Architecture of the Saccharomyces cerevisiae Replisome

  • Lin Bai
  • Zuanning Yuan
  • Jingchuan Sun
  • Roxana Georgescu
  • Michael E. O’DonnellEmail author
  • Huilin LiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)


Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.


Eukaryotic DNA replication Replisome Replicative helicase Cryo-EM Mcm CMG DNA polymerase Structural biology 


  1. Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A (2016) Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 7:10708PubMedPubMedCentralCrossRefGoogle Scholar
  2. Asturias FJ, Cheung IK, Sabouri N, Chilkova O, Wepplo D, Johansson E (2006) Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy. Nat Struct Mol Biol 13:35–43PubMedCrossRefGoogle Scholar
  3. Banks GR, Boezi JA, Lehman IR (1979) A high molecular weight DNA polymerase from Drosophila melanogaster embryos. Purification, structure, and partial characterization. J Biol Chem 254:9886–9892PubMedGoogle Scholar
  4. Bell SD, Botchan MR (2013) The minichromosome maintenance replicative helicase. Cold Spring Harb Perspect Biol 5:a012807PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bell SP, Labib K (2016) Chromosome duplication in Saccharomyces cerevisiae. Genetics 203:1027–1067PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134PubMedCrossRefGoogle Scholar
  7. Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093PubMedCrossRefGoogle Scholar
  8. Bielinsky AK (2016) Mcm10: the glue at replication forks. Cell Cycle 15:1–2CrossRefGoogle Scholar
  9. Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31:287–293PubMedCrossRefGoogle Scholar
  10. Bochman ML, Bell SP, Schwacha A (2008) Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability. Mol Cell Biol 28:5865–5873PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boskovic J, Coloma J, Aparicio T, Zhou M, Robinson CV, Mendez J, Montoya G (2007) Molecular architecture of the human GINS complex. EMBO Rep 8:678–684PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadi M, Klein MG, Chen XS (2008) Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc Natl Acad Sci U S A 105:20191–20196PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brill SJ, DiNardo S, Voelkel-Meiman K, Sternglanz R (1987) Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326:414–416PubMedCrossRefGoogle Scholar
  14. Bruck I, Kaplan DL (2013) Cdc45 protein-single-stranded DNA interaction is important for stalling the helicase during replication stress. J Biol Chem 288:7550–7563PubMedPubMedCentralCrossRefGoogle Scholar
  15. Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284:4041–4045PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burgers PM, Gordenin D, Kunkel TA (2016) Who is leading the replication fork, Pol epsilon or Pol delta? Mol Cell 61:492–493PubMedPubMedCentralCrossRefGoogle Scholar
  17. Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K (2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 19:1905–1919PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chang YP, Wang G, Bermudez V, Hurwitz J, Chen XS (2007) Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci U S A 104:12685–12690PubMedPubMedCentralCrossRefGoogle Scholar
  19. Choi JM, Lim HS, Kim JJ, Song OK, Cho Y (2007) Crystal structure of the human GINS complex. Genes Dev 21:1316–1321PubMedPubMedCentralCrossRefGoogle Scholar
  20. Clausen AR, Lujan SA, Burkholder AB, Orebaugh CD, Williams JS, Clausen MF, Malc EP, Mieczkowski PA, Fargo DC, Smith DJ et al (2015) Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 22:185–191PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cocker JH, Piatti S, Santocanale C, Nasmyth K, Diffley JF (1996) An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379:180–182PubMedCrossRefGoogle Scholar
  22. Coloma J, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2016) Human DNA polymerase alpha in binary complex with a DNA:DNA template-primer. Sci Rep 6:23784PubMedPubMedCentralCrossRefGoogle Scholar
  23. Conaway RC, Lehman IR (1982) A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos. Proc Natl Acad Sci U S A 79:2523–2527PubMedPubMedCentralCrossRefGoogle Scholar
  24. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18:471–477PubMedPubMedCentralCrossRefGoogle Scholar
  25. Costa A, Hood IV, Berger JM (2013) Mechanisms for initiating cellular DNA replication. Annu Rev Biochem 82:25–54PubMedPubMedCentralCrossRefGoogle Scholar
  26. Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, MacLellan-Gibson K, Fleck RA, Botchan MR, Berger JM (2014) DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. Elife 3:e03273PubMedPubMedCentralGoogle Scholar
  27. Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC (2015) The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol Cell 58:483–494PubMedPubMedCentralCrossRefGoogle Scholar
  28. Enemark EJ, Joshua-Tor L (2006) Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442:270–275PubMedCrossRefGoogle Scholar
  29. Enemark EJ, Joshua-Tor L (2008) On helicases and other motor proteins. Curr Opin Struct Biol 18:243–257PubMedPubMedCentralCrossRefGoogle Scholar
  30. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106:20240–20245PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fenwick AL, Kliszczak M, Cooper F, Murray J, Sanchez-Pulido L, Twigg SR, Goriely A, McGowan SJ, Miller KA, Taylor IB et al (2016) Mutations in CDC45, encoding an essential component of the pre-initiation complex, cause Meier-Gorlin syndrome and Craniosynostosis. Am J Hum Genet 99:125–138PubMedPubMedCentralCrossRefGoogle Scholar
  32. Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, Nakato R, Shirahige K, Labib K (2013) Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 3:892–904PubMedCrossRefGoogle Scholar
  33. Forterre P, Filee J, Myllykallio H (2004) Origin and evolution of DNA and DNA replication. In: Landes Bioscience, p 24Google Scholar
  34. Fortune JM, Pavlov YI, Welch CM, Johansson E, Burgers PM, Kunkel TA (2005) Saccharomyces cerevisiae DNA polymerase delta: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J Biol Chem 280:29980–29987PubMedCrossRefGoogle Scholar
  35. Froelich CA, Kang S, Epling LB, Bell SP, Enemark EJ (2014) A conserved MCM single-stranded DNA binding element is essential for replication initiation. Elife 3:e01993PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–941PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366PubMedCrossRefGoogle Scholar
  38. Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28:2992–3004PubMedPubMedCentralCrossRefGoogle Scholar
  39. Georgescu R, Langston L, O’Donnell M (2015a) A proposal: evolution of PCNA’s role as a marker of newly replicated DNA. DNA Repair (Amst) 29:4–15CrossRefGoogle Scholar
  40. Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O, Zhang D, Finkelstein J, O’Donnell ME (2015b) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 4:e04988PubMedPubMedCentralCrossRefGoogle Scholar
  41. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP (2011) Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146:80–91PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hogg M, Johansson E (2012) DNA polymerase epsilon. Subcell Biochem 62:237–257PubMedCrossRefGoogle Scholar
  43. Hogg M, Osterman P, Bylund GO, Ganai RA, Lundstrom EB, Sauer-Eriksson AE, Johansson E (2014) Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon. Nat Struct Mol Biol 21:49–55PubMedCrossRefGoogle Scholar
  44. Hossain M, Stillman B (2016) Meier-Gorlin syndrome. In: Kaplan DL (ed) The initiation of DNA replication in eukaryotes. Springer International Publishing, Cham, p 563Google Scholar
  45. Huang H, Stromme CB, Saredi G, Hodl M, Strandsby A, Gonzalez-Aguilera C, Chen S, Groth A, Patel DJ (2015) A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol 22:618–626PubMedPubMedCentralCrossRefGoogle Scholar
  46. Iida T, Araki H (2004) Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 24:217–227PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258PubMedCrossRefGoogle Scholar
  48. Itsathitphaisarn O, Wing RA, Eliason WK, Wang J, Steitz TA (2012) The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 151:267–277PubMedPubMedCentralCrossRefGoogle Scholar
  49. Johnson RE, Klassen R, Prakash L, Prakash S (2015) A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands. Mol Cell 59:163–175PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kaguni LS, Rossignol JM, Conaway RC, Banks GR, Lehman IR (1983a) Association of DNA primase with the beta/gamma subunits of DNA polymerase alpha from Drosophila melanogaster embryos. J Biol Chem 258:9037–9039PubMedGoogle Scholar
  51. Kaguni LS, Rossignol JM, Conaway RC, Lehman IR (1983b) Isolation of an intact DNA polymerase-primase from embryos of Drosophila melanogaster. Proc Natl Acad Sci U S A 80:2221–2225PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F (2007) Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol 14:388–396PubMedCrossRefGoogle Scholar
  53. Kang YH, Galal WC, Farina A, Tappin I, Hurwitz J (2012) Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci U S A 109:6042–6047PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H (2012) Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J 31:2182–2194PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kilkenny ML, Longo MA, Perera RL, Pellegrini L (2013) Structures of human primase reveal design of nucleotide elongation site and mode of Pol alpha tethering. Proc Natl Acad Sci U S A 110:15961–15966PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kim RA, Wang JC (1989) Function of DNA topoisomerases as replication swivels in Saccharomyces cerevisiae. J Mol Biol 208:257–267PubMedCrossRefGoogle Scholar
  57. Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L (2009) 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J 28:1978–1987PubMedPubMedCentralCrossRefGoogle Scholar
  58. Klingseisen A, Jackson AP (2011) Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev 25:2011–2024PubMedPubMedCentralCrossRefGoogle Scholar
  59. Krastanova I, Sannino V, Amenitsch H, Gileadi O, Pisani FM, Onesti S (2012) Structural and functional insights into the DNA replication factor Cdc45 reveal an evolutionary relationship to the DHH family of phosphoesterases. J Biol Chem 287:4121–4128PubMedCrossRefGoogle Scholar
  60. Kubota Y, Takase Y, Komori Y, Hashimoto Y, Arata T, Kamimura Y, Araki H, Takisawa H (2003) A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev 17:1141–1152PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18:521–527PubMedPubMedCentralCrossRefGoogle Scholar
  62. Langston LD, Zhang D, Yurieva O, Georgescu RE, Finkelstein J, Yao NY, Indiani C, O’Donnell ME (2014) CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A 111:15390–15395PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lee SJ, Syed S, Enemark EJ, Schuck S, Stenlund A, Ha T, Joshua-Tor L (2014) Dynamic look at DNA unwinding by a replicative helicase. Proc Natl Acad Sci U S A 111:E827–E835PubMedPubMedCentralCrossRefGoogle Scholar
  64. Leipe DD, Aravind L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Res 27:3389–3401PubMedPubMedCentralCrossRefGoogle Scholar
  65. Leman AR, Noguchi E (2013) The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 4:1–32CrossRefGoogle Scholar
  66. Li Y, Araki H (2013) Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes Cells 18:266–277PubMedPubMedCentralCrossRefGoogle Scholar
  67. Li N, Zhai Y, Zhang Y, Li W, Yang M, Lei J, Tye BK, Gao N (2015) Structure of the eukaryotic MCM complex at 3.8 A. Nature 524:186–191PubMedCrossRefGoogle Scholar
  68. Liang C, Weinreich M, Stillman B (1995) ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell 81:667–676PubMedCrossRefGoogle Scholar
  69. Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32:106–117PubMedPubMedCentralCrossRefGoogle Scholar
  70. MacNeill S (2012) Composition and dynamics of the eukaryotic replisome: a brief overview. Subcell Biochem 62:1–17PubMedCrossRefGoogle Scholar
  71. Meselson M, Stahl FW (1958) The replication of DNA in Escherichia Coli. Proc Natl Acad Sci U S A 44:671–682PubMedPubMedCentralCrossRefGoogle Scholar
  72. Miller JM, Arachea BT, Epling LB, Enemark EJ (2014) Analysis of the crystal structure of an active MCM hexamer. Elife 3:e03433PubMedPubMedCentralGoogle Scholar
  73. Mimura S, Seki T, Tanaka S, Diffley JF (2004) Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Nature 431:1118–1123PubMedCrossRefGoogle Scholar
  74. Miyabe I, Kunkel TA, Carr AM (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 7:e1002407PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mohanty BK, Bairwa NK, Bastia D (2006) The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103:897–902PubMedPubMedCentralCrossRefGoogle Scholar
  76. Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A (1990) A third essential DNA polymerase in S. cerevisiae. Cell 62:1143–1151PubMedCrossRefGoogle Scholar
  77. Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103:10236–10241PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nethanel T, Zlotkin T, Kaufmann G (1992) Assembly of simian virus 40 Okazaki pieces from DNA primers is reversibly arrested by ATP depletion. J Virol 66:6634–6640PubMedPubMedCentralGoogle Scholar
  79. Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30:137–144PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404:625–628PubMedCrossRefGoogle Scholar
  81. Nunez-Ramirez R, Klinge S, Sauguet L, Melero R, Recuero-Checa MA, Kilkenny M, Perera RL, Garcia-Alvarez B, Hall RJ, Nogales E et al (2011) Flexible tethering of primase and DNA Pol alpha in the eukaryotic primosome. Nucleic Acids Res 39:8187–8199PubMedPubMedCentralCrossRefGoogle Scholar
  82. O’Donnell M, Langston L, Stillman B (2013) Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 5Google Scholar
  83. Onesti S, MacNeill SA (2013) Structure and evolutionary origins of the CMG complex. Chromosoma 122:47–53PubMedCrossRefGoogle Scholar
  84. Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92:105–116PubMedCrossRefGoogle Scholar
  85. Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D (1999) The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400:284–288PubMedCrossRefGoogle Scholar
  86. Perera RL, Torella R, Klinge S, Kilkenny ML, Maman JD, Pellegrini L (2013) Mechanism for priming DNA synthesis by yeast DNA polymerase alpha. Elife 2:e00482PubMedPubMedCentralCrossRefGoogle Scholar
  87. Petojevic T, Pesavento JJ, Costa A, Liang J, Wang Z, Berger JM, Botchan MR (2015) Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote replisome helicase stabilizing leading strand engagement. Proc Natl Acad Sci U S A 112:E249–E258PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pursell ZF, Kunkel TA (2008) DNA polymerase epsilon: a polymerase of unusual size (and complexity). Prog Nucleic Acid Res Mol Biol 82:101–145PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317:127–130PubMedPubMedCentralCrossRefGoogle Scholar
  90. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719–730PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sanchez-Pulido L, Ponting CP (2011) Cdc45: the missing RecJ ortholog in eukaryotes? Bioinformatics 27:1885–1888PubMedCrossRefGoogle Scholar
  92. Santocanale C, Diffley JF (1996) ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J 15:6671–6679PubMedPubMedCentralGoogle Scholar
  93. Schlesinger MB, Formosa T (2000) POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 155:1593–1606PubMedPubMedCentralGoogle Scholar
  94. Schwacha A, Bell SP (2001) Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell 8:1093–1104PubMedCrossRefGoogle Scholar
  95. Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, Kilkenny ML, Renault L, Kjaer S, Matak-Vinkovic D et al (2014) A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature 510:293–297PubMedPubMedCentralCrossRefGoogle Scholar
  96. Simon AC, Sannino V, Costanzo V, Pellegrini L (2016) Structure of human Cdc45 and implications for CMG helicase function. Nat Commun 7:11638PubMedPubMedCentralCrossRefGoogle Scholar
  97. Singleton MR, Sawaya MR, Ellenberger T, Wigley DB (2000) Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101:589–600PubMedCrossRefGoogle Scholar
  98. Slaymaker IM, Chen XS (2012) MCM structure and mechanics: what we have learned from archaeal MCM. Subcell Biochem 62:89–111PubMedCrossRefGoogle Scholar
  99. Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274:17395–17398PubMedCrossRefGoogle Scholar
  100. Sun J, Evrin C, Samel SA, Fernandez-Cid A, Riera A, Kawakami H, Stillman B, Speck C, Li H (2013) Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol 20:944–951PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H (2014) Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 28:2291–2303PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, Li H, O’Donnell ME (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22:976–982PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tackett AJ, Dilworth DJ, Davey MJ, O’Donnell M, Aitchison JD, Rout MP, Chait BT (2005) Proteomic and genomic characterization of chromatin complexes at a boundary. J Cell Biol 169:35–47PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV (2009) Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol Direct 4:11PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tanaka S, Araki H (2013) Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 5:a010371PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tanaka S, Diffley JF (2002) Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol 4:198–207PubMedCrossRefGoogle Scholar
  107. Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T, Araki H, Bando M, Shirahige K (2009) Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells 14:807–820PubMedCrossRefGoogle Scholar
  108. Thomsen ND, Berger JM (2009) Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139:523–534PubMedPubMedCentralCrossRefGoogle Scholar
  109. Thu YM, Bielinsky AK (2013) Enigmatic roles of Mcm10 in DNA replication. Trends Biochem Sci 38:184–194PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP (2015) Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161:513–525PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tognetti S, Riera A, Speck C (2015) Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 124:13–26PubMedCrossRefGoogle Scholar
  112. Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P (2005) Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell 19:699–706PubMedCrossRefGoogle Scholar
  113. Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D, Wightman M, Matak-Vinkovic D, Pellegrini L, Labib K (2016) Ctf4 is a hub in the eukaryotic replisome that links multiple CIP-box proteins to the CMG helicase. Mol Cell 63:385–396PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wang H, Wang M, Yang N, Xu RM (2015) Structure of the quaternary complex of histone H3-H4 heterodimer with chaperone ASF1 and the replicative helicase subunit MCM2. Protein Cell 6:693–697PubMedPubMedCentralCrossRefGoogle Scholar
  115. Watase G, Takisawa H, Kanemaki MT (2012) Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol 22:343–349PubMedCrossRefGoogle Scholar
  116. Watson JD, Crick FH (1953a) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967PubMedCrossRefGoogle Scholar
  117. Watson JD, Crick FH (1953b) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar
  118. Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519:431–435PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O’Donnell ME, Li H (2016) Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol 23:217–224PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zhang D, O’Donnell M (2016) The eukaryotic replication machine. Enzyme 39:191–229Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Cryo-EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsUSA
  2. 2.Biochemistry and Structural Biology Graduate ProgramStony Brook UniversityStony BrookUSA
  3. 3.Howard Hughes Medical InstituteThe Rockefeller UniversityNew YorkUSA

Personalised recommendations