Exploring the Multifaceted Role of Microbes in Pharmacology

  • Mitali Mishra
  • Kanchan Vishwakarma
  • Jaspreet Singh
  • Shruti Jain
  • Vivek Kumar
  • Durgesh Kumar Tripathi
  • Shivesh SharmaEmail author


With the continuous growth in human population, rising incidence and predominance of various diseases, there is growing need for development of natural as well as engineered diagnostic systems and drugs in order to meet the therapeutic demands. Since microorganisms have evolved in nature with an astounding set of mechanisms utilized in detecting and responding to varied, transient and enduring external stimuli, such microbial systems can be utilized in diagnosis as well as giving competition to animal cells in producing value added products due to its easy and low cost processing. The re-making of various biosensing systems by incorporating whole cells intend to provide efficient biological detection and measurable response. Microbes governing the synthesis of biopolymers are also found to be exploited in developing new generation of novel drug delivery systems and as repair material of tissues. The area of synthetic biology together with novel microbial systems and whole cells is gaining rapid attention in diagnostics and global health challenges. With this background, the present chapter highlights various applications of microbes in pharmaceutical industries with special emphasis on diagnosis and drug delivery.


Antibiotics Drug delivery Enzyme inhibitor Microbes 



The authors are thankful to Director, MNNIT Allahabad for providing necessary research facilities and acknowledge the support of MHRD sponsored project “Design and Innovation Centre” and Centre for Medical Diagnostic and Research (CMDR), MNNIT Allahabad.


  1. Abdel-Lateff A, Klemke C, König GM, Wright AD (2003) Two new xanthone derivatives from the algicolous marine fungus Wardomycesanomalus. J Nat Prod 66:706–708CrossRefPubMedGoogle Scholar
  2. Abdel-Lateff A, König GM, Fisch KM, Höller U, Jones PG, Wright AD (2005) New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J Nat Prod 65:1605–1611CrossRefGoogle Scholar
  3. Aumiller JJ, Hollister JR, Jarvis DL (2003) A transgenic insect cell line engineered to produce CMP–sialic acid and sialylated glycoproteins. Glycobiology 13(6):497–507CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ballio A, Bossa F, Collina A, Gallo M, Iacobellis NS, Paci M, Pucci P, Scaloni A, Segre A, Simmaco M (1990) Structure of syringotoxin, a bioactive metabolite of Pseudomonas syringaepv. syringae. FEBS Lett 269:377–380CrossRefPubMedGoogle Scholar
  5. Bleckwenn NA, Shiloach J (2004) Large-scale cell culture. Curr Protoc Immunol. A-1UGoogle Scholar
  6. Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, New YorkGoogle Scholar
  7. Buss AD, Waigh RD (1995) Natural products as leads for new pharmaceuticals. In: Wolff ME (ed) Burger’s medicinal chemistry and drug discovery. Principles and practice, vol 1. Wiley, New York, pp 983–1033Google Scholar
  8. Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MA, Teplow DB, Stevens D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedianigriscansa. Microbiology 148:2675–2685CrossRefPubMedGoogle Scholar
  9. Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, Gallo M, Ferracane R, Mannina L, Viel S, Codde M (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett 255:296–300CrossRefPubMedGoogle Scholar
  10. Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharm Rev. 2013 7:11CrossRefGoogle Scholar
  11. Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatins by the bacterial symbiont “CandidatusEndobugulasertula” of the bryozoan Bugula neritina. Appl Environ Microbiol 67:4531–4537CrossRefPubMedPubMedCentralGoogle Scholar
  12. Devine DA, Marsh PD (2009) Prospects for the development of probiotics and prebiotics for oral applications. J Ora Micro 1:1949CrossRefGoogle Scholar
  13. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Indu Microbiol Biotech 38:873–890CrossRefGoogle Scholar
  14. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Eng 42:355–357CrossRefGoogle Scholar
  15. Ghosh G, Bachas LG, Anderson KW (2008) Biosensor incorporating cell barrier architectures on ion selective electrodes for early screening of cancer. Anal Bioanal Chem 391:2783–2791CrossRefPubMedGoogle Scholar
  16. Harrigan GG, Yoshida WY, Moore RE, Nagle DG, Park PU, Biggs J, Paul VJ, Mooberry SL, Corbett TH, Valeriote FA (1998) Isolation, structure determination, and biological activity of dolastatin and lyngbyastatin 1 from Lyngbyamajuscula/Schizothrixcalcicola cyanobacterial assemblages. J Nat Prod 61:1221–1225CrossRefPubMedGoogle Scholar
  17. Harrison L, Teplow DB, Rinaldi M, Strobel G (1991) Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. Microbiology 137:2857–2865Google Scholar
  18. Hidalgo-Bastida LA, Barry JJA, Everitt NM, Rose FRAJ, Buttery LD, Hall IP, Claycomb WC, Shakesheff KM (2007) Cell Adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomaterialia 3:457–462CrossRefPubMedGoogle Scholar
  19. Hoffmann S, Maculloch B, Batz M (2015) Economic burden of major foodborne illnesses acquired in the United States. USDA-140. GPO, Washimhton, DCGoogle Scholar
  20. Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian β1, 4-galactosyltransferase and α2, 6-sialyltransferase genes. Glycobiology 11(1):1–9CrossRefPubMedGoogle Scholar
  21. Hollister J, Grabenhorst E, Nimtz M, Conradt H, Jarvis DL (2002) Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41(50):15093–15104CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14(7):599–624CrossRefGoogle Scholar
  23. Jenkins N (2007) Modifications of therapeutic proteins: challenges and prospects. Cytotechnology 53(1–3):121–125CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kim EJ, Cho SH, Yuk SH (2001) Polymeric microspheres composed of pH/temperature- sensitive polymer complex. Biomaterials 22:2495–2499CrossRefPubMedGoogle Scholar
  25. Kintzios SE (2007) Cell-based biosensors in clinical chemistry. Mini-Rev Med Chem 7:1019–1026CrossRefPubMedGoogle Scholar
  26. Kurkuri MD, Aminabhavi TM (2004) Poly(vinyl alcohol) and poly(acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. J Control Release 96:9–20CrossRefPubMedGoogle Scholar
  27. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:610–907Google Scholar
  28. Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6(11):903–918CrossRefPubMedGoogle Scholar
  29. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178CrossRefPubMedGoogle Scholar
  30. Martin O, Averous L (2001) Poly (Lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRefGoogle Scholar
  31. Masci G, Bontempo D, Crescenzi V (2002) Synthesis and characterization of thermoresponsive N-isopropylacrylamide/methacrylated pullulan hydrogels. Polymer 43:5587–5593CrossRefGoogle Scholar
  32. Mihai D, Mocanu G, Carpov A (2001) Chemical reactions on polysaccharides: I. Pullulan sulfation. Eur Polym J 37:541–546CrossRefGoogle Scholar
  33. Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow DB, Strobel GA (1998) Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol 84:937–944CrossRefPubMedGoogle Scholar
  34. Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA) inorganic Ohase composites for tissue engineering applications. Biomacromolecules 7:2249–2258CrossRefPubMedGoogle Scholar
  35. Mohan C, Kim YG, Koo J et al (2008) Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol J 3(5):624–630CrossRefPubMedGoogle Scholar
  36. Nakagawa A, Minami H, Kim JS, Koyanagi T, Katayama T, Sato F, Kumagai H (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nissim A, Chernajovsky Y (2008) Historical development of monoclonal antibody therapeutics. In: Therapeutic antibodies. Springer, Berlin, pp 3–18CrossRefGoogle Scholar
  38. Rogers KR, Gerlach CL (1999) An update on environmental biosensors. Environ Sci Technol 33(23):500A–506ACrossRefPubMedGoogle Scholar
  39. Rechnitz GA, Kobos RK, Riechel SJ, Gebauer CR (1977) A bio-selective membrane electrode prepared with living bacterial cells. Anal Chim Acta 94:357–365CrossRefPubMedGoogle Scholar
  40. Redwan ERM (2007) Cumulative updating of approved biopharmaceuticals. Hum Antibodies 16:137–158CrossRefGoogle Scholar
  41. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94(8):1626–1635CrossRefPubMedGoogle Scholar
  42. Struss PP, Ensor CM, Raut N, Daunert S (2010) Paper strip whole cell biosensors: a portable test for the semi quantitative detection of bacterial quorum signaling molecules. Anal Chem 82:4457–4463CrossRefPubMedGoogle Scholar
  43. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799CrossRefGoogle Scholar
  44. Trindade-Silva AE, Lim-Fong GE, Sharp KH, Haygood MG (2010) Bryostatins: biological context and biotechnological prospects. Curr Opin Biotechnol 21:780–786CrossRefGoogle Scholar
  45. Wang X, Liu M, Wang X, Wu Z, Yang L, Xia S, Chen L, Zhao J (2013) p-Benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosens Bioelectron 41:557–562CrossRefGoogle Scholar
  46. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252CrossRefPubMedGoogle Scholar
  47. Wang J, Guleria S, Koffas MA, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104CrossRefGoogle Scholar
  48. Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Meta Eng 17:42CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mitali Mishra
    • 2
    • 1
  • Kanchan Vishwakarma
    • 2
  • Jaspreet Singh
    • 2
  • Shruti Jain
    • 2
    • 1
  • Vivek Kumar
    • 3
  • Durgesh Kumar Tripathi
    • 2
  • Shivesh Sharma
    • 2
    • 1
    Email author
  1. 1.Central of Medical and Diagnostic ResearchMNNIT AllahabadAllahabadIndia
  2. 2.Department of BiotechnologyMotilal Nehru National Institute of TechnologyAllahabadIndia
  3. 3.Department of Biotechnology, Himalayan Institute of BiosciencesSwami Rama Himalayan UniversityDehradunIndia

Personalised recommendations