Optical Coherence Tomography

  • Ji-Eun LeeEmail author
  • Je-Hyun Seo
  • Young-Min Park


Optical coherence tomography (OCT) is a tool to visualize a cross section of the ocular tissue as difference of the reflectivity by measuring interference of the backscattered light. OCT provides images of the tissue at a very high resolution close to a histologic examination. Like ultrasound images, a cross-sectional OCT image is called B-scan and composed of multiple A-scans. As the ocular media is transparent, incident light enters the eye and is backscattered from the tissue. The reflectivity is shown as spectrum of gray scale or pseudo-color coding. OCT is now an essential tool for diagnosis and follow-up of many retinal diseases, corneal diseases, and glaucoma. The recent developments enabled angiography based on OCT technology. This chapter will describe the basic principles and interpretation of OCT images as well as OCT angiography.

Suggested Reading

  1. Bald M, Li Y, Huang D. Anterior chamber angle evaluation with fourier-domain optical coherence tomography. J Ophthalmol. 2012;2012:103704.PubMedPubMedCentralGoogle Scholar
  2. Bujak MC, Yiu S, Zhang X, Li Y, Huang D. Serial measurement of tear meniscus by FD-OCT after instillation of artificial tears in patients with dry eyes. Ophthalmic Surg Lasers Imaging Retina. 2011;42:308–13.CrossRefGoogle Scholar
  3. Cheung CY, Liu S, Weinreb RN, et al. Dynamic analysis of iris configuration with anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4040–6.CrossRefGoogle Scholar
  4. Chow VW, Agarwal T, Vajpayee RB, Jhanji V. Update on diagnosis and management of Descemet’s membrane detachment. Curr Opin Ophthalmol. 2013;24:356–61.Google Scholar
  5. Czajkowski G, Kaluzny BJ, Laudencka A, Malukiewicz G, Kaluzny JJ. Tear meniscus measurement by spectral optical coherence tomography. Optom Vis Sci. 2012;89:336–42.CrossRefGoogle Scholar
  6. DeLeón-Ortega JE, Arthur SN, McGwin G, Xie A, Monheit BE, Girkin CA. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci. 2006;47(8):3374–80.CrossRefGoogle Scholar
  7. Goldsmith JA, Li Y, Chalita MR, et al. Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology. 2005;112:238–44.CrossRefGoogle Scholar
  8. Han SB, Liu YC, Noriega KM, Mehta JS. Applications of anterior segment optical coherence tomography in cornea and ocular surface diseases. J Ophthalmol. 2016;2016:4971572.PubMedPubMedCentralGoogle Scholar
  9. Harizman N, Zelefsky JR, Ilitchev E, Tello C, Ritch R, Liebmann JM. Detection of glaucoma using operator-dependent versus operator-independent classification in the Heidelberg retinal tomograph-III. Br J Ophthalmol. 2006;90(11):1390–2.CrossRefGoogle Scholar
  10. Hee MR, Puliafito CA, Wong C, et al. Optical coherence tomography of macular holes. Ophthalmology. 1995;102:748–56.CrossRefGoogle Scholar
  11. Hee MR, Maumal CR, Puliafito CA, et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology. 1996;103:1260–70.CrossRefGoogle Scholar
  12. Hong JX, Sun XH. Clinical applications and limitations of anterior segment optical coherence tomography. Zhonghua Yan Ke Za Zhi. 2010;46:476–80.PubMedGoogle Scholar
  13. Huang D, Li Y, Radhakrishnan S. Optical coherence tomography of the anterior segment of the eye. Ophthalmol Clin N Am. 2004;17:1–6.CrossRefGoogle Scholar
  14. Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–9.CrossRefGoogle Scholar
  15. Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol. 2010;149:18–31.CrossRefGoogle Scholar
  16. Knecht PB, Kaufmann C, Menke MN, Watson SL, Bosch MM. Use of intraoperative Fourier-domain anterior segment optical coherence tomography during Descemet stripping endothelial keratoplasty. Am J Ophthalmol. 2010;150:360–5. e2.CrossRefGoogle Scholar
  17. Kymionis GD, Grentzelos MA, Plaka AD, et al. Evaluation of the corneal collagen cross-linking demarcation line profile using anterior segment optical coherence tomography. Cornea. 2013;32:907–10.CrossRefGoogle Scholar
  18. Lang SJ, Cucera A, Lang GK. Applications of optical coherence tomography in the anterior segment. Klin Monatsbl Augenheilkd. 2011;228:1086–91.CrossRefGoogle Scholar
  19. Leite MT, Rao HL, Zangwill LM, Weinreb RN, Medeiros FA. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011;118:1334–9.PubMedGoogle Scholar
  20. Li H, Leung CK, Cheung CY, et al. Repeatability and reproducibility of anterior chamber angle measurement with anterior segment optical coherence tomography. Br J Ophthalmol. 2007a;91:1490–2.CrossRefGoogle Scholar
  21. Li Y, Netto MV, Shekhar R, Krueger RR, Huang D. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. Ophthalmology. 2007b;114:1124–32.CrossRefGoogle Scholar
  22. Lim SH. Clinical applications of anterior segment optical coherence tomography. J Ophthalmol. 2015;2015:605729.PubMedPubMedCentralGoogle Scholar
  23. Lim LS, Aung HT, Aung T, Tan DT. Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures. Am J Ophthalmol. 2008;145:81–90.CrossRefGoogle Scholar
  24. Lisboa R, Leite MT, Zangwill LM, Tafreshi A, Weinreb RN, Medeiros FA. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology. 2012;119(11):2261–9.CrossRefGoogle Scholar
  25. Maeda N. Optical coherence tomography for corneal diseases. Eye Contact Lens. 2010;36:254–9.CrossRefGoogle Scholar
  26. Manassakorn A, Nouri-Mahdavi K, Caprioli J. Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol. 2006;141(1):105–15. e1.CrossRefGoogle Scholar
  27. Moutsouris K, Dapena I, Ham L, Balachandran C, Oellerich S, Melles GR. Optical coherence tomography, Scheimpflug imaging, and slit-lamp biomicroscopy in the early detection of graft detachment after Descemet membrane endothelial keratoplasty. Cornea. 2011;30:1369–75.CrossRefGoogle Scholar
  28. Nagy ZZ, Filkorn T, Takacs AI, et al. Anterior segment OCT imaging after femtosecond laser cataract surgery. J Refract Surg. 2013;29:110–2.CrossRefGoogle Scholar
  29. Narayanaswamy A, Sakata LM, He MG, et al. Diagnostic performance of anterior chamber angle measurements for detecting eyes with narrow angles: an anterior segment OCT study. Arch Ophthalmol. 2010;128:1321–7.CrossRefGoogle Scholar
  30. Pallikaris IG, Kymionis GD, Astyrakakis NI. Corneal ectasia induced by laser in situ keratomileusis. J Cataract Refract Surg. 2001;27:1796–802.CrossRefGoogle Scholar
  31. Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102:217–29.CrossRefGoogle Scholar
  32. Radhakrishnan S, Goldsmith J, Huang D, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123:1053–9.CrossRefGoogle Scholar
  33. Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Exp Ophthalmol. 2009;37:81–9.CrossRefGoogle Scholar
  34. Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008;115:37–50.CrossRefGoogle Scholar
  35. Reinstein DZ, Archer TJ, Gobbe M. Comparison of residual stromal bed thickness measurement among very high-frequency digital ultrasound, intraoperative handheld ultrasound, and optical coherence tomography. J Refract Surg. 2012;28:42–7.CrossRefGoogle Scholar
  36. Reus NJ, Lemij HG. Diagnostic accuracy of the GDx VCC for glaucoma. Ophthalmology. 2004;111(10):1860–5.CrossRefGoogle Scholar
  37. Reus NJ, Colen TP, Lemij HG. Visualization of localized retinal nerve fiber layer defects with the GDx with individualized and with fixed compensation of anterior segment birefringence. Ophthalmology. 2003;110(8):1512–6.CrossRefGoogle Scholar
  38. Rio-Cristobal A, Martin R. Corneal assessment technologies: current status. Surv Ophthalmol. 2014;59:599–614.CrossRefGoogle Scholar
  39. Rosas Salaroli CH, Li Y, Huang D. High-resolution optical coherence tomography visualization of LASIK flap displacement. J Cataract Refract Surg. 2009;35:1640–2.CrossRefGoogle Scholar
  40. Rosas Salaroli CH, Li Y, Zhang X, et al. Repeatability of laser in situ keratomileusis flap thickness measurement by Fourier-domain optical coherence tomography. J Cataract Refract Surg. 2011;37:649–54.CrossRefGoogle Scholar
  41. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109(1):77–83.CrossRefGoogle Scholar
  42. Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015a;35:2163–80.CrossRefGoogle Scholar
  43. Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015b;133:45–50.CrossRefGoogle Scholar
  44. Sung MS, Yoon KC. Evaluation of graft-host interface after penetrating keratoplasty using anterior segment optical coherence tomography. Jpn J Ophthalmol. 2014;58:282–9.CrossRefGoogle Scholar
  45. Wang BS, Wang NL. Applications of anterior segment optical coherence tomography in ophthalmology. Zhonghua Yan Ke Za Zhi. 2008;44:185–8.PubMedGoogle Scholar
  46. Wilkins JR, Puliafito CA, Hee MR, et al. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology. 1996;103:2142–51.CrossRefGoogle Scholar
  47. Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol. 2005;139(1):39–43.CrossRefGoogle Scholar
  48. Yeh RY, Quilendrino R, Musa FU, Liarakos VS, Dapena I, Melles GR. Predictive value of optical coherence tomography in graft attachment after Descemet’s membrane endothelial keratoplasty. Ophthalmology. 2013;120:240–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyPusan National University School of MedicineBusanSouth Korea
  2. 2.Department of OphthalmologyPusan National University Yangsan HospitalYangsanSouth Korea
  3. 3.Department of OphthalmologyGyeongsang National University School of MedicineChangwonSouth Korea

Personalised recommendations