Advertisement

Replication Through Repetitive DNA Elements and Their Role in Human Diseases

  • Advaitha Madireddy
  • Jeannine GerhardtEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

Human cells contain various repetitive DNA sequences, which can be a challenge for the DNA replication machinery to travel through and replicate correctly. Repetitive DNA sequence can adopt non-B DNA structures, which could block the DNA replication. Prolonged stalling of the replication fork at the endogenous repeats in human cells can have severe consequences such as genome instability that includes repeat expansions, contractions, and chromosome fragility. Several neurological and muscular diseases are caused by a repeat expansion. Furthermore genome instability is the major cause of cancer. This chapter describes some of the important classes of repetitive DNA sequences in the mammalian genome, their ability to form secondary DNA structures, their contribution to replication fork stalling, and models for repeat expansion as well as chromosomal fragility. Included in this chapter are also some of the strategies currently employed to detect changes in DNA replication and proteins that could prevent the repeat-mediated disruption of DNA replication in human cells. Additionally summarized are the consequences of repeat-associated perturbation of the DNA replication, which could lead to specific human diseases.

Keywords

DNA replication Repeat sequences Human diseases Replication fork stalling DNA helicases Secondary DNA structures Non-B DNA Repeat expansion Genome instability 

References

  1. Adler CP, Friedburg H (1986) Myocardial DNA content, ploidy level and cell number in geriatric hearts: post-mortem examinations of human myocardium in old age. J Mol Cell Cardiol 18(1):39–53PubMedCrossRefGoogle Scholar
  2. Agazie YM, Lee JS, Burkholder GD (1994) Characterization of a new monoclonal antibody to triplex DNA and immunofluorescent staining of mammalian chromosomes. J Biol Chem 269(9):7019–7023PubMedGoogle Scholar
  3. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46(2):115–124. https://doi.org/10.1016/j.molcel.2012.04.009 PubMedCrossRefGoogle Scholar
  4. Al-Hadid Q, Yang Y (2016) R-loop: an emerging regulator of chromatin dynamics. Acta Biochim Biophys Sin Shanghai 48(7):623–631. https://doi.org/10.1093/abbs/gmw052 PubMedCrossRefGoogle Scholar
  5. Alver RC, Chadha GS, Blow JJ (2014) The contribution of dormant origins to genome stability: from cell biology to human genetics. DNA Repair 19:182–189. https://doi.org/10.1016/j.dnarep.2014.03.012 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anand RP, Shah KA, Niu H, Sung P, Mirkin SM, Freudenreich CH (2011) Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 40:1091. doi:gkr836 [pii] 1093/nar/gkr836PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anatskaya OV, Vinogradov AE (2007) Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 89(1):70–80. https://doi.org/10.1016/j.ygeno.2006.08.014 PubMedCrossRefGoogle Scholar
  8. Arlt MF, Miller DE, Beer DG, Glover TW (2002) Molecular characterization of FRAXB and comparative common fragile site instability in cancer cells. Genes Chromosom Cancer 33(1):82–92PubMedCrossRefGoogle Scholar
  9. Arlt MF, Casper AM, Glover TW (2003) Common fragile sites. Cytogenet Genome Res 100(1–4):92–100. doi:72843PubMedCrossRefGoogle Scholar
  10. Banez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA, Tusi SK, ... Ranum LP (2015). RAN translation in Huntington disease. Neuron 88(4):667–677. https://doi.org/10.1016/j.neuron.2015.10.038
  11. Barlow JH, Faryabi RB, Callen E, Wong N, Malhowski A, Chen HT, ... Nussenzweig A (2013). Identification of early replicating fragile sites that contribute to genome instability. Cell 152(3):620–632. https://doi.org/10.1016/j.cell.2013.01.006
  12. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26(56):7773–7779. https://doi.org/10.1038/sj.onc.1210881 PubMedCrossRefGoogle Scholar
  13. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM (2000) WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60(8):2140–2145PubMedGoogle Scholar
  14. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of DNA by a moving interface. Science 265:2096–2098PubMedCrossRefGoogle Scholar
  15. Bergoglio V, Boyer AS, Walsh E, Naim V, Legube G, Lee MY, ... Hoffmann JS (2013). DNA synthesis by Pol eta promotes fragile site stability by preventing under-replicated DNA in mitosis. J Cell Biol 201(3):395–408. https://doi.org/10.1083/jcb.201207066
  16. Bhat A, Andersen PL, Qin Z, Xiao W (2013) Rev3, the catalytic subunit of Polzeta, is required for maintaining fragile site stability in human cells. Nucleic Acids Res 41(4):2328–2339. https://doi.org/10.1093/nar/gks1442 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bhattacharyya S, Lahue RS (2004) Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats. Mol Cell Biol 24(17):7324–7330. https://doi.org/10.1128/MCB.24.17.7324-7330.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blow JJ, Ge XQ (2009) A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Rep 10(4):406–412. doi:embor20095 [pii] 1038/embor.2009.5PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blow JJ, Ge XQ, Jackson DA (2011) How dormant origins promote complete genome replication. Trends Biochem Sci 36(8):405–414. https://doi.org/10.1016/j.tibs.2011.05.002 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13(11):770–780. https://doi.org/10.1038/nrg3296 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brodsky WY, Uryvaeva IV (1977) Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol 50:275–332PubMedCrossRefGoogle Scholar
  22. Brosh RM Jr, Bohr VA (2002) Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Exp Gerontol 37(4):491–506PubMedCrossRefGoogle Scholar
  23. Brosh RM Jr., Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, ... Bohr VA (2000). Replication protein A physically interacts with the Bloom’s syndrome protein and stimulates its helicase activity. J Biol Chem 275(31):23500–23508. https://doi.org/10.1074/jbc.M001557200 M001557200 [pii]
  24. Burkholder GD, Latimer LJ, Lee JS (1988) Immunofluorescent staining of mammalian nuclei and chromosomes with a monoclonal antibody to triplex DNA. Chromosoma 97(3):185–192PubMedCrossRefGoogle Scholar
  25. Burrow AA, Marullo A, Holder LR, Wang YH (2010) Secondary structure formation and DNA instability at fragile site FRA16B. Nucleic Acids Res 38(9):2865–2877. https://doi.org/10.1093/nar/gkp1245 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Buske FA, Mattick JS, Bailey TL (2011) Potential in vivo roles of nucleic acid triple-helices. RNA Biol 8(3):427–439PubMedPubMedCentralCrossRefGoogle Scholar
  27. Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111(6):779–789PubMedCrossRefGoogle Scholar
  28. Casper AM, Durkin SG, Arlt MF, Glover TW (2004) Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet 75(4):654–660. https://doi.org/10.1086/422701 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chan KL, Hickson ID (2009) On the origins of ultra-fine anaphase bridges. Cell Cycle 8(19):3065–3066. https://doi.org/10.4161/cc.8.19.9513 PubMedCrossRefGoogle Scholar
  30. Chan KL, Palmai-Pallag T, Ying S, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11(6):753–760. https://doi.org/10.1038/ncb1882 PubMedCrossRefGoogle Scholar
  31. Chatterjee N, Lin Y, Santillan BA, Yotnda P, Wilson JH (2015) Environmental stress induces trinucleotide repeat mutagenesis in human cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1421917112
  32. Chaudhury I, Stroik DR, Sobeck A (2014) FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks. Mol Cell Biol 34(21):3939–3954. https://doi.org/10.1128/MCB.00457-14 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chesi M, Bergsagel PL, Shonukan OO, Martelli ML, Brents LA, Chen T, ... Kuehl WM (1998). Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 91(12):4457–4463Google Scholar
  34. Cho DH, Tapscott SJ (2007) Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochim Biophys Acta 1772(2):195–204. doi:S0925-4439(06)00098-6 [pii] 1016/j.bbadis.2006.05.013PubMedCrossRefGoogle Scholar
  35. Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ (2005) Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20(3):483–489. doi:S1097-2765(05)01599-6 [pii] 1016/j.molcel.2005.09.002PubMedCrossRefGoogle Scholar
  36. Ciullo M, Debily MA, Rozier L, Autiero M, Billault A, Mayau V, ... Debatisse M (2002). Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I. Hum Mol Genet 11(23):2887–2894Google Scholar
  37. Cleary JD, Pearson CE (2005) Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. Trends Genet : TIG 21(5):272–280. doi:S0168-9525(05)00084-3 [pii] 1016/j.tig.2005.03.008PubMedCrossRefGoogle Scholar
  38. Cleary JD, Ranum LP (2013) Repeat-associated non-ATG (RAN) translation in neurological disease. Hum Mol Genet 22(R1):R45–R51. https://doi.org/10.1093/hmg/ddt371 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cleary JD, Nichol K, Wang YH, Pearson CE (2002) Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat Genet 31(1):37–46PubMedCrossRefGoogle Scholar
  40. Cleary JD, Tome S, Lopez Castel A, Panigrahi GB, Foiry L, Hagerman KA, ... Pearson CE (2010). Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat Struct Mol Biol 17(9):1079–1087. doi:nsmb.1876 [pii] 1038/nsmb.1876Google Scholar
  41. Cleaver JE (1972) Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to ultraviolet light. J Invest Dermatol 58(3):124–128PubMedCrossRefGoogle Scholar
  42. Corbin S, Neilly ME, Espinosa R 3rd, Davis EM, McKeithan TW, Le Beau MM (2002) Identification of unstable sequences within the common fragile site at 3p14.2: implications for the mechanism of deletions within fragile histidine triad gene/common fragile site at 3p14.2 in tumors. Cancer Res 62(12):3477–3484PubMedGoogle Scholar
  43. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, ... Rademakers R (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256. https://doi.org/10.1016/j.neuron.2011.09.011
  44. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7(12):e1002384. https://doi.org/10.1371/journal.pgen.1002384 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Delagoutte E, Goellner GM, Guo J, Baldacci G, McMurray CT (2008) Single-stranded DNA-binding protein in vitro eliminates the orientation-dependent impediment to polymerase passage on CAG/CTG repeats. J Biol Chem 283(19):13341–13356. https://doi.org/10.1074/jbc.M800153200 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Denison SR, Callahan G, Becker NA, Phillips LA, Smith DI (2003) Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer. Genes Chromosom Cancer 38(1):40–52. https://doi.org/10.1002/gcc.10236 PubMedCrossRefGoogle Scholar
  47. Dhar A, Lahue RS (2008) Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae. Nucleic Acids Res 36(10):3366–3373. https://doi.org/10.1093/nar/gkn225 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dillon LW, Burrow AA, Wang YH (2010) DNA instability at chromosomal fragile sites in cancer. Curr Genomics 11(5):326–337. https://doi.org/10.2174/138920210791616699 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, ... Rothstein JD (2013). RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80(2):415–428. https://doi.org/10.1016/j.neuron.2013.10.015
  50. Du J, Campau E, Soragni E, Ku S, Puckett JW, Dervan PB, Gottesfeld JM (2012) Role of mismatch repair enzymes in GAA.TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J Biol Chem 287(35):29861–29872. https://doi.org/10.1074/jbc.M112.391961 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192. https://doi.org/10.1146/annurev.genet.41.042007.165900 PubMedCrossRefGoogle Scholar
  52. Durkin SG, Arlt MF, Howlett NG, Glover TW (2006) Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites. Oncogene 25(32):4381–4388. https://doi.org/10.1038/sj.onc.1209466 PubMedCrossRefGoogle Scholar
  53. Ellis NA, German J (1996) Molecular genetics of Bloom’s syndrome. Hum Mol Genet 5 Spec No:1457–1463PubMedCrossRefGoogle Scholar
  54. Entezam A, Usdin K (2009) ATM and ATR protect the genome against two different types of tandem repeat instability in Fragile X premutation mice. Nucleic Acids Res 37(19):6371–6377. https://doi.org/10.1093/nar/gkp666 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Finnis M, Dayan S, Hobson L, Chenevix-Trench G, Friend K, Ried K, ... Richards RI (2005). Common chromosomal fragile site FRA16D mutation in cancer cells. Hum Mol Genet 14(10):1341–1349. https://doi.org/10.1093/hmg/ddi144
  56. Focarelli ML, Soza S, Mannini L, Paulis M, Montecucco A, Musio A (2009) Claspin inhibition leads to fragile site expression. Genes Chromosom Cancer 48(12):1083–1090. https://doi.org/10.1002/gcc.20710 PubMedCrossRefGoogle Scholar
  57. Follonier C, Oehler J, Herrador R, Lopes M (2013) Friedreich’s ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat Struct Mol Biol 20(4):486–494. https://doi.org/10.1038/nsmb.2520 PubMedCrossRefGoogle Scholar
  58. Fouche N, Ozgur S, Roy D, Griffith JD (2006) Replication fork regression in repetitive DNAs. Nucleic Acids Res 34(20):6044–6050. https://doi.org/10.1093/nar/gkl757 PubMedPubMedCentralCrossRefGoogle Scholar
  59. French S (1992) Consequences of replication fork movement through transcription units in vivo. Science 258(5086):1362–1365PubMedCrossRefGoogle Scholar
  60. Freudenreich CH, Stavenhagen JB, Zakian VA (1997) Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol Cell Biol 17(4):2090–2098PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fry M, Loeb LA (1994) The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A 91:4950–4954PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fry M, Loeb LA (1999) Human werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J Biol Chem 274(18):12797–12802PubMedCrossRefGoogle Scholar
  63. Fu D, Dudimah FD, Zhang J, Pickering A, Paneerselvam J, Palrasu M, ... Fei P (2013). Recruitment of DNA polymerase eta by FANCD2 in the early response to DNA damage. Cell Cycle 12(5):803–809. https://doi.org/10.4161/cc.23755
  64. Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD (2012) A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome? Genome Res 22(6):993–1005. https://doi.org/10.1101/gr.134395.111 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gacy, A. M., McMurray, C. T. (1998). Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA. Biochemistry, 37(26), 9426–9434. https://doi.org/10.1021/bi980157s bi980157s [pii]
  66. Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81(4):533–540. doi:0092-8674(95)90074-8 [pii]PubMedCrossRefGoogle Scholar
  67. Gacy AM, Goellner GM, Spiro C, Chen X, Gupta G, Bradbury EM, ... McMurray CT (1998). GAA instability in Friedreich’s ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. Mol Cell 1(4):583–593. doi:S1097-2765(00)80058-1 [pii]Google Scholar
  68. George T, Wen Q, Griffiths R, Ganesh A, Meuth M, Sanders CM (2009) Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks. Nucleic Acids Res 37(19):6491–6502. https://doi.org/10.1093/nar/gkp671 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gerhardt J (2015) Epigenetic modifications in human fragile X pluripotent stem cells; Implications in fragile X syndrome modeling. Brain Res. https://doi.org/10.1016/j.brainres.2015.10.004
  70. Gerhardt J, Zaninovic N, Zhan Q, Madireddy A, Nolin SL, Ersalesi N, ... Schildkraut CL (2014a). Cis-acting DNA sequence at a replication origin promotes repeat expansion to fragile X full mutation. J Cell Biol 206(5):599–607. https://doi.org/10.1083/jcb.201404157
  71. Gerhardt J, Tomishima MJ, Zaninovic N, Colak D, Yan Z, Zhan Q, ... Schildkraut CL (2014b). The DNA replication program is altered at the FMR1 locus in fragile x embryonic stem cells. Mol Cell 53(1):19–31. https://doi.org/10.1016/j.molcel.2013.10.029
  72. Gerhardt J, Bhalla AD, Butler JS, Puckett JW, Dervan PB, Rosenwaks Z, Napierala M (2016) Stalled DNA replication forks at the endogenous GAA repeats drive repeat expansion in Friedreich’s ataxia cells. Cell Rep 16(5):1218–1227. https://doi.org/10.1016/j.celrep.2016.06.075 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Giacca M, Zentilin L, Norio P, Diviacco S, Dimitrova D, Contreas G, ... et al (1994). Fine mapping of a replication origin of human DNA. ProcNatlAcadSciUSA 91:7119–7123Google Scholar
  74. Glover TW (2006) Common fragile sites. Cancer Lett 232(1):4–12. https://doi.org/10.1016/j.canlet.2005.08.032 PubMedCrossRefGoogle Scholar
  75. Glover TW, Stein CK (1987) Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet 41(5):882–890PubMedPubMedCentralGoogle Scholar
  76. Glover TW, Stein CK (1988) Chromosome breakage and recombination at fragile sites. Am J Hum Genet 43(3):265–273PubMedPubMedCentralGoogle Scholar
  77. Glover TW, Berger C, Coyle J, Echo B (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67(2):136–142PubMedCrossRefGoogle Scholar
  78. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, ... Halazonetis TD (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913. https://doi.org/10.1038/nature03485
  79. Gray SJ, Gerhardt J, Doerfler W, Small LE, Fanning E (2007) An origin of DNA replication in the promoter region of the human fragile X mental retardation (FMR1) gene. Mol Cell Biol 27(2):426–437. doi:MCB.01382-06 [pii] 1128/MCB.01382-06PubMedCrossRefGoogle Scholar
  80. Groh M, Lufino MM, Wade-Martins R, Gromak N (2014) R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet 10(5):e1004318. https://doi.org/10.1371/journal.pgen.1004318 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Gumus G, Sunguroglu A, Tukun A, Sayin DB, Bokesoy I (2002) Common fragile sites associated with the breakpoints of chromosomal aberrations in hematologic neoplasms. Cancer Genet Cytogenet 133(2):168–171PubMedCrossRefGoogle Scholar
  82. Gupta R, Sharma S, Sommers JA, Kenny MK, Cantor SB, Brosh RM Jr (2007) FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 110(7):2390–2398. https://doi.org/10.1182/blood-2006-11-057273 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hansen RS, Canfield TK, Lamb MM, Gartler SM, Laird CD (1993) Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73:1403–1409PubMedCrossRefGoogle Scholar
  84. Hansen RS, Canfield TK, Fjeld AD, Mumm S, Laird CD, Gartler SM (1997) A variable domain of delayed replication in FRAXA fragile X chromosomes: X inactivation-like spread of late replication. Proc Natl Acad Sci U S A 94(9):4587–4592PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hecht F, Glover TW (1984) Cancer chromosome breakpoints and common fragile sites induced by aphidicolin. Cancer Genet Cytogenet 13(2):185–188PubMedCrossRefGoogle Scholar
  86. Heitz D, Rousseau F, Devys D, Saccone S, Abderrahim H, Le Paslier D, ... et al (1991). Isolation of sequences that span the fragile X and identification of a fragile X-related CpG island. Science 251(4998):1236–1239Google Scholar
  87. Hellman A, Rahat A, Scherer SW, Darvasi A, Tsui LC, Kerem B (2000) Replication delay along FRA7H, a common fragile site on human chromosome 7, leads to chromosomal instability. Mol Cell Biol 20(12):4420–4427PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI, ... Kerem B (2002). A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1(1):89–97Google Scholar
  89. Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44(6):966–977. https://doi.org/10.1016/j.molcel.2011.10.013 PubMedCrossRefGoogle Scholar
  90. Helmrich A, Ballarino M, Nudler E, Tora L (2013) Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol 20(4):412–418. https://doi.org/10.1038/nsmb.2543 PubMedCrossRefGoogle Scholar
  91. Holloway TP, Rowley SM, Delatycki MB, Sarsero JP (2011) Detection of interruptions in the GAA trinucleotide repeat expansion in the FXN gene of Friedreich ataxia. BioTechniques 50(3):182–186. https://doi.org/10.2144/000113615 PubMedGoogle Scholar
  92. Howlett NG, Taniguchi T, Durkin SG, D’Andrea AD, Glover TW (2005) The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet 14(5):693–701. https://doi.org/10.1093/hmg/ddi065 PubMedCrossRefGoogle Scholar
  93. Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A, ... Lagier-Tourenne C (2016). Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90(3):535–550. https://doi.org/10.1016/j.neuron.2016.04.006
  94. Kamath-Loeb AS, Johansson E, Burgers PM, Loeb LA (2000) Functional interaction between the Werner syndrome protein and DNA polymerase delta. Proc Natl Acad Sci U S A 97(9):4603–4608PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kamath-Loeb AS, Lan L, Nakajima S, Yasui A, Loeb LA (2007) Werner syndrome protein interacts functionally with translesion DNA polymerases. Proc Natl Acad Sci U S A 104(25):10394–10399. https://doi.org/10.1073/pnas.0702513104 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kang S, Ohshima K, Shimizu M, Amirhaeri S, Wells RD (1995) Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease genes. J Biol Chem 270(45):27014–27021PubMedCrossRefGoogle Scholar
  97. Karanja KK, Lee EH, Hendrickson EA, Campbell JL (2014) Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells. Cell Cycle 13(10):1540–1550. https://doi.org/10.4161/cc.28476 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kerrest A, Anand RP, Sundararajan R, Bermejo R, Liberi G, Dujon B, ... Richard GF (2009). SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 16(2):159–167. https://doi.org/10.1038/nsmb.1544
  99. Kim JC, Mirkin SM (2013) The balancing act of DNA repeat expansions. Curr Opin Genet Dev 23(3):280–288. https://doi.org/10.1016/j.gde.2013.04.009 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kobayashi T, Rein T, DePamphilis ML (1998) Identification of primary initiation sites for DNA replication in the hamster dihydrofolate reductase gene initiation zone. MolCellBiol 18:3266–3277Google Scholar
  101. Koeppen AH (2011) Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 303(1–2):1–12. https://doi.org/10.1016/j.jns.2011.01.010 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Koundrioukoff S, Carignon S, Techer H, Letessier A, Brison O, Debatisse M (2013) Stepwise activation of the ATR signaling pathway upon increasing replication stress impacts fragile site integrity. PLoS Genet 9(7):e1003643. https://doi.org/10.1371/journal.pgen.1003643 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Krasilnikova MM, Mirkin SM (2004) Replication stalling at Friedreich’s ataxia (GAA)n repeats in vivo. Mol Cell Biol 24(6):2286–2295PubMedPubMedCentralCrossRefGoogle Scholar
  104. Krasilnikova MM, Kireeva ML, Petrovic V, Knijnikova N, Kashlev M, Mirkin SM (2007) Effects of Friedreich’s ataxia (GAA)n*(TTC)n repeats on RNA synthesis and stability. Nucleic Acids Res 35(4):1075–1084. https://doi.org/10.1093/nar/gkl1140 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kumari D, Usdin K (2012) Is Friedreich ataxia an epigenetic disorder? Clin Epigenetics 4(1):2. https://doi.org/10.1186/1868-7083-4-2 PubMedPubMedCentralCrossRefGoogle Scholar
  106. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79. https://doi.org/10.1038/352077a0 PubMedCrossRefGoogle Scholar
  107. Lachaud C, Moreno A, Marchesi F, Toth R, Blow JJ, Rouse J (2016) Ubiquitinated Fancd2 recruits Fan1 to stalled replication forks to prevent genome instability. Science 351(6275):846–849. https://doi.org/10.1126/science.aad5634 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lam EY, Beraldi D, Tannahill D, Balasubramanian S (2013) G-quadruplex structures are stable and detectable in human genomic DNA. Nat Commun 4:1796. https://doi.org/10.1038/ncomms2792 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Le Beau MM, Rassool FV, Neilly ME, Espinosa R 3rd, Glover TW, Smith DI, McKeithan TW (1998) Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. Hum Mol Genet 7(4):755–761PubMedCrossRefGoogle Scholar
  110. Le Tallec B, Dutrillaux B, Lachages AM, Millot GA, Brison O, Debatisse M (2011) Molecular profiling of common fragile sites in human fibroblasts. Nat Struct Mol Biol 18(12):1421–1423. https://doi.org/10.1038/nsmb.2155 PubMedCrossRefGoogle Scholar
  111. Lee JS, Burkholder GD, Latimer LJ, Haug BL, Braun RP (1987) A monoclonal antibody to triplex DNA binds to eucaryotic chromosomes. Nucleic Acids Res 15(3):1047–1061PubMedPubMedCentralCrossRefGoogle Scholar
  112. Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N, Hansen RS, ... Debatisse M (2011). Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470(7332):120–123. doi:nature09745 [pii] 1038/nature09745Google Scholar
  113. Li Y, Lu Y, Polak U, Lin K, Shen J, Farmer J, ... Napierala M (2015). Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FXN locus. Hum Mol Genet 24(24):6932–6943. https://doi.org/10.1093/hmg/ddv397
  114. Libby RT, Monckton DG, Fu YH, Martinez RA, McAbney JP, Lau R, ... La Spada AR (2003). Genomic context drives SCA7 CAG repeat instability, while expressed SCA7 cDNAs are intergenerationally and somatically stable in transgenic mice. Hum Mol Genet 12(1):41–50Google Scholar
  115. Libby RT, Hagerman KA, Pineda VV, Lau R, Cho DH, Baccam SL, ... La Spada AR (2008). CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination. PLoS Genet 4(11):e1000257. https://doi.org/10.1371/journal.pgen.1000257
  116. Loomis EW, Sanz LA, Chedin F, Hagerman PJ (2014) Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 10(4):e1004294. https://doi.org/10.1371/journal.pgen.1004294 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou MP, ... Nicolas A (2011). G-quadruplex-induced instability during leading-strand replication. EMBO J 30(19):4033–4046. https://doi.org/10.1038/emboj.2011.316
  118. Lopez Castel A, Cleary JD, Pearson CE (2010) Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol 11(3):165–170. doi:nrm2854 [pii] 1038/nrm2854PubMedCrossRefGoogle Scholar
  119. Lukusa T, Fryns JP (2008) Human chromosome fragility. Biochim Biophys Acta 1779(1):3–16. https://doi.org/10.1016/j.bbagrm.2007.10.005 PubMedCrossRefGoogle Scholar
  120. Madireddy A, Kosiyatrakul ST, Boisvert RA, Herrera-Moyano E, Garcia-Rubio ML, Gerhardt J, ... Schildkraut CL (2016a). FANCD2 facilitates replication through common fragile sites. Mol Cell 64(2):388–404. https://doi.org/10.1016/j.molcel.2016.09.017
  121. Madireddy A, Purushothaman P, Loosbroock CP, Robertson ES, Schildkraut CL, Verma SC (2016b) G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV. Nucleic Acids Res 44(8):3675–3694. https://doi.org/10.1093/nar/gkw038 PubMedPubMedCentralCrossRefGoogle Scholar
  122. McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11(11):786–799. https://doi.org/10.1038/nrg2828 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mendonca VM, Kaiser-Rogers K, Matson SW (1993) Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli. J Bacteriol 175(15):4641–4651PubMedPubMedCentralCrossRefGoogle Scholar
  124. Mirkin SM (2006) DNA structures, repeat expansions and human hereditary disorders. Curr Opin Struct Biol 16(3):351–358. doi:S0959-440X(06)00076-5 [pii] 1016/j.sbi.2006.05.004PubMedCrossRefGoogle Scholar
  125. Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447(7147):932–940. doi:nature05977 [pii] 1038/nature05977PubMedCrossRefGoogle Scholar
  126. Mishmar D, Rahat A, Scherer SW, Nyakatura G, Hinzmann B, Kohwi Y, ... Kerem B (1998). Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A 95(14):8141–8146Google Scholar
  127. Mortusewicz O, Herr P, Helleday T (2013) Early replication fragile sites: where replication-transcription collisions cause genetic instability. EMBO J 32(4):493–495. https://doi.org/10.1038/emboj.2013.20 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Naim V, Wilhelm T, Debatisse M, Rosselli F (2013) ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat Cell Biol 15(8):1008–1015. https://doi.org/10.1038/ncb2793 PubMedCrossRefGoogle Scholar
  129. Neelsen KJ, Lopes M (2015) Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 16(4):207–220. https://doi.org/10.1038/nrm3935 PubMedCrossRefGoogle Scholar
  130. Nikolov I, Taddei A (2015) Linking replication stress with heterochromatin formation. Chromosoma. https://doi.org/10.1007/s00412-015-0545-6
  131. Nolin SL, Glicksman A, Ersalesi N, Dobkin C, Brown WT, Cao R, ... Hadd AG (2015). Fragile X full mutation expansions are inhibited by one or more AGG interruptions in premutation carriers. Genet Med 17(5):358–364. https://doi.org/10.1038/gim.2014.106
  132. Norio P, Schildkraut CL (2001) Visualization of DNA replication on individual Epstein-Barr virus episomes. Science 294:2361–2364PubMedCrossRefGoogle Scholar
  133. O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA (2003) A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33(4):497–501. https://doi.org/10.1038/ng1129 PubMedCrossRefGoogle Scholar
  134. Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, ... Huebner K (1996). The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84(4):587–597Google Scholar
  135. O’Keefe LV, Richards RI (2006) Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett 232(1):37–47. https://doi.org/10.1016/j.canlet.2005.07.041 PubMedCrossRefGoogle Scholar
  136. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621. https://doi.org/10.1146/annurev.neuro.29.051605.113042 PubMedCrossRefGoogle Scholar
  137. Owen BA, Yang Z, Lai M, Gajec M, Badger JD 2nd, Hayes JJ, ... McMurray CT (2005). (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nat Struct Mol Biol 12(8):663–670. https://doi.org/10.1038/nsmb965
  138. Ozeri-Galai E, Schwartz M, Rahat A, Kerem B (2008) Interplay between ATM and ATR in the regulation of common fragile site stability. Oncogene 27(15):2109–2117. doi:1210849 [pii] 1038/sj.onc.1210849PubMedCrossRefGoogle Scholar
  139. Ozeri-Galai E, Lebofsky R, Rahat A, Bester AC, Bensimon A, Kerem B (2011) Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 43(1):122–131. https://doi.org/10.1016/j.molcel.2011.05.019 PubMedCrossRefGoogle Scholar
  140. Ozeri-Galai E, Sinai MI-T, Kerem B (2013). Fork stalling at AT-rich sequences and failure of origin activation lead to chromosomal instability at fragile sites. Paper presented at the Journal of Biomolecular Structure and DynamicsGoogle Scholar
  141. Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497(7450):458–462. https://doi.org/10.1038/nature12149 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Paiva AM, Sheardy RD (2004) Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers. Biochemistry 43(44):14218–14227. https://doi.org/10.1021/bi0494368 PubMedCrossRefGoogle Scholar
  143. Palakodeti A, Han Y, Jiang Y, Le Beau MM (2004) The role of late/slow replication of the FRA16D in common fragile site induction. Genes Chromosom Cancer 39(1):71–76. https://doi.org/10.1002/gcc.10290 PubMedCrossRefGoogle Scholar
  144. Pandey S, Ogloblina AM, Belotserkovskii BP, Dolinnaya NG, Yakubovskaya MG, Mirkin SM, Hanawalt PC (2015) Transcription blockage by stable H-DNA analogs in vitro. Nucleic Acids Res 43(14):6994–7004. https://doi.org/10.1093/nar/gkv622 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Pataskar SS, Dash D, Brahmachari SK (2001) Intramolecular i-motif structure at acidic pH for progressive myoclonus epilepsy (EPM1) repeat d(CCCCGCCCCGCG)n. J Biomol Struct Dyn 19(2):307–313. https://doi.org/10.1080/07391102.2001.10506741 PubMedCrossRefGoogle Scholar
  146. Pearson CE, Ewel A, Acharya S, Fishel RA, Sinden RR (1997) Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum Mol Genet 6(7):1117–1123PubMedCrossRefGoogle Scholar
  147. Pearson CE, Eichler EE, Lorenzetti D, Kramer SF, Zoghbi HY, Nelson DL, Sinden RR (1998) Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37(8):2701–2708. https://doi.org/10.1021/bi972546c. bi972546c [pii]PubMedCrossRefGoogle Scholar
  148. Pelletier R, Krasilnikova MM, Samadashwily GM, Lahue R, Mirkin SM (2003) Replication and expansion of trinucleotide repeats in yeast. Mol Cell Biol 23(4):1349–1357PubMedPubMedCentralCrossRefGoogle Scholar
  149. Perdomini M, Hick A, Puccio H, Pook MA (2013) Animal and cellular models of Friedreich ataxia. J Neurochem 126(Suppl 1):65–79. https://doi.org/10.1111/jnc.12219 PubMedCrossRefGoogle Scholar
  150. Petermann E, Helleday T (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11(10):683–687. doi:nrm2974 [pii] 1038/nrm2974PubMedCrossRefGoogle Scholar
  151. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T (2010) Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37(4):492–502. https://doi.org/10.1016/j.molcel.2010.01.021 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Phillips DD, Garboczi DN, Singh K, Hu Z, Leppla SH, Leysath CE (2013) The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recognit 26(8):376–381. https://doi.org/10.1002/jmr.2284 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Piazza A, Boule JB, Lopes J, Mingo K, Largy E, Teulade-Fichou MP, Nicolas A (2010) Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res 38(13):4337–4348. https://doi.org/10.1093/nar/gkq136 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66(4):817–822PubMedCrossRefGoogle Scholar
  155. Pirzio LM, Pichierri P, Bignami M, Franchitto A (2008) Werner syndrome helicase activity is essential in maintaining fragile site stability. J Cell Biol 180(2):305–314. https://doi.org/10.1083/jcb.200705126 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Pomerantz RT, O’Donnell M (2008) The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456(7223):762–766. https://doi.org/10.1038/nature07527 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Pomerantz RT, O’Donnell M (2010) Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327(5965):590–592. https://doi.org/10.1126/science.1179595 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Popescu NC, DiPaolo JA (1989) Preferential sites for viral integration on mammalian genome. Cancer Genet Cytogenet 42(2):157–171PubMedCrossRefGoogle Scholar
  159. Poulogiannis G, McIntyre RE, Dimitriadi M, Apps JR, Wilson CH, Ichimura K, ... Arends MJ (2010). PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci U S A 107(34):15145–15150. https://doi.org/10.1073/pnas.1009941107
  160. Qiu Y, Niu H, Vukovic L, Sung P, Myong S (2015) Molecular mechanism of resolving trinucleotide repeat hairpin by helicases. Structure 23(6):1018–1027. https://doi.org/10.1016/j.str.2015.04.006 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Ragland RL, Glynn MW, Arlt MF, Glover TW (2008) Stably transfected common fragile site sequences exhibit instability at ectopic sites. Genes Chromosom Cancer 47(10):860–872. https://doi.org/10.1002/gcc.20591 PubMedCrossRefGoogle Scholar
  162. Ranum LP, Day JW (2004) Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet 74(5):793–804. https://doi.org/10.1086/383590. S0002-9297(07)64349-3 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  163. Rey L, Sidorova JM, Puget N, Boudsocq F, Biard DS, Monnat RJ Jr., ... Hoffmann JS (2009). Human DNA polymerase eta is required for common fragile site stability during unperturbed DNA replication. Mol Cell Biol 29(12):3344–3354. https://doi.org/10.1128/MCB.00115-09
  164. Ribeyre C, Lopes J, Boule JB, Piazza A, Guedin A, Zakian VA, ... Nicolas A (2009). The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet 5(5):e1000475. https://doi.org/10.1371/journal.pgen.1000475
  165. Ried K, Finnis M, Hobson L, Mangelsdorf M, Dayan S, Nancarrow JK, ... Richards RI (2000). Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet 9(11):1651–1663Google Scholar
  166. Rindler PM, Clark RM, Pollard LM, De Biase I, Bidichandani SI (2006) Replication in mammalian cells recapitulates the locus-specific differences in somatic instability of genomic GAA triplet-repeats. Nucleic Acids Res 34(21):6352–6361. https://doi.org/10.1093/nar/gkl846 CrossRefGoogle Scholar
  167. Samadashwily GM, Raca G, Mirkin SM (1997) Trinucleotide repeats affect DNA replication in vivo. Nat Genet 17(3):298–304. https://doi.org/10.1038/ng1197-298 PubMedCrossRefGoogle Scholar
  168. Santoro MR, Bray SM, Warren ST (2011) Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol. https://doi.org/10.1146/annurev-pathol-011811-132457
  169. Schlacher K, Wu H, Jasin M (2012) A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22(1):106–116. https://doi.org/10.1016/j.ccr.2012.05.015 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Schwartz M, Zlotorynski E, Kerem B (2006) The molecular basis of common and rare fragile sites. Cancer Lett 232(1):13–26. https://doi.org/10.1016/j.canlet.2005.07.039 PubMedCrossRefGoogle Scholar
  171. Shah SN, Opresko PL, Meng X, Lee MY, Eckert KA (2010) DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D. Nucleic Acids Res 38(4):1149–1162. https://doi.org/10.1093/nar/gkp1131 PubMedCrossRefGoogle Scholar
  172. Shen JC, Loeb LA (2000) Werner syndrome exonuclease catalyzes structure-dependent degradation of DNA. Nucleic Acids Res 28(17):3260–3268PubMedPubMedCentralCrossRefGoogle Scholar
  173. Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, ... Mirkin SM (2009). Large-scale expansions of Friedreich’s ataxia GAA repeats in yeast. Mol Cell 35(1):82–92. https://doi.org/10.1016/j.molcel.2009.06.017
  174. Sidorova JM, Kehrli K, Mao F, Monnat R Jr (2013) Distinct functions of human RECQ helicases WRN and BLM in replication fork recovery and progression after hydroxyurea-induced stalling. DNA Repair 12(2):128–139. https://doi.org/10.1016/j.dnarep.2012.11.005 PubMedCrossRefGoogle Scholar
  175. Siprashvili Z, Sozzi G, Barnes LD, McCue P, Robinson AK, Eryomin V, ... Huebner K (1997). Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A 94(25):13771–13776Google Scholar
  176. Smeets DF, van de Klundert FA (1990) Common fragile sites in man and three closely related primate species. Cytogenet Cell Genet 53(1):8–14PubMedCrossRefGoogle Scholar
  177. Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297(5581):599–602. https://doi.org/10.1126/science.1074023 PubMedCrossRefGoogle Scholar
  178. Sollier J, Cimprich KA (2015) Breaking bad: R-loops and genome integrity. Trends Cell Biol 25(9):514–522. https://doi.org/10.1016/j.tcb.2015.05.003 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Subramanian PS, Nelson DL, Chinault AC (1996) Large domains of apparent delayed replication timing associated with triplet repeat expansion at FRAXA and FRAXE. Am J Hum Genet 59:407–416PubMedPubMedCentralGoogle Scholar
  180. Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST (1992) DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet 1(6):397–400PubMedCrossRefGoogle Scholar
  181. Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D’Andrea AD (2002) S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100(7):2414–2420. https://doi.org/10.1182/blood-2002-01-0278 PubMedCrossRefGoogle Scholar
  182. Taylor JH (1977) Increase in DNA replication sites in cells held at the beginning of S phase. Chromosoma 62(4):291–300PubMedCrossRefGoogle Scholar
  183. Tsantoulis PK, Kotsinas A, Sfikakis PP, Evangelou K, Sideridou M, Levy B, ... Gorgoulis VG (2008). Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene 27(23):3256–3264. https://doi.org/10.1038/sj.onc.1210989
  184. Usdin K, Woodford KJ (1995) CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res 23(20):4202–4209. doi:5j0289 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  185. Usdin K, House NC, Freudenreich CH (2015) Repeat instability during DNA repair: insights from model systems. Crit Rev Biochem Mol Biol:1–26. https://doi.org/10.3109/10409238.2014.999192
  186. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, ... Chan TA (2010). Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42(1):77–82. https://doi.org/10.1038/ng.491
  187. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, ... et al (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914Google Scholar
  188. Virgilio L, Shuster M, Gollin SM, Veronese ML, Ohta M, Huebner K, Croce CM (1996) FHIT gene alterations in head and neck squamous cell carcinomas. Proc Natl Acad Sci U S A 93(18):9770–9775PubMedPubMedCentralCrossRefGoogle Scholar
  189. Voineagu I, Surka CF, Shishkin AA, Krasilnikova MM, Mirkin SM (2009) Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat Struct Mol Biol 16(2):226–228. https://doi.org/10.1038/nsmb.1527 PubMedPubMedCentralCrossRefGoogle Scholar
  190. Walsh E, Wang X, Lee MY, Eckert KA (2013) Mechanism of replicative DNA polymerase delta pausing and a potential role for DNA polymerase kappa in common fragile site replication. J Mol Biol 425(2):232–243. https://doi.org/10.1016/j.jmb.2012.11.016 PubMedCrossRefGoogle Scholar
  191. Wang L, Paradee W, Mullins C, Shridhar R, Rosati R, Wilke CM, ... Smith DI (1997). Aphidicolin-induced FRA3B breakpoints cluster in two distinct regions. Genomics 41(3):485–488. https://doi.org/10.1006/geno.1997.4690
  192. Wang L, Darling J, Zhang JS, Huang H, Liu W, Smith DI (1999) Allele-specific late replication and fragility of the most active common fragile site, FRA3B. Hum Mol Genet 8(3):431–437PubMedCrossRefGoogle Scholar
  193. Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A, Otsuki M, ... Enomoto T (2003). Functional relation among RecQ family helicases RecQL1, RecQL5, and BLM in cell growth and sister chromatid exchange formation. Mol Cell Biol 23(10):3527–3535Google Scholar
  194. Wells RD (2008) DNA triplexes and Friedreich ataxia. FASEB J: Off Publ Fed Am Soc Exp Biol 22(6):1625–1634. https://doi.org/10.1096/fj.07-097857 CrossRefGoogle Scholar
  195. Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI, Glover TW (1996) FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 5(2):187–195PubMedCrossRefGoogle Scholar
  196. Wong PG, Winter SL, Zaika E, Cao TV, Oguz U, Koomen JM, ... Alexandrow MG (2011). Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS One 6(3):e17533. https://doi.org/10.1371/journal.pone.0017533
  197. Wu Y, Shin-ya K, Brosh RM Jr (2008) FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 28(12):4116–4128. https://doi.org/10.1128/MCB.02210-07 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Yeo JE, Lee EH, Hendrickson EA, Sobeck A (2014) CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum Mol Genet 23(14):3695–3705. https://doi.org/10.1093/hmg/ddu078 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T, ... Hickson ID (2013). MUS81 promotes common fragile site expression. Nat Cell Biol 15(8):1001–1007. https://doi.org/10.1038/ncb2773
  200. Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, ... Schellenberg GD (1996). Positional cloning of the Werner’s syndrome gene. Science 272(5259):258–262Google Scholar
  201. Zhang H, Freudenreich CH (2007) An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27(3):367–379. https://doi.org/10.1016/j.molcel.2007.06.012 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Zhang YJ, Gendron TF, Grima JC, Sasaguri H, Jansen-West K, Xu YF, ... Petrucelli L (2016). C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci 19(5):668–677. https://doi.org/10.1038/nn.4272

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Albert Einstein College of MedicineBronxUSA
  2. 2.Weill Cornell MedicineNew YorkUSA

Personalised recommendations