Advertisement

Definition and Clinical Significance of Continuous Glucose Monitoring Parameters

  • Y. F. Mo
  • W. Jia
Chapter

Abstract

With the advancement of continuous glucose monitoring (CGM), a series of studies have been carried out on glycemic parameters involved in the clinical use of CGM. CGM parameters include those that reflect blood glucose levels, glycemic variability, and risk of hypoglycemia. The specific definitions, formulas, clinical significance, and calculation procedures of these parameters are described in detail in this chapter.

Keywords

Continuous glucose monitoring Parameters Mean blood glucose Glycemic variability 

References

  1. 1.
    Yu M, Zhou J, Xiang K, Lu H, Ma X, Lu W. The glycemic excursions in normal glucose tolerance individuals revealed by continuous glucose monitoring system. Zhonghua Yi Xue Za Zhi. 2004;84:1788–90.  https://doi.org/10.3760/j:issn:0376-2491.2004.21.009.CrossRefPubMedGoogle Scholar
  2. 2.
    Chinese Diabetes Society. Chinese clinical guideline for continuous glucose monitoring (2012). Chin J Diabetes Mellit. 2012;4:582–90.  https://doi.org/10.3760/cma.j.issn.1674-5809.2012.10.003.CrossRefGoogle Scholar
  3. 3.
    McCarter RJ, Hempe JM, Chalew SA. Mean blood glucose and biological variation have greater influence on HbA1c levels than glucose instability: an analysis of data from the Diabetes Control and Complications Trial. Diabetes Care. 2006;29:352–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Moberg E, Kollind M, Lins PE, Adamson U. Estimation of blood-glucose variability in patients with insulin-dependent diabetes mellitus. Scand J Clin Lab Invest. 1993;53:507–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36:3008–13.  https://doi.org/10.1097/CCM.0b013e31818b38d2.CrossRefPubMedGoogle Scholar
  6. 6.
    Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105:244–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Kuenen JC, Borg R, Kuik DJ, Zheng H, Schoenfeld D, Diamant M, Nathan DM, Heine RJ, ADAG Study Group. Does glucose variability influence the relationship between mean plasma glucose and HbA1c levels in type 1 and type 2 diabetic patients? Diabetes Care. 2011;34:1843–7.  https://doi.org/10.2337/dc10-2217.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bragd J, Adamson U, Bäcklund LB, Lins PE, Moberg E, Oskarsson P. Can glycaemic variability, as calculated from blood glucose self-monitoring, predict the development of complications in type 1 diabetes over a decade? Diabete Metab. 2008;34:612.  https://doi.org/10.1016/j.diabet.2008.04.005.CrossRefPubMedGoogle Scholar
  9. 9.
    Rodbard D. New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol Ther. 2009;11:551–65.  https://doi.org/10.1089/dia.2009.0015.CrossRefPubMedGoogle Scholar
  10. 10.
    Rodbard D. Clinical interpretation of indices of quality of glycemic control and glycemic variability. Postgrad Med. 2011;123:107–18.  https://doi.org/10.3810/pgm.2011.07.2310.CrossRefPubMedGoogle Scholar
  11. 11.
    Šoupal J, Škrha J Jr, Fajmon M, Horová E, Mráz M, Škrha J, Prázný M. Glycemic variability is higher in type 1 diabetes patients with microvascular complications irrespective of glycemic control. Diabetes Technol Ther. 2014;16:198–203.  https://doi.org/10.1089/dia.2013.0205.CrossRefPubMedGoogle Scholar
  12. 12.
    Jun JE, Jin SM, Baek J, Oh S, Hur KY, Lee MS, Lee MK, Kim JH. The association between glycemic variability and diabetic cardiovascular autonomic neuropathy in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:70.  https://doi.org/10.1186/s12933-015-0233-0.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Subramaniam B, Lerner A, Novack V, Khabbaz K, Paryente-Wiesmann M, Hess P, Talmor D. Increased glycemic variability in patients with elevated preoperative HbA1C predicts adverse outcomes following coronary artery bypass grafting surgery. Anesth Analg. 2014;118:277–87.  https://doi.org/10.1213/ANE.0000000000000100.CrossRefPubMedGoogle Scholar
  14. 14.
    Takeishi S, Mori A, Hachiya H, Yumura T, Ito S, Shibuya T, Hayashi S, Fushimi N, Ohashi N, Kawai H. Hypoglycemia and glycemic variability are associated with mortality in non-intensive care unit hospitalized infectious disease patients with diabetes mellitus. J Diabetes Invest. 2016;7:429–35.  https://doi.org/10.1111/jdi.12436.CrossRefGoogle Scholar
  15. 15.
    Bergenstal RM, Ahmann AJ, Bailey T, Beck RW, Bissen J, Buckingham B, Deeb L, Dolin RH, Garg SK, Goland R, Hirsch IB, Klonoff DC, Kruger DF, Matfin G, Mazze RS, Olson BA, Parkin C, Peters A, Powers MA, Rodriguez H, Southerland P, Strock ES, Tamborlane W, Wesley DM. Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: the Ambulatory Glucose Profile (AGP). Diabetes Technol Ther. 2013;15:198–211.  https://doi.org/10.1089/dia.2013.0051.CrossRefPubMedGoogle Scholar
  16. 16.
    Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes. 1970;19:644–55.CrossRefPubMedGoogle Scholar
  17. 17.
    Mo YF, Zhou J, Jia WP. The clinical significance and research progress of MAGE as a glycemic variability index. Chin J Diabetes Mellit. 2011;3:259–63.  https://doi.org/10.3760/cma.j.issn.1674-5809.2011.03.016.CrossRefGoogle Scholar
  18. 18.
    Service FJ, O’Brien PC, Rizza RA. Measurements of glucose control. Diabetes Care. 1987;10:225–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Schlichtkrull J, Munck O, Jersild M. M-value, an index of blood-sugar control in diabetics. Acta Med Scand. 1965;177:95–102.CrossRefPubMedGoogle Scholar
  20. 20.
    Mirouze J, Satingher A, Sany C, Jaffiol C. Insulin efficiency coefficient. m coefficient of Schlichtkrull corrected and simplified by the continuous blood glucose recording technic. Diabete. 1963;11:267–73.PubMedGoogle Scholar
  21. 21.
    Saisho Y, Tanaka C, Tanaka K, Roberts R, Abe T, Tanaka M, Meguro S, Irie J, Kawai T, Itoh H. Relationships among different glycemic variability indices obtained by continuous glucose monitoring. Prim Care Diabetes. 2015;9:290–6.  https://doi.org/10.1016/j.pcd.2014.10.001.CrossRefPubMedGoogle Scholar
  22. 22.
    Oyibo SO, Prasad YD, Jackson NJ, Jude EB, Boulton AJ. The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabet Med. 2002;19:870–3.  https://doi.org/10.1046/j.1464-5491.2002.00801.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Wójcicki JM. J″-index. A new proposition of the assessment of current glucose control in diabetic patients. Horm Metab Res. 1995;27:41–2.CrossRefPubMedGoogle Scholar
  24. 24.
    McDonnell CM, Donath SM, Vidmar SI, Werther GA, Cameron FJ. A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol Ther. 2005;7:253–63.  https://doi.org/10.1089/dia.2005.7.253.CrossRefPubMedGoogle Scholar
  25. 25.
    Cameron FJ, Donath SM, Baghurst PA. Measuring glycaemic variation. Curr Diabetes Rev. 2010;6:17–26.  https://doi.org/10.2174/157339910790442592.CrossRefPubMedGoogle Scholar
  26. 26.
    Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. A1c-Derived Average Glucose Study Group. Translating the A1C assay into estimated average glucose values. Diabetes Care. 2008;31:1473–8.  https://doi.org/10.2337/dc08-0545.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Borg R, Kuenen JC, Carstensen B, Zheng H, Nathan DM, Heine RJ, Nerup J, Borch-Johnsen K, Witte DR. ADAG Study Group. HbA1(c) and mean blood glucose show stronger associations with cardiovascular disease risk factors than do postprandial glycaemia or glucose variability in persons with diabetes: the A1C-Derived Average Glucose (ADAG) study. Diabetologia. 2011;54:69–72.  https://doi.org/10.1007/s00125-010-1918-2.CrossRefPubMedGoogle Scholar
  28. 28.
    Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, Devries JH. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010;38:838–42.  https://doi.org/10.1097/CCM.0b013e3181cc4be9.CrossRefPubMedGoogle Scholar
  29. 29.
    Kohnert KD, Heinke P, Fritzsche G, Vogt L, Augstein P, Salzsieder E. Evaluation of the mean absolute glucose change as a measure of glycemic variability using continuous glucose monitoring data. Diabetes Technol Ther. 2013;15:448–54.  https://doi.org/10.1089/dia.2012.0303.CrossRefPubMedGoogle Scholar
  30. 30.
    Siegelaar SE, Kerr L, Jacober SJ, Devries JH. A decrease in glucose variability does not reduce cardiovascular event rates in type 2 diabetic patients after acute myocardial infarction: a reanalysis of the HEART2D study. Diabetes Care. 2011;34:855–7.  https://doi.org/10.2337/dc10-1684.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Monnier L, Colette C. Glycemic variability: can we bridge the divide between controversies? Diabetes Care. 2011;34:1058–9.  https://doi.org/10.2337/dc11-0071.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mooy JM, Grootenhuis PA, de Vries H, Kostense PJ, Popp-Snijders C, Bouter LM, Heine RJ. Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study. Diabetologia. 1996;39:298–305.CrossRefPubMedGoogle Scholar
  33. 33.
    Gimeno-Orna JA, Castro-Alonso FJ, Boned-Juliani B, Lou-Arnal LM. Fasting plasma glucose variability as a risk factor of retinopathy in Type 2 diabetic patients. J Diabetes Complicat. 2003;17:78–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Takao T, Ide T, Yanagisawa H, Kikuchi M, Kawazu S, Matsuyama Y. The effect of fasting plasma glucose variability on the risk of retinopathy in type 2 diabetic patients: retrospective long-term follow-up. Diabetes Res Clin Pract. 2010;89:296–302.  https://doi.org/10.1016/j.diabres.2010.03.027.CrossRefPubMedGoogle Scholar
  35. 35.
    Lin CC, Li CI, Yang SY, Liu CS, Chen CC, Fuh MM, Chen W, Li TC. Variation of fasting plasma glucose: a predictor of mortality in patients with type 2 diabetes. Am J Med. 2012;125:416.e9–18.  https://doi.org/10.1016/j.amjmed.2011.07.027.CrossRefGoogle Scholar
  36. 36.
    Muggeo M, Zoppini G, Bonora E, Brun E, Bonadonna RC, Moghetti P, Verlato G. Fasting plasma glucose variability predicts 10-year survival of type 2 diabetic patients: the Verona Diabetes Study. Diabetes Care. 2000;23:45–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Buscemi S, Re A, Batsis JA, Arnone M, Mattina A, Cerasola G, Verga S. Glycaemic variability using continuous glucose monitoring and endothelial function in the metabolic syndrome and in Type 2 diabetes. Diabet Med. 2010;27:872–8.  https://doi.org/10.1111/j.1464-5491.2010.03059.x.CrossRefPubMedGoogle Scholar
  38. 38.
    Alemzadeh R, Loppnow C, Parton E, Kirby M. Glucose sensor evaluation of glycemic instability in pediatric type 1 diabetes mellitus. Diabetes Technol Ther. 2003;5:167–73.  https://doi.org/10.1089/152091503321827821.CrossRefPubMedGoogle Scholar
  39. 39.
    Colombel A, Murat A, Krempf M, Kuchly-Anton B, Charbonnel B. Improvement of blood glucose control in Type 1 diabetic patients treated with lispro and multiple NPH injections. Diabet Med. 1999;16:319–24.  https://doi.org/10.1046/j.1464-5491.1999.00077.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Service FJ, Nelson RL. Characteristics of glycemic stability. Diabetes Care. 1980;3:58–62.CrossRefPubMedGoogle Scholar
  41. 41.
    American Diabetes Association. Postprandial blood glucose. American Diabetes Association. Diabetes Care. 2001;24:775–8.CrossRefGoogle Scholar
  42. 42.
    Zhou J, Jia WP, Yu M, Ma XJ, Bao YQ, Lu W. The features of postprandial glucose state in type 2 diabetes mellitus. Zhonghua Yi Xue Za Zhi. 2006;86:970–5.  https://doi.org/10.3760/j:issn:0376-2491.2006.14.009.CrossRefPubMedGoogle Scholar
  43. 43.
    Bonora E, Calcaterra F, Lombardi S, Bonfante N, Formentini G, Bonadonna RC, Muggeo M. Plasma glucose levels throughout the day and HbA(1c) interrelationships in type 2 diabetes: implications for treatment and monitoring of metabolic control. Diabetes Care. 2001;24:2023–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Chon S, Lee YJ, Fraterrigo G, Pozzilli P, Choi MC, Kwon MK, Chin SO, Rhee SY, Oh S, Kim YS, Woo JT. Evaluation of glycemic variability in well-controlled type 2 diabetes mellitus. Diabetes Technol Ther. 2013;15:455–60.  https://doi.org/10.1089/dia.2012.0315.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care. 2003;26:881–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Kovatchev BP, Cox DJ, Gonder - Frederick LA, Clarke W. Symmetrization of the blood glucose measurement scale and its applications. Diabetes Care. 1997;20:1655–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Kovatchev BP, Cox DJ, Gonder-Frederick LA, Young-Hyman D, Schlundt D, Clarke W. Assessment of risk for severe hypoglycemia among adults with IDDM: validation of the low blood glucose index. Diabetes Care. 1998;21:1870–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Cox DJ, Kovatchev BP, Julian DM, Gonder-Frederick LA, Polonsky WH, Schlundt DG, Clarke WL. Frequency of severe hypoglycemia in insulin-dependent diabetes mellitus can be predicted from self-monitoring blood glucose data. J Clin Endocrinol Metab. 1994;79:1659–62.  https://doi.org/10.1210/jcem.79.6.7989471.CrossRefPubMedGoogle Scholar
  49. 49.
    Kovatchev BP, Cox DJ, Kumar A, Gonder-Frederick L, Clarke WL. Algorithmic evaluation of metabolic control and risk of severe hypoglycemia in type 1 and type 2 diabetes using self-monitoring blood glucose data. Diabetes Technol Ther. 2003;5:817–28.  https://doi.org/10.1089/152091503322527021.CrossRefPubMedGoogle Scholar
  50. 50.
    Kovatchev BP, Cox DJ, Gonder-Frederick L, Clarke WL. Methods for quantifying self-monitoring blood glucose profiles exemplified by an examination of blood glucose patterns in patients with type 1 and type 2 diabetes. Diabetes Technol Ther. 2002;4:295–303.  https://doi.org/10.1089/152091502760098438.CrossRefPubMedGoogle Scholar
  51. 51.
    Luo P, Cheng Q, Chen B, Li Y, Wu J, Zhang X, Jiao X, Zhao J, Lv X. Hypoglycemia and blood glucose fluctuations in the application of a sensor-augmented insulin pump. Diabetes Technol Ther. 2013;15:984–9.  https://doi.org/10.1089/dia.2013.0078.CrossRefPubMedGoogle Scholar
  52. 52.
    Peña AS, Couper JJ, Harrington J, Gent R, Fairchild J, Tham E, Baghurst P. Hypoglycemia, but not glucose variability, relates to vascular function in children with type 1 diabetes. Diabetes Technol Ther. 2012;14:457–62.  https://doi.org/10.1089/dia.2011.0229.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ryan EA, Shandro T, Green K, Paty BW, Senior PA, Bigam D, Shapiro AM, Vantyghem MC. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes. 2004;53:955–62.CrossRefPubMedGoogle Scholar
  54. 54.
    Augstein P, Heinke P, Vogt L, Vogt R, Rackow C, Kohnert KD, Salzsieder E. Q-Score: development of a new metric for continuous glucose monitoring that enables stratification of antihyperglycaemic therapies. BMC Endocr Disord. 2015;15:22.  https://doi.org/10.1186/s12902-015-0019-0.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hill NR, Hindmarsh PC, Stevens RJ, Stratton IM, Levy JC, Matthews DR. A method for assessing quality of control from glucose profiles. Diabet Med. 2007;24:753–8.  https://doi.org/10.1111/j.1464-5491.2007.02119.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Lachin JM, Bebu I, Bergenstal RM, Pop-Busui R, Service FJ, Zinman B, Nathan for the DCCT/EDIC Research Group. Association of glycemic variability in type 1 diabetes with progression of microvascular outcomes in the diabetes control and complications trial. Diabetes Care. 2017;40:777–83.  https://doi.org/10.2337/dc16-2426.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kilpatrick ES, Rigby AS, Atkin SL. Effect of glucose variability on the long-term risk of microvascular complications in type 1 diabetes. Diabetes Care. 2009;32:1901–3.  https://doi.org/10.2337/dc09-0109.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Siegelaar SE, Kilpatrick ES, Rigby AS, Atkin SL, Hoekstra JB, Devries JH. Glucose variability does not contribute to the development of peripheral and autonomic neuropathy in type 1 diabetes: data from the DCCT. Diabetologia. 2009;52:2229–32.  https://doi.org/10.1007/s00125-009-1473-x.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care. 2008;31:2198–202.  https://doi.org/10.2337/dc08-0864.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wadén J, Forsblom C, Thorn LM, Gordin D, Saraheimo M, Groop PH, Finnish Diabetic Nephropathy Study Group. A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes. Diabetes. 2009;58:2649–55.  https://doi.org/10.2337/db09-0693.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sugawara A, Kawai K, Motohashi S, Saito K, Kodama S, Yachi Y, Hirasawa R, Shimano H, Yamazaki K, Sone H. HbA(1c) variability and the development of microalbuminuria in type 2 diabetes: Tsukuba Kawai Diabetes Registry 2. Diabetologia. 2012;55:2128–31.  https://doi.org/10.1007/s00125-012-2572-7.CrossRefPubMedGoogle Scholar
  62. 62.
    Rodríguez-Segade S, Rodríguez J, García López JM, Casanueva FF, Camiña F. Intrapersonal HbA(1c) variability and the risk of progression of nephropathy in patients with Type 2 diabetes. Diabet Med. 2012;29:1562–6.  https://doi.org/10.1111/j.1464-5491.2012.03767.x.CrossRefPubMedGoogle Scholar
  63. 63.
    Hsu CC, Chang HY, Huang MC, Hwang SJ, Yang YC, Lee YS, Shin SJ, Tai TY. HbA1c variability is associated with microalbuminuria development in type 2 diabetes: a 7-year prospective cohort study. Diabetologia. 2012;55:3163–72.  https://doi.org/10.1007/s00125-012-2700-4.CrossRefPubMedGoogle Scholar
  64. 64.
    Luk AO, Ma RC, Lau ES, Yang X, Lau WW, Yu LW, Chow FC, Chan JC, So WY. Risk association of HbA1c variability with chronic kidney disease and cardiovascular disease in type 2 diabetes: prospective analysis of the Hong Kong Diabetes Registry. Diabetes Metab Res Rev. 2013;29:384–90.  https://doi.org/10.1002/dmrr.2404.CrossRefPubMedGoogle Scholar
  65. 65.
    Lee EJ, Kim YJ, Kim TN, Kim TI, Lee WK, Kim MK, Park JH, Rhee BD. A1c variability can predict coronary artery disease in patients with type 2 diabetes with mean a1c levels greater than 7. Endocrinol Metab. 2013;28:125–32.  https://doi.org/10.3803/EnM.2013.28.2.125.CrossRefGoogle Scholar
  66. 66.
    Kim CS, Park SY, Yu SH, Kang JG, Ryu OH, Lee SJ, Hong EG, Kim HK, Kim DM, Yoo JM, Ihm SH, Choi MG, Yoo HJ. Is A1c variability an independent predictor for the progression of atherosclerosis in type 2 diabetic patients? Korean Diabetes J. 2010;34:174–81.  https://doi.org/10.4093/kdj.2010.34.3.174.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, Morano S, Cavalot F, Lamacchia O, Laviola L, Nicolucci A, Pugliese G, Renal Insufficiency and Cardiovascular Events Study Group. HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: the Renal Insufficiency and Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care. 2013;36:2301–10.  https://doi.org/10.2337/dc12-2264.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Penno G, Solini A, Zoppini G, Orsi E, Fondelli C, Zerbini G, Morano S, Cavalot F, Lamacchia O, Trevisan R, Vedovato M, Pugliese G, Renal Insufficiency and Cardiovascular Events (RIACE) Study Group. Hemoglobin A1c variability as an independent correlate of cardiovascular disease in patients with type 2 diabetes: a cross-sectional analysis of the renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Cardiovasc Diabetol. 2013;12:98.  https://doi.org/10.1186/1475-2840-12-98.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Scientific and Technical Publishers 2018

Authors and Affiliations

  1. 1.Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University, Affiliated Sixth People’s HospitalShanghaiChina

Personalised recommendations