Optimal Planning of Grid Reinforcement with Demand Response Control

Chapter
Part of the Power Systems book series (POWSYS)

Abstract

This chapter presents a hybrid methodology based on a local search algorithm and a genetic algorithm, used to address the multi-objective and multistage optimal distribution expansion planning problem. The methodology is conceived to solve optimal network investment problems under the new possibilities enabled by the smart grid, namely the new observability and controllability investments that will be available to enable demand response in the future. The multi-objective methodology is applied to an existing low-voltage electric distribution network under a congestion scenario to yield a Pareto-optimal set of solutions. The solutions are then projected onto the two investment possibilities considered: demand control investments and traditional network asset investments. The projected surface is then analyzed to discuss the merit of demand control with respect to postponing traditional asset investments.

Keywords

Demand response Distribution planning Information and communications technology Network optimization 

References

  1. 1.
    M.V.F. Pereira, L.M.V.G. Pinto, S.H. Cunha, G.C. Oliveira, A decomposition approach to automated generation transmission expansion planning. IEEE Trans. Power Syst. PAS-104(11), 3074–3083 (1985)Google Scholar
  2. 2.
    R. Romero, A. Monticelli, A Hierarchical decomposition approach for transmission network expansion planning. IEEE Trans. Power Syst. 9(1), 373–380 (1994)CrossRefGoogle Scholar
  3. 3.
    R. Romero, A. Monticelli, A zero-one implicit enumeration method for optimizing investments in transmission expansion planning. IEEE Trans. Power Syst. 9(3), 1385–1391 (1994)CrossRefGoogle Scholar
  4. 4.
    G.C. Oliveira, A.P.C. Costa, S. Binato, Large scale transmission network planning using optimization and heuristic techniques. IEEE Trans. Power Syst. 10(4), 1828–1833 (1995)CrossRefGoogle Scholar
  5. 5.
    R. Romero, R.A. Gallego, A. Monticelli, Transmission expansion planning by simulated annealing. IEEE Trans. Power Syst. 11(1), 364–369 (1996)CrossRefGoogle Scholar
  6. 6.
    H. Rudnick, R. Palma, E. Cura, C. Silva, Economically adapted transmission systems in open access schemes—application of genetic algorithms. IEEE Trans. Power Syst. 11(3), 1427–1440 (1996)CrossRefGoogle Scholar
  7. 7.
    R.A. Gallego, A. Monticelli, R. Romero, Comparative studies on non-convex optimization methods for transmission network expansion planning. IEEE Trans. Power Syst. 13(3), 822–828 (1998)CrossRefGoogle Scholar
  8. 8.
    X. Wang, Y. Mao, Improved genetic algorithm for optimal multistage transmission system planning. IEEE (2001)Google Scholar
  9. 9.
    L.L. Garver, Transmission network estimation using linear programming. IEEE Trans. Power Syst. PAS-89(1), 1688–1697 (1970)CrossRefGoogle Scholar
  10. 10.
    A. Monticelli, A. Santos, M.V.F. Pereira, S.H. Cunha, B.J. Parker, J.C.G. Praça, Interactive transmission network planning using a least-effort criterion. IEEE Trans. Power App. Syst. PAS-101(10), 3919–3925 (1982)CrossRefGoogle Scholar
  11. 11.
    M.V.F. Pereira, L.M.V.G. Pinto, S.H. Cunha, G.C. Oliveira, A decomposition approach to automated generation/transmission expansion planning. IEEE Trans. Power Syst. PAS-104(11), 3074–3083 (1985)Google Scholar
  12. 12.
    R. Romero, A. Monticelli, A hierarchical decomposition approach for transmission network expansion planning. IEEE Trans. Power Syst. 9(1), 373–380 (1994)CrossRefGoogle Scholar
  13. 13.
    R. Romero, A. Monticelli, A zero-one implicit enumeration method for optimizing investments in transmission expansion planning. IEEE Trans. Power Syst. 9(3), 1385–1391 (1994)CrossRefGoogle Scholar
  14. 14.
    G.C. Oliveira, A.P.C. Costa, S. Binato, Large scale transmission network planning using optimization and heuristic techniques. IEEE Trans. Power Syst. 10(4), 1828–1833 (1995)CrossRefGoogle Scholar
  15. 15.
    A. Escobar, R.A. Gallego, R. Romero, Multistage and coordinated planning of the expansion of transmission systems. IEEE Trans. Power Syst. 19(2), 735–744 (2004)CrossRefGoogle Scholar
  16. 16.
    H. Rudnick, R. Palma, E. Cura, C. Silva, Economically adapted transmission systems in open access schemes—application of genetic algorithms. IEEE Trans. Power Syst. 11(3), 1427–1440 (1996)CrossRefGoogle Scholar
  17. 17.
    S. Binato, M.V. Pereira, S. Granville, A new benders decomposition approach to solve power transmission design problems. IEEE Trans. Power Syst. 16(2), 235–240 (2001)CrossRefGoogle Scholar
  18. 18.
    R. Romero, R.A. Gallego, A. Monticelli, Transmission expansion planning by simulated annealing. IEEE Trans. Power Syst. 11(1), 364–369 (1996)CrossRefGoogle Scholar
  19. 19.
    E.L. Silva, J.M.A. Ortiz, G.C. Oliveira, S. Binato, Transmission network expansion planning under a tabu search approach. IEEE Trans. Power Syst. 16(1), 62–1440 (2001)CrossRefGoogle Scholar
  20. 20.
    S. Binato, G.C. Oliveira, J.L. Araújo, A greedy randomized adaptive search procedure for transmission expansion planning. IEEE Trans. Power Syst. 16(2), 247–253 (2001)CrossRefGoogle Scholar
  21. 21.
    J. Contreras, F.F. Wu, A kernel-oriented algorithm for transmission expansion planning. IEEE Trans. Power Syst. 15(4), 1434–1440 (2000)CrossRefGoogle Scholar
  22. 22.
    M. Pinedo, Scheduling—Theory, Algorithms, and Systems (Prentice Hall, 1995). ISBN 0-13-706757-7Google Scholar
  23. 23.
    F.S. Reis, M. Pinto, P.M.S. Carvalho, L.A.F.M. Ferreira, Short-Term Investment Scheduling in Transmission Power Systems by Evolutionary Computation—DRPT2000 (London, April 2000)Google Scholar
  24. 24.
    F.S. Reis, P.M.S. Carvalho, L.A.F.M. Ferreira, Combining gauss and genetic algorithms for multi-objective transmission expansion planning. WSEAS Trans. Syst. 3(1), 206–209 (2004)Google Scholar
  25. 25.
    F.S. Reis, P.M.S. Carvalho, L.A.F.M. Ferreira, Reinforcement scheduling convergence in power systems transmission planning. IEEE Trans. Power Syst. 20(2), 1151–1157 (2005)CrossRefGoogle Scholar
  26. 26.
    A. Dias, P.M.S. Carvalho, P. Almeida, S. Rapoport, Multi-objective distribution planning approach for optimal network investment with EV charging control, in Presented at PowerTech 2015 (June 2015) [Online], Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7232674
  27. 27.
    K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Alexandre M. F. Dias
    • 1
    • 2
  • Pedro M. S. Carvalho
    • 1
    • 2
  1. 1.Department of Electrical and Computer EngineeringInstituto Superior Técnico, University of LisbonLisbonPortugal
  2. 2.Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento (INESC-ID)LisbonPortugal

Personalised recommendations