZG, Wuc XW, An LK, Ye CX, Lin YC (2010) The metabolites of mangrove endophytic fungus Zh6-B1 from the South China Sea. Bioorg Med Chem Lett 20:3326–3328PubMedGoogle Scholar
  38. Li H, Huang H, Shao C, Huang H, Jiang J, Zhu X, Liu Y, Liu, Lu Y, Li M, Lin Y, She Z (2011) Cytotoxic norsesquiterpene peroxides from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala. J Nat Prod 74:1230–1235PubMedGoogle Scholar
  39. Li S, Wei M, Chen G, Lin Y (2012) Two new dihydroisocoumarins from the endophytic fungus Aspergillus sp. collected from the South China Sea. Chem Nat Compd 48:371–373Google Scholar
  40. Li D, Yan S, Proksch P, Liang Z, Li Q, Xu J (2013) Volatile metabolites profiling of a Chinese mangrove endophytic Pestalotiopsis sp. strain. Afr J Biotechnol 12:3802–3806Google Scholar
  41. Lin W, Li L, Fu H, Sattler I, Huang X, Grabley S (2005) New cyclopentenone derivatives from an endophytic Streptomyces sp. isolated from the mangrove plant Aegiceras comiculatum. J Antibiot 58:594PubMedGoogle Scholar
  42. Lin Z, Zhu T, Fang Y, Gu Q, Zhu W (2008) Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 69:1273–1278PubMedGoogle Scholar
  43. Lin Z, Zhang GJ, Zhu TJ, Liu R, Wei HJ, Gu Q (2009) Bioactive cytochalasins from Aspergillus flavipes, an endophytic fungus associated with the mangrove plant Acanthus ilicifolius. Helv Chim Acta 92:1538–1544Google Scholar
  44. Ling OM, Teen LP, Mujahid A, Proksch P, Muller M (2016) Initial screening of mangrove endophytic fungi for antimicrobial compounds and heavy metal biosorption potential. Sains Malays 45:1063–1071Google Scholar
  45. Liu F, Cai XL, Yang H, Xia XK, Guo ZY, Yuan J, Li MF, She ZG, Lin YC (2010) The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Planta Med 76:185–189PubMedGoogle Scholar
  46. Liu D, Li XM, Meng L, Li CS, Gao SS, Shang Z, Proksch P, Huang CG, Wang BG (2011) Nigerapyrones A-H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132. J Nat Prod 74:1687–1691Google Scholar
  47. Liu Y, Xia G, Li H, Ma L, Ding B, Lu Y (2014) Vermistatin derivatives with α-glucosidase inhibitory activity from the mangrove endophytic fungus Penicillium sp. HN29-3B1. Planta Med 80:912–916PubMedGoogle Scholar
  48. Lu Z, Zhu H, Fu P, Wang Y, Zhang Z, Lin H, Liu P, Zhuang Y, Hong K, Zhu W (2010) Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum. J Nat Prod 73:911–914PubMedGoogle Scholar
  49. Maria GL, Sridhar KR, Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of South west coast of India. J Agric Tech 1:67–80Google Scholar
  50. Mcinroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 163:337–342Google Scholar
  51. Mei WL, Zheng B, Zhao YX, Zhong HM, Chen XL, Zeng YB, Dong WH, Huang JL, Proksch P, Dai HF (2012) Meroterpenes from endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea. Mar Drugs 10:1993–2001PubMedPubMedCentralGoogle Scholar
  52. Molina G, Pimentel MR, Bertucci TCP, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:289–294Google Scholar
  53. Norhayati A, Shukor MN, Juliana S, Wan Juliana WA (2009) Mangrove flora and fauna of Klang islands mangrove forest reserves, Selangor, Malaysia. Malays J Sci 28:275–288Google Scholar
  54. Ravindran C, Naveenan T, Varatharajan GR, Rajasabapathy R, Meena RM (2012) Antioxidants in mangrove plants and endophytic fungal associations. Bot Mar 55:269–279Google Scholar
  55. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581PubMedGoogle Scholar
  56. Rukachaisirikul V, Rodglin A, Sukpondma Y, Phongpaichit S, Buatong J, Sakayaroj J (2012) Phthalide and isocoumarin derivatives produced by an Acremonium sp. isolated from a mangrove Rhizophora apiculata. J Nat Prod 75:853–858PubMedGoogle Scholar
  57. Saad S, Taher M, Susanti D, Qaralleh H, Awang AF (2012) In vitro antimicrobial activity of mangrove plant Sonneratia alba. Asian P J Trp Bio 2:427–429Google Scholar
  58. Salini G, Madhusoodhanan A, Joseph A, Mohan A, Navya RK, Nair VV (2015) Antibacterial and antioxidant potential of endophytic fungi isolated from mangroves. Der Pharmacia Lett 7:53–57Google Scholar
  59. Shao SL, Wang CY, Gu YC, Wei MY, Pan JH, Deng DS, She ZG, Lin YC (2010) Penicinoline, a new pyrrolyl 4-quinolinone alkaloid with an unprecedented ring system from an endophytic fungus Penicillium sp. Bioorg Med Chem Lett 20:3284–3286PubMedGoogle Scholar
  60. Singh SB, Zink DL, Polishook JD, Dombrowski AW, Darkin-Rattray SJ, Schmatz DM, Goetz MA (1996) Apicidins: novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett 37:8077–8080Google Scholar
  61. Singh R, Sharma M, Joshi P, Rawat DS (2008) Clinical status of anti-cancer agents derived from marine sources. Anti Cancer Agents Med Chem 8:603–616Google Scholar
  62. Sona Janarthine SR, Eganathan P, Balasubramanian T, Vijayalakshmi S (2011) Endophytic bacteria isolated from the pneumatophores of Avicennia marina. Afr J Microbiol Res 5:4455–4466Google Scholar
  63. Song Y, Wang J, Huang H, Ma L, Wang J, Gu Y, Liu L, Lin Y (2012) Four eremophilane sesquiterpenes from the mangrove endophytic fungus Xylaria sp. BL321. Mar Drugs 10:340–348PubMedPubMedCentralGoogle Scholar
  64. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Sci N Y Then Wash 260:214Google Scholar
  65. Stone V, Brown DM, Watt N, Wilson M, Donaldson K, Ritchie H, MacNee W (2000) Ultrafine particle-mediated activation of macrophages: intracellular calcium signaling and oxidative stress. Inhal Toxicol 12:345–351PubMedGoogle Scholar
  66. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedPubMedCentralGoogle Scholar
  67. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products, from endophytic microorganisms. J Nat Prod 67:257–268PubMedGoogle Scholar
  68. Swarthout D, Harper E, Judd S, Gonthier D, Shyne R, Stowe T, Bultman T (2009) Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses. Environ Exp Bot 66:88–93Google Scholar
  69. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedGoogle Scholar
  70. Tan C, Liu Z, Chen S, Huang X, Cui H, Long Y, Lu Y, She Z (2016) Antioxidative polyketones from the mangrove-derived fungus Ascomycota sp. SK2YWS-L. Sci Rep 6:36609–36618PubMedPubMedCentralGoogle Scholar
  71. Thatoi HN, Patra JK, Das SK (2014) Free radical scavenging and antioxidant potential of mangrove plants: a review. Acta Physiol Plant 36:561–579Google Scholar
  72. Wang J, Lu Z, Liu P, Wang Y, Li J, Hong K, Zhu W (2012) Cytotoxic polyphenols from the fungus Penicillium expansum 091006 endogenous with the mangrove plant Excoecaria agallocha. Planta Med 78:1861–1866PubMedGoogle Scholar
  73. Wang J, Cox DG, Ding W, Huang G, Lin Y, Li C (2014) Three new resveratrol derivatives endophytic fungus Alternaria sp. Mar Drugs 12:2840–2850PubMedPubMedCentralGoogle Scholar
  74. Wenhan L, Liya L, Hongzheng F, Isabel S, Xueshi H, Susane G (2005) New cyclopentenone derivatives from an endophytic Streptomyces sp. isolated from the mangrove plant Aegiceras comiculatum. J Antibiot 58:594–598Google Scholar
  75. Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwisetkanjana K, Ruangrungsi N, Meevootisom V (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J Microbiol Biotechnol 20:265–272Google Scholar
  76. Xia XK, Huang HR, She ZG, Cai JW, Lan L, Zhang JY, Fuc LW, Vrijmoed LLP, Lin YC (2007) Structural and biological properties of vermistatin and two new vermistatin derivatives isolated from the marine-mangrove endophytic fungus Guignardia sp. No. 4382. Helv Chim Acta 90:1925–1931Google Scholar
  77. Xiaoling C, Xiaoli L, Shining Z, Junping G, Shuiping W, Xiaoming L, Zhigang S, Yongcheng L (2010) Cytotoxic and topoisomerase I inhibitory activities from extracts of endophytic fungi isolated from mangrove plants in Zhuhai, China. J Ecol Nat Environ 2:16–24Google Scholar
  78. Xu J, Kjer J, Sendker J, Wray V, Guan H, Edrada RA, Lin WH, Wu J, Proksch P (2009) Chromones from the endophytic fungus Pestalotiopsis sp. Isolated from the Chinese Mangrove plant Rhizophora mucronata. J Nat Prod 72:662–665PubMedGoogle Scholar
  79. Yan HJ, Lia XM, Lia CS, Wang BG (2012) Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus Eurotium rubrum. Helv Chim Acta 95:163–168Google Scholar
  80. Yanagihara M, Sasaki-Takahashi N, Sugahara T, Yamamoto S, Shinomi M, Yamashita I, Hayashida M, Yamanoha B, Numata A, Yamori T, Andoh T (2005) Leptosins isolated from marine fungus Leptoshaeria species inhibit DNA topoisomerases I and/or II and induce apoptosis by inactivation of Akt/protein kinase B. Cancer Sci 96:816–824PubMedGoogle Scholar
  81. Zhang JY, Wu HY, Xia XK, Liang YJ, Yan YY, She ZG, Lin YC, Fu LW (2007) Anthracenedione derivative 1403P-3 induces apoptosis in KB and KBv200 cells via reactive oxygen species-independent mitochondrial pathway and death receptor pathway. Cancer Biol Ther 6:1409–1416Google Scholar
  82. Zhang JY, Tao LY, Liang YJ, Yan YY, Dai CL, Xia XK, She ZG, Lin YC, Fu LW (2009) Secalonic acid D induced leukemia cell apoptosis and cell cycle arrest of G1 with involvement of GSK-3β/β-catenin/c-Myc pathway. Cell Cycle 8:2444–2450PubMedGoogle Scholar
  83. Zhang J, Tao L, Liang Y, Chen L, Mi Y, Zheng L, Wang F, She Z, Lin Y, Wah KK, Fu L (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8:1469–1481PubMedPubMedCentralGoogle Scholar
  84. Zhang G, Sun S, Zhu T, Lin Z, Gu J, Li D, Gu Q (2011) Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry 72:1436–1442PubMedGoogle Scholar
  85. Zhou H, Zhu T, Cai S, Gu Q, Li D (2011) Drimane sesquiterpenoids from the mangrove-derived fungus Aspergillus ustus. Chem Pharm Bull 59:762–766PubMedGoogle Scholar
  86. Zhu F, Chen X, Yuan Y, Huang M, Sun H, Xiang W (2009) The chemical investigations of the mangrove plant Avicennia marina and its endophytes. Open Nat Prod J 2:24–32Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Swagat Kumar Das
    • 1
  • Dibyajyoti Samantray
    • 1
  • Hrudayanath N. Thatoi
    • 2
    Email author
  1. 1.Department of BiotechnologyCollege of Engineering and Technology (BPUT)BhubaneswarIndia
  2. 2.Department of BiotechnologyNorth Orissa UniversityBaripadaIndia

Personalised recommendations