Microbes and Their Role in Drought Tolerance of Agricultural Food Crops

  • Rout George Kerry
  • Sushmita Patra
  • Sushanto Gouda
  • Jayanta Kumar Patra
  • Gitishree DasEmail author


The competency to cause disease within or around the food crops is not the only role impersonated by the microbes. Instead in certain cases, they also orchestrate a contradictory role that is as sentinels of food safety and an eco-friendly, alternative embellishment of crop plants under abiotic stress. Out of various stress factors, drought is considered as one of the devastating consequence of global warming and a major issue of food scarcity in the present decade. Most of the current research is focused on the drought management through different interdisciplinary fusion of scientific technologies. Drought affects the agricultural crop plants to a limit, which if not considered then the outcome would cause an irreversible chronic impact on the agricultural sustainability. Moreover when viewed at the tissue or cellular level the stress tolerance of crop plants is often impaired by the annihilation of the dynamic texture of the soil, to which again high temperature, low humidity and massive inputs of pesticides could be held responsible. While at the molecular level interrelated physiological stress such as salt stress, oxidative stress, and phosphate starvation are critical considerations lurking in the path of proper growth, survival and nourishment of crop plants under such hostile conditions. These impacts could be ameliorated in a more efficiently through biological processes, such as bioremediation, bioaugmentation, bioaccumulation biotransformation, phytostimulation and biofertilization that are brought about by in vivo or in vitro technologies based on microbiology and biotechnology. Therefore the current chapter focuses on the application of biologically based technologies and their significance in the enhancement of drought tolerance of agricultural food crops.


Microorganisms Drought tolerance Bioremediation Bioaugmentation Biotransformation Phytostimulation 


  1. Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157:3347–3350PubMedCrossRefGoogle Scholar
  2. Anitha D, Vijaya T, Reddy NV et al (2013) Microbial endophytes and their potential for improved bioremediation and biotransformation: a review. Indo Am J pharm res 3:8Google Scholar
  3. Arzanesh M, Alikhani H, Khavazi K et al (2009) In vitro growth of wheat (Triticum aestivum L.) seedlings inoculated with Azospirillum sp., under drought stress. Int J Bot 5:244–249CrossRefGoogle Scholar
  4. Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94PubMedCentralCrossRefGoogle Scholar
  5. Aziz G, Bajsa N, Haghjou T et al (2012) Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop-pasture rotations in a no-tillage regime in Uruguay. Appl Soil Ecol 61:320–326CrossRefGoogle Scholar
  6. Balammal G, Reddy PJ (2012) Proteomics & genomics- a review. J Sci 2:91–95Google Scholar
  7. Barnawal D, Nidhi Bharti N, Shiv Shanker Pandey SS et al (2017) Plant growth promoting rhizobacteria enhances wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514PubMedCrossRefGoogle Scholar
  8. Bevan MW, Uauy C, Wulff BBH et al (2017) Genomic innovation for crop improvement. Nature 543:346–354PubMedCrossRefGoogle Scholar
  9. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66PubMedPubMedCentralCrossRefGoogle Scholar
  10. Broun P, Poindexter P, Osborne E et al (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci U S A 101:4706–4711PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brunner I, Herzog C, Dawes MA et al (2015) How tree roots respond to drought? Front Plant Sci 6:547PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cavinato M, Waltenberger B, Baraldo G et al (2017) Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontol 18:499–516PubMedPubMedCentralCrossRefGoogle Scholar
  13. Comas LH, Becker SR, Cruz VMV et al (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442PubMedPubMedCentralCrossRefGoogle Scholar
  14. Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J 2012:1–10CrossRefGoogle Scholar
  15. Desalegn G, Turetschek R, Kaul HP et al (2016) Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection. J Proteome 143:173–187CrossRefGoogle Scholar
  16. Dombrowski JE, Hollenbeck VG, Martin RC (2017) Isolation and identification of bacterial endophytes from grasses along the Oregon Coast. Am J Plant Sci 8:574–601CrossRefGoogle Scholar
  17. FAO (2017) The future of food and agriculture – trends and challenges. Food & Agriculture Organization of the United Nations, RomeGoogle Scholar
  18. Fita A, Rodríguez-Burruezo A, Boscaiu M et al (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978PubMedPubMedCentralCrossRefGoogle Scholar
  19. Food Security Information Network (FSIN) (2017) Global report on food crises 2017.
  20. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464PubMedPubMedCentralCrossRefGoogle Scholar
  21. Frosi G, Harand W, de Oliveira MT et al (2017) Different physiological responses under drought stress result in different recovery abilities of two tropical woody evergreen species. Acta Bot Bras 31(2):153–160CrossRefGoogle Scholar
  22. Gałązka A, Krol M, Perzynski A (2012) the efficiency of rhizosphere bioremediation with Azospirillum sp. and Pseudomonas stutzeri in soils freshly contaminated with PAHs and diesel fuel. Pol J Environ Stud 21(2):345–353Google Scholar
  23. Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13–22PubMedPubMedCentralCrossRefGoogle Scholar
  24. Garcia RM, Parra-Quijano M, Iriondo JM (2017) Identification of ecogeographical gaps in the Spanish Aegilops collections with potential tolerance to drought and salinity. PeerJ 5:e3494PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gill SS, Gill R, Trivedi DK et al (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gkorezis P, Daghio M, Franzetti A et al (2017) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836Google Scholar
  27. Govindasamy V, George P, Aher L et al (2017) Comparative conventional and phenomics approaches to assess symbiotic effectiveness of Bradyrhizobia strains in soybean (Glycine max L. Merrill) to drought. Sci Rep 7(1):6958PubMedPubMedCentralCrossRefGoogle Scholar
  28. Greenfield M, Gómez-Jimenez MI, Ortiz V (2016) Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol Control 95:40–48PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gupta PK, Balyan HS, Gahlaut V (2017a) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7(5):1–21Google Scholar
  30. Gupta V, Malik DS, Dinesh K (2017b) Risk assessment of heavy metal pollution in middle stretch of river Ganga: an introspection. Int Res J Environ Sci 6(2):62–71Google Scholar
  31. Hamayun M, Hussain A, Khan SA et al (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686Google Scholar
  32. Han P, Wang Z-J (2016) Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects. Sci Rep 6:32403. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hatfield JL, Prueger JH (2015) Temperature extremes: effects on plant growth and development. Weather and Climate Extremes 10:4–10CrossRefGoogle Scholar
  34. Hocquette JF, Malek IC, Scalbert A, Guillou F (2009) The contribution of genomics to the understanding of physiological function. J Physiol Pharmacol 3:5–6Google Scholar
  35. Houle G, Morel L, Reynolds C, Siegel J (2001) The effect of salinity on different developmental stages of an endemic annual plant, Aster laurentianus (Asteraceae). Am J Bot 88(1):62–67PubMedCrossRefGoogle Scholar
  36. Hussain A, Hamayun M, Shah ST (2013) Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12. Curr Microbiol 67(5):624–630PubMedCrossRefGoogle Scholar
  37. Hussian J, Shah ST, Rahman H et al (2015) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:46Google Scholar
  38. International Food Policy Research Institute (IFPRI) (2017) 2017 Global food policy report. International Food Policy Research Institute, Washington, DC. Scholar
  39. Irmak S (2016) Impacts of extreme heat stress and increased soil temperature on plant growth and development. Retrieved from
  40. Jaleel CA, Sankar B, Murali PV et al (2008) Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus: impacts on ajmalicine accumulation. Colloids Surf B: Biointerfaces 62:105–111PubMedCrossRefGoogle Scholar
  41. Kar RK (2011) Plant responses to water stress role of reactive oxygen species. Plant Signal Behav 6(11):1741–1745PubMedPubMedCentralCrossRefGoogle Scholar
  42. Khan Z, Rho H, Firrincieli A et al (2016) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47CrossRefGoogle Scholar
  43. Komatsu S, Hossain Z (2017) Preface-plant proteomic research. Int J Mol Sci 18:88PubMedCentralCrossRefGoogle Scholar
  44. Kosova K, Vitamvas P, Urban MO et al (2015) Biological networks underlying abiotic stress tolerance in temperate crops- a proteomic perspective. Int J Mol Sci 16:20913–20942PubMedPubMedCentralCrossRefGoogle Scholar
  45. Landi S, Hausman J-F, Guerriero G, Esposito S (2017) Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives. Front Plant Sci 8:1214PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87PubMedCrossRefGoogle Scholar
  47. Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50:6632–6643PubMedCrossRefGoogle Scholar
  48. Liu Z, Li Y, Cao H et al (2015) Comaparative phosphor-proteomics analysis of salt-responsive phosphoproteins regulated by the MKK9-MPK6 cascade in Arabidopsis. Plant Sci 241:138–150PubMedCrossRefGoogle Scholar
  49. Lumactud R, Shen SY, Lau M, Fulthorpe R (2016) Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination. Front Microbiol 7:755PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ma Y, Zhang C, Oliveira RS et al (2016) Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal rhizoaccumulation in host Sedum plumbizincicola. Front Plant Sci 7:75PubMedPubMedCentralGoogle Scholar
  51. Manavalan LP, Guttikonda SK, Tran L-SP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50(7):1260–1276PubMedCrossRefGoogle Scholar
  52. Mangmang JS, Deaker R, Rogers G et al (2015) Azospirillum brasilense enhances recycling of fish effluent to support growth of tomato seedlings. Horticulturae 1(1):14–26CrossRefGoogle Scholar
  53. Marasco R, Rolli E, Ettoumi B et al (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7(10):e48479PubMedPubMedCentralCrossRefGoogle Scholar
  54. Meena KK, Sorty AM, Bitla UM et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front Plant Sci 8:172Google Scholar
  55. Miao Z, Han Z, Zhang T et al (2017) A systems approach to a spatiotemporal understanding of the drought stress response in maize. Sci Rep 7(1):6590PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mohd S, Shukla J, Kushwaha AS et al (2017) Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity. Front Microbiol 8:754PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mushtaq S, Khan F, Shafiq M et al (2017) Endophytic bacteria: a beneficial organism. Int J Biosci 10(6):1–12CrossRefGoogle Scholar
  58. Muthamilarasan M, Prasad M (2016) Role of genomics in enhancing nutrition content of cereals. In: Al-Khayri JM, Jain SM, Johnson DV (ed) Advances in Plant Breeding Strategies, Vol 2: Agronomic, Abiotic and Biotic Stress Traits. Springer, Switzerland, p 77–96.CrossRefGoogle Scholar
  59. Naveed M, Hussain M, Zahir ZA et al (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytifirmans strain PsJN. Plant Growth Regul 73:121–131CrossRefGoogle Scholar
  60. Nelson SK, Melvin J (2017) A soil-plate based pipeline for assessing cereal root growth in response to polyethylene glycol (PEG)-induced water deficit stress. Front Plant Sci 8:1272. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125CrossRefGoogle Scholar
  62. Niinemets U (2016) Uncovering the hidden facets of drought stress: secondary metabolites make the difference. Tree Physiol 36:129–132PubMedCrossRefGoogle Scholar
  63. Ningxiao LI, Alfiky A, Vaughan MM, Kang S (2016) Stop and smell the fungi: fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol Rev 30(3):134–144CrossRefGoogle Scholar
  64. Oberhofer M, Gusewell S, Leuchtmann A (2014) Effects of natural hybrid and non-hybrid Epichloe endophytes on the response of Hordelymus europaeus to drought stress. New Phytol 201:242–253PubMedCrossRefGoogle Scholar
  65. Osakabe Y, Osakabe K, Shinozaki K, Tran L-SP (2014) Response of plants to water stress. Front Plant Sci 5:86PubMedPubMedCentralCrossRefGoogle Scholar
  66. Park Y-G, Mun B-G, Kang S-M et al (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12(3):e0173203PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pedrosa AM, Cidade LC, Martins CPS et al (2017) Effect of overexpression of citrus 9-cis-epoxycarotenoid dioxygenase 3 (CsNCED3) on the physiological response to drought stress in transgenic tobacco. Genet Mol Res 16(1):gmr16019292CrossRefGoogle Scholar
  68. Perez-Rosales E, Alcaraz-Melendez L, Puente ME (2017) Isolation and characterization of endophytic bacteria associated with roots of jojoba (Simmondsia chinensis (Link) Schneid). Curr Sci 112:396–401CrossRefGoogle Scholar
  69. Pierre E, Louise NW, Marie TKR (2016) Integrated assessment of phytostimulation and biocontrol potential of endophytic Trichoderma spp against common bean (Phaseolus vulgaris L.) root rot fungi complex in centre region, cameroon. Int J Pure App Biosci 4(4):50–68CrossRefGoogle Scholar
  70. Pini F, East AK, Appia-Ayme C et al (2017) Bacterial biosensors for in vivo spatiotemporal mapping of root secretion. Plant Physiol 174(3):1289–1306PubMedCrossRefPubMedCentralGoogle Scholar
  71. Prapagdee B, Chanprasert M, Mongkolsuk S (2013) Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92:659–666PubMedCrossRefGoogle Scholar
  72. Rao DE, Chaitanya KV (2016) Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant 60(2):201–218CrossRefGoogle Scholar
  73. Redfern LK, Gunsch CK (2016) Endophytic Phytoaugmentation: treating wastewater and runoff through augmented phytoremediation. Ind Biotechnol 12(2):83–90CrossRefGoogle Scholar
  74. Reuben S, Estrada ES, Ping H (2013) Effect of drought on microbial growth in plant rhizospheres. J Microbiol Res 3(2):83–86Google Scholar
  75. Rho H, Hsieh M, Kandel SL et al (2017) Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb Ecol 1–12. doi:  10.1007/s00248-017-1054-3 CrossRefPubMedGoogle Scholar
  76. Roychowdhury D, Mondal S, Banerjee SK (2017) The effect of biofertilizers and the effect of vermicompost on the cultivation and productivity of maize – a review. Adv Crop Sci Tech 5(1):1–4CrossRefGoogle Scholar
  77. Ruggiero A, Punzo P, Landi S et al (2017) Improving plant water use efficiency through molecular genetics. Horticulturae 3(2):31CrossRefGoogle Scholar
  78. Sahoo RK, Ansari MW, Dangar TK et al (2014) Phenotypic and molecular characterization of efficient nitrogen fixing Azotobacter strains of the rice fields. Protoplasma 251(3):511–523PubMedCrossRefGoogle Scholar
  79. Salomon RL, Limousin JM, Ourcival JM et al (2017) Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. Plant Cell Environ 40(8):1379–1391PubMedCrossRefGoogle Scholar
  80. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99PubMedCrossRefGoogle Scholar
  81. Schiavon M, Pilon-Smits EAH (2017) Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual 46:10–19PubMedCrossRefGoogle Scholar
  82. Sena A, Ebi KL, Freitas C et al (2017) Indicators to measure risk of disaster associated with drought: implications for the health sector. PLoS One 12(7):e0181394PubMedPubMedCentralCrossRefGoogle Scholar
  83. Shah MP (2017) Bio-augmentation: a fantabulous technology in waste water treatment. Int J Waste Resour 7:264CrossRefGoogle Scholar
  84. Shakoor A, Abdullah M, Sarfraz R et al (2017) A comprehensive review on phytoremediation of cadmium (Cd) by mustard (Brassica juncea L.) and sunflower (Helianthus annuus L.) J Biol Environ Sci 10(3):88–98Google Scholar
  85. Sheikh FM, Dar ZA, Sofi PA, Lone AA (2017) Recent advances in breeding for abiotic stress (drought) tolerance in Maize. Int J Curr Microbiol App Sci 6(4):2226–2243CrossRefGoogle Scholar
  86. Sheng X, Chen X, He L (2008) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int Biodeterior Biodegrad 62:88–95CrossRefGoogle Scholar
  87. Sherameti I, Tripathi S, Varma A, Oelmuller R (2008) The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress–related genes in leaves. Mol Plant-Microbe Interact 21(6):799–807PubMedCrossRefGoogle Scholar
  88. Shi P, Li B, Chen H et al (2017) Iron supply affects anthocyanin content and related gene expression in berries of Vitis vinifera cv. cabernet sauvignon. Molecules 22(2):283. CrossRefGoogle Scholar
  89. Shikha M, Kanika A, Rao AR et al (2017) Genomic selection for drought tolerance using genome-wide SNPs in Maize. Front Plant Sci 8:550PubMedPubMedCentralCrossRefGoogle Scholar
  90. Singh D, Laxmi A (2015) Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci 6:895PubMedPubMedCentralGoogle Scholar
  91. Sinha RK, Valani D, Chauhan K et al (2014) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms; reviving the dreams of Charles Darwin. Int J Agric Health Saf 1:50–64Google Scholar
  92. Sourour A, Afef O, Mounir R, Mongi BY (2017) A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Int J Eng Res 6(1):1–4Google Scholar
  93. Souza RD, Ambrosini A, Passaglia LMP (2015) Genetics growth promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419PubMedPubMedCentralCrossRefGoogle Scholar
  94. Srivastava AK, Srivastava S, Lokhande VH et al (2015) Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Front Environ Sci 3:19Google Scholar
  95. Suzuki N, Rivero RM, Shulaev V et al (2014) Abiotic and biotic stress combinations. New Phytol 203:32-43PubMedCrossRefGoogle Scholar
  96. Tolulope RA, Adeyemi AI, Erute MA, Abiodun TS (2015) Isolation and screening of endophytic fungi from three plants used in traditional medicine in Nigeria for antimicrobial activity. Int J Green Pharm 9:58–62CrossRefGoogle Scholar
  97. Vacheron J, Desbrosses G, Bouffaud ML et al (2013) Plant growth promoting rhizobacteria and root system functioning. Front Plant Sci 4:356PubMedPubMedCentralCrossRefGoogle Scholar
  98. Vargas L, Brigida ABS, Filho JPM et al (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9(12):e114744PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SZ (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedCrossRefGoogle Scholar
  100. Wang J-L, Li T, Liu G-Y et al (2016a) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wang X, Cai X, Xu C et al (2016b) Drought-responsive mechanisms in plant leaves revealed by proteomics. Int J Mol Sci 17(1706):1–30CrossRefGoogle Scholar
  102. Wang Y, Hu B, Du S et al (2016c) Proteomic analysis reveal the mechanism of Dunaliella salina Ds-26-16 gene enhancing salt tolerance in Escherichia coli. PLoS One 11:e0153640PubMedPubMedCentralCrossRefGoogle Scholar
  103. Waqas M, Kim Y-H, Khan AL et al (2017) Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 18(2):109–124CrossRefGoogle Scholar
  104. Weekers F, Jacques IP, Springae D et al (1998) Effect of drying on bioremediation bacteria properties. Appl Biochem Biotechnol 70-72:311–322PubMedCrossRefGoogle Scholar
  105. Weyens N, Beckers B, Schellingen K et al (2015) The potential of the Ni-resistant TCE-degrading Pseudomonas putida W619-TCE to reduce phytotoxicity and improve phytoremediation efficiency of poplar cuttings on A Ni-TCE co-contamination. Int J Phytoremediation 17(1):40–48PubMedCrossRefGoogle Scholar
  106. Witzel K, Ustun S, Schreiner M et al (2017) A proteomic approach suggests unbalanced proteasome functioning induced by the growth-promoting bacterium Kosakonia radicincitans in Arabidopsis. Front Plant Sci 8:661PubMedPubMedCentralCrossRefGoogle Scholar
  107. Xu L, Wang A, Wang J et al (2017) Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. Crop J 5:251–258CrossRefGoogle Scholar
  108. Xue D, Zhang X, Lu X et al (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621PubMedPubMedCentralCrossRefGoogle Scholar
  109. Yang L, Fountain JC, Chu Y et al (2016) Differential accumulation of reactive oxygen and nitrogen species in maize lines with contrasting drought tolerance and aflatoxin resistance. Phytopathology 106:S2.16CrossRefGoogle Scholar
  110. Yaoyao E, Yuan J, Yang F et al (2017) PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression. AMB Express 7:104CrossRefGoogle Scholar
  111. Yu H, Zhang Y, Xie Y et al (2017) Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. J Plant Pathol 214:123–133Google Scholar
  112. Zahoor M, Irshad M, Rahman H et al (2017) Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicol Environ Saf 142:139–149PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rout George Kerry
    • 1
  • Sushmita Patra
    • 1
  • Sushanto Gouda
    • 2
  • Jayanta Kumar Patra
    • 3
  • Gitishree Das
    • 3
    Email author
  1. 1.P.G. Department of BiotechnologyAcademy of Management and Information TechnologyKhurdaIndia
  2. 2.Amity Institute of Wildlife ScienceAmity UniversityNoidaIndia
  3. 3.Research Institute of Biotechnology and Medical Converged ScienceDongguk UniversityGoyang-siSouth Korea

Personalised recommendations