Bioengineering of DREB and NAC Transcriptional Factors for Enhanced Plant Tolerance Against Abiotic Stresses

  • Manoj K. Sharma
  • Ashu Singh
  • Rakesh Singh Sengar


Plants growing in their native environment face several types of abiotic stresses that intentionally affect their yields at significant levels. Plant reactions toward stress are complicated and involve various cellular, physio-biochemical, and molecular adaptations. Several recent studies show that under stress conditions, plants exhibit a series of several physiological and molecular responses as a part of their stress tolerance mechanisms. Such types of interactions among various stresses point to an in-between talks among their responsive pathways of cell signaling. This type of cross talk may be both synergistic and antagonistic and commiserate the defense system which combines the plant growth hormones, transcriptional factors, cascades such as kinase, and reactive oxygen species (ROS) as an aid. Such cross talk could lead to a cross-tolerance and the enhancement of plant’s resistance levels against abiotic stresses. In recent years, transcriptional factors (TFs) have been reported to play important roles in crop improvement from the advent of agriculture. Transcriptional factors (TFs) have reported to be therefore good candidates for molecular genetics to enhance plant tolerance toward abiotic stress because of their major roles as regulators of the clusters of several genes. In this chapter, the current status of transgenic or genetically modified plants developed for enhanced tolerance against abiotic stresses by overexpressing DREB and NAC transcriptional factors has been discussed in detail. Therefore, the collective efforts and the results of several collaborative studies would definitely contribute toward the sustainable food production at global level and would also be helpful to prevent the large-scale environmental damages that result from the course of several abiotic stresses.


Environmental stress Gene/regulon Transcriptional factors Transgenics 


  1. Abdallat AMA, Ayad JY, Elenein JMA, Ajlouni Z, Al WA (2014) Harwood: overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.) Mol Breed 33(2):401–414CrossRefGoogle Scholar
  2. Abdallat AMA, Ali Sheikh OMA, Alnemer LM (2015) Overexpression of two ATNAC3 related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.) Plant Cell Tissue Organ Cult 120(3):989–1001CrossRefGoogle Scholar
  3. Abogadallah GM, Nada RM, Malinowski R, Quick P (2011) Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta 233:1265–1276PubMedCrossRefGoogle Scholar
  4. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274PubMedCrossRefGoogle Scholar
  5. Agarwal P, Agarwal PK, Joshi AJ, Reddy MK, Sopory SK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135PubMedCrossRefGoogle Scholar
  6. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857PubMedPubMedCentralCrossRefGoogle Scholar
  7. Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amudha J, Chhajed S, Balasubramani G (2014) Cotton transgenic plants with Dre-binding transcription factor gene (DREB 1A) confers enhanced tolerance to drought. Int J Adv Biotechnol Res 5(4):635–648Google Scholar
  9. An X, Liao Y, Zhang J, Dai L, Zhang N, Wang B, Liu L, Peng D (2015) Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regul 76(2):211–223CrossRefGoogle Scholar
  10. An D, Ma Q, Yan W, Zhou W, Liu G, Zhang P (2016) Divergent regulation of CBF regulon on cold tolerance and plant phenotype in cassava overexpressing Arabidopsis CBF3 Gene. Front Plant Sci 7:1866PubMedPubMedCentralGoogle Scholar
  11. Anbazhagan K, Bhatnagar-Mathur P, Vadez V, Dumbala SR, Kavi Kishor PB, Sharma KK (2015) DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep 34(2):199–210PubMedCrossRefGoogle Scholar
  12. Arroyo-Herrera A, Figueroa-Yanez L, Castano E, Santamarıa J, Pereira-Santana A, Espadas-Alcocer J, Sanchez-Teyer F, Espadas-Gil F, Alcaraz LD, Lopez-Gomez R, Sanchez-Calderon L, Rodrıguez-Zapata LC (2016) A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress. Plant Cell Tissue Organ Cult 125(1):119–133CrossRefGoogle Scholar
  13. Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34(2):247–263PubMedCrossRefGoogle Scholar
  14. Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kahler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt promoted senescence. Plant J 62:250–264PubMedCrossRefGoogle Scholar
  15. Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP, Roeber MB (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4(2):346–360Google Scholar
  16. Ban Q, Liu G, Wang Y (2011) A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. J Plant Physiol 168(5):449–458PubMedCrossRefGoogle Scholar
  17. Basu U (2012) Identification of molecular processes underlying abiotic stress plants adaptation using “omics” technologies. In: Benkeblia N (ed) Sustainable Agricul-ture and new Technologie. CRC Press, Boca Raton, pp 149–172Google Scholar
  18. Behnam B, Kikuchi A, Celebi-Toprak F, Yamanaka S, Kasuga M, Kazuko Y, Watanabe KN (2006) The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum L.) Plant Biotechnol 23:169–177CrossRefGoogle Scholar
  19. Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea) increases transpiration efficiency. Plant Cell Rep 26(12):2071–2082PubMedCrossRefGoogle Scholar
  20. Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, Yamaguchi-Shinozaki K, Sharma KK (2014) Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33:327–340CrossRefGoogle Scholar
  21. Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149:95–101CrossRefGoogle Scholar
  22. Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Fisher R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee BH, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song CP, Tanaka Y, Wang H, Zhu JK (2001) A genomic approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311CrossRefGoogle Scholar
  23. Bouaziz D, Pirrello J, Amor BH, Hammami A, Charfeddine M, Dhieb A, Bouzayen M, GargouriBouzid R (2012) Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol Biochem 60:98–108PubMedCrossRefGoogle Scholar
  24. Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 54(3):803–817PubMedCrossRefGoogle Scholar
  25. Bouaziz D, Charfeddine M, Jbir R, Saidi MN, Pirrello J, Charfeddine S, Bouzayen M, Gargouri-Bouzid R (2015a) Identification and functional characterization of ten AP2/ERF genes in potato. Plant Cell Tissue Organ Cult 123(1):155–172CrossRefGoogle Scholar
  26. Bouaziz D, Jbir R, Charfeddine S, Saidi MN, Gargouri R (2015b) The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress. Plant Cell Tissue Organ Cult 121(1):237–248CrossRefGoogle Scholar
  27. Bouaziz D, Charfeddine S, Jbir R, Hammami A, Kamoun L, Gargouri-Bouzid R (2017) Effects of phosphogypsum on the growth of potato plants overexpressing the StDREB1 transcription factor. Plant Cell Tiss Organ Cult 130:1–11CrossRefGoogle Scholar
  28. Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3:17–22PubMedCrossRefGoogle Scholar
  29. Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18:134–141PubMedCrossRefGoogle Scholar
  30. Byun MY, Lee J, Cui LH, Kang Y, Oha TK, Park H, Lee H, Kim WT (2015) Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Sci 236:61–74PubMedCrossRefGoogle Scholar
  31. Celebi-Toprak F, Behnam B, Serrano G, Kasuga M, Yamaguchi-Shinozaki K, Naka H, Watanabe JA, Yamanaka S, Watanabe KN (2005) Tolerance to salt stress of the transgenic tetrasomic tetraploid potato, Solanum tuberosum cv. Desiree appears to be induced by the DREB1A gene and rd29A promoter of Arabidopsis thaliana. Breed Sci 55:310–319CrossRefGoogle Scholar
  32. Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810PubMedCrossRefGoogle Scholar
  33. Charfeddine M, Charfeddine S, Bouaziz D, Messaoud RB, Bouzid RG (2017) The effect of cadmium on transgenic potato (Solanum tuberosum) plants overexpressing the StDREB transcription factors. Plant Cell Tissue Organ Cult 128(3):521–541CrossRefGoogle Scholar
  34. Chaves MM, Costa JM, Saibo NJM (2011) Recent advances in photosynthesis under drought and salinity. Adv Bot Res 57:50–83Google Scholar
  35. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG (2007) GmDREB2, a soybean DRE binding transcription factor, conferred drought and high salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305PubMedCrossRefGoogle Scholar
  36. Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Overexpression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30(12):2191–2198PubMedCrossRefGoogle Scholar
  37. Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y (2009a) Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.) J Exp Bot 60(1):121–135PubMedCrossRefGoogle Scholar
  38. Chen J, Xia X, Yin W (2009b) Expression profiling and functional characterization of a DREB2 type gene from Populus euphratica. Biochem Biophys Res Commun 378:483–487PubMedCrossRefGoogle Scholar
  39. Chen J, Xia X, Yin W (2009c) Expression profiling and functional characterization of a DREB2- type gene from Populus euphratica. Biochem Biophys Res Commun 378:483–487PubMedCrossRefGoogle Scholar
  40. Chen JR, Lu JJ, Liu R, Xiong XY, Wang TX, Chen SY (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose (Rosa chinensis Jacq.) Plant Growth Regul 60:199–211CrossRefGoogle Scholar
  41. Chen J, Xia X, Yin W (2011) A poplar DRE binding protein gene, PeDREB2L, is involved in regulation of defense response against abiotic stress. Gene 483(12):36–42PubMedCrossRefGoogle Scholar
  42. Chen X, Wang Y, Lv B, Li J, Luo L, Lu S (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619PubMedCrossRefGoogle Scholar
  43. Chen H, Liu L, Wang L, Wang S, Cheng X (2016) VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high salt tolerance in transgenic Arabidopsis thaliana. J Plant Res 129:263–273PubMedCrossRefGoogle Scholar
  44. Cheng L, Hui L, Li L, Chen SX, Li L (2015) Overexpression of NnDREB2, isolated from lotus improves salt tolerance in transgenic Arabidopsis thaliana. Acta Physiol Plant 37:261–272CrossRefGoogle Scholar
  45. Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH, Kim JK (2009) The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. Plant J 59(5):764–776PubMedCrossRefGoogle Scholar
  46. Cong L, Chai T, Zhang Y (2008) Characterization of the novel gene BjDREB1B encoding a DRE binding transcription factor from Brassica juncea L. Biochem Biophys Res Commun 371(4):702–706PubMedCrossRefGoogle Scholar
  47. Cong L, Jing Y, Wu X, Cong X, Jingjuan Y (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65(18):5415–5427CrossRefGoogle Scholar
  48. Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R (2011) Induced overexpression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49(12):1384–1391PubMedCrossRefGoogle Scholar
  49. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Ann Rev Plant Biol 61:651–679CrossRefGoogle Scholar
  50. Datta K, Niranjan B, Moumita G, Sellapna K, Yamaguchi-Shinozaki K, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10:579–586PubMedCrossRefGoogle Scholar
  51. De Clercq I, Vermeirssen V, Aken OV, Vandepoele K, Murcha MW, Law SR, Inze A, Ng S, Ivanova A, Rombaut D, Cotte BV, Jaspers P, Peer YV, Kangasjarvi J, Whelan J, Breusegema FV (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25:3472–3490PubMedPubMedCentralCrossRefGoogle Scholar
  52. De Paiva Rolla AA, de Fatima Correa Carvalho J, FugantiPagliarini R, Engels C, do Rio A, Marin SR, de Oliveira MC, Beneventi MA, Marcelino-Guimaraes FC, Farias JR, Neumaier N, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL (2014) Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res 23(1):75–87PubMedCrossRefGoogle Scholar
  53. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S (2003) OsDREB genes in rice (Oryza sativa L.) encode transcription activators that function in drought, high-salt- and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  54. Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain super family. Plant Mol Biol 50:237–248PubMedCrossRefGoogle Scholar
  55. Engels C, Fuganti-Pagliarini R, Marin SR, Marcelino-Guimaraes FC, Oliveira MC, Kanamori N, Mizoi J, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL (2013) Introduction of the rd29A:AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration. Genet Mol Res 36(4):556–565Google Scholar
  56. Ernst HA, Olsen AN, Larsen S, Lo-Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297–303PubMedPubMedCentralCrossRefGoogle Scholar
  57. Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Gen Genomics 280:547–563CrossRefGoogle Scholar
  58. Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015a) A stress responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fang ZW, Xu XY, Gao JF, Wang PK, Liu ZX, Feng BL (2015b) Characterization of FeDREB1 promoter involved in cold and drought-inducible expression from common buckwheat (Fagopyrum esculentum). Genet Mol Res 14(3):7990–8000PubMedCrossRefGoogle Scholar
  60. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45PubMedPubMedCentralCrossRefGoogle Scholar
  61. Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants-where next? Aust J Plant Physiol 22:876–884CrossRefGoogle Scholar
  62. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876PubMedCrossRefGoogle Scholar
  64. Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311PubMedCrossRefGoogle Scholar
  65. Garapati P, Xue GP, Munne-Bosch S, Balazadeh S (2015) Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168(3):1122–1139PubMedPubMedCentralCrossRefGoogle Scholar
  66. Gilmour SJ, Hajela RK, Thomashow MF (1998) Cold acclimation in Arabidopsis thaliana. Plant Physiol 87:745–750CrossRefGoogle Scholar
  67. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865PubMedPubMedCentralCrossRefGoogle Scholar
  68. Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20:1217–1230PubMedPubMedCentralCrossRefGoogle Scholar
  69. Grover A, Kapoor A, Laksmi OS, Agarwal S, Sahi C, Katiyar-Agarwal S, Agarwal M, Dubey H (2001) Understanding molecular alphabets of the plant abiotic stress responses. Curr Sci 80(2):206–216Google Scholar
  70. Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771–785PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gunapati S, Naresh R, Ranjan S, Nigam D, Hans A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978PubMedPubMedCentralCrossRefGoogle Scholar
  72. Guo Z, Chen X, Wu X, Ling J, Xu P (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55:607–618PubMedCrossRefGoogle Scholar
  73. Gupta K, Jha B, Agarwal PK (2014) A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco. Mar Biotechnol 16(6):657–673PubMedCrossRefGoogle Scholar
  74. Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68(6):533–555PubMedCrossRefGoogle Scholar
  75. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68(2):302–313PubMedCrossRefGoogle Scholar
  77. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916PubMedCrossRefGoogle Scholar
  78. Hichri I, Muhovski Y, Clippe A, Zizkova E, Dobrev PI, Motyka V, Lutts S (2016) SlDREB2, a tomato dehydration-responsive element-binding2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant Cell Environ 39:62–79PubMedCrossRefGoogle Scholar
  79. Hong B, Tong Z, Ma N, Li J, Kasuga M, Yamaguchi-Shinozaki K, Gao J (2006) Heterologous expression of the AtDREB1A gene in Chrysanthemum increases drought and salt stress tolerance. Sci China C Life Sci 49:436–445PubMedCrossRefGoogle Scholar
  80. Hong B, Ma C, Yang Y, Wang T, Yamaguchi-Shinozaki K, Gao J (2009) Over-expression of AtDREB1A in Chrysanthemum enhances tolerance to heat stress. Plant Mol Biol 70:231–240PubMedCrossRefGoogle Scholar
  81. Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hu H, Dai M, Yao J, Li BX, Zhang XQ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181PubMedCrossRefGoogle Scholar
  85. Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145PubMedPubMedCentralCrossRefGoogle Scholar
  86. Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268PubMedPubMedCentralCrossRefGoogle Scholar
  87. Huang L, Hong Y, Zhang H, Li D, Song F (2016) Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol 16:203PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hussain Z, Ali S, Hayat Z, Zia MA, Iqbal A, Ali GM (2014) Agrobacterium mediated transformation of DREB1A gene for improved drought tolerance in rice cultivars (Oryza sativa L.) Aust J Crop Sci 8(7):1114–1123Google Scholar
  89. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M (2006) Functional analysis of rice DREB1/CBF type transcription factors involved in cold responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153PubMedCrossRefGoogle Scholar
  90. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917PubMedPubMedCentralCrossRefGoogle Scholar
  91. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280:104–106PubMedCrossRefGoogle Scholar
  92. James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17(1):93–104PubMedCrossRefGoogle Scholar
  93. Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426:183–196PubMedCrossRefGoogle Scholar
  94. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi YD, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought condition. Plant Physiol 153:185–197PubMedPubMedCentralCrossRefGoogle Scholar
  95. Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jiang X, Zhang C, Lu P, Jiang G, Liu X, Dai F, Gao J (2014a) RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnol J 12:38–48PubMedCrossRefGoogle Scholar
  97. Jiang QY, Hu Z, Zhang H, Ma YZ (2014b) Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity. Crop J 2:120–131CrossRefGoogle Scholar
  98. Jiang L, Wang Y, Zhang S, He R, Li W, Han J, Cheng X (2016) Tomato SlDREB1 gene conferred the transcriptional activation of drought induced gene and an enhanced tolerance of the transgenic Arabidopsis to drought stress. Plant Growth Regul 81(1):131–145CrossRefGoogle Scholar
  99. Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L (2010) Stress inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100(2):219–227CrossRefGoogle Scholar
  100. Jun-Wei W, Feng-Ping Y, Xu-Qing C, Rong-Qi L, Li-Quan Z, Dong-Mei G, Xiao-Dong Z, Ya-Zhen S, Gai-Sheng Z (2006) Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genet Sin 33(5):468–476CrossRefGoogle Scholar
  101. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291PubMedCrossRefGoogle Scholar
  102. Kasuga M, Miura S, Shinozaki K, Kazuko Y (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350PubMedCrossRefGoogle Scholar
  103. Katerji N, Van Horn JW, Hamdy A, Mastrorilli M (2003) Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric Water Manag 62:37–66CrossRefGoogle Scholar
  104. Katerji N, Van Horn JW, Hamdy A, Mastrorilli M (2004) Comparison of corn yield response to plant water stress caused by salinity and drought. Agric Water Manag 65:95–101CrossRefGoogle Scholar
  105. Kavar T, Maras M, Kidric M, Sustar-Vozlic J, Meglic V (2007) Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol Breed 21:159–172CrossRefGoogle Scholar
  106. Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Nang MPSH, Yasunari F, Sachiko S, Kazuo S, Kazuko Y (2015) Soybean DREB1/CBF type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81(3):505–518PubMedCrossRefGoogle Scholar
  107. Kilian J, Peschke F, Berendzen KW, Harter K, Wanke D (2012) Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. Biochim Biophys Acta 1819:166–175PubMedCrossRefGoogle Scholar
  108. Kim JK, Jung YSH, Bang SW, Choi YD, Ha SH, Reuzeau C, Mark CFR, Jin S, Jeong R (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805PubMedCrossRefGoogle Scholar
  109. Kim YS, Kim JK (2009) Rice transcription factor transcription factor AP37 involved in grain yield increase under drought stress. Plant Signal Behav 4:735–736PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kim YS, Sakuraba Y, Han SH, Yoo SC, Paek NC (2013) Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Plant Cell Physiol 54:1660–1672PubMedCrossRefGoogle Scholar
  111. Kjaersgaard T, Jensen MK, Christiansen MW, Gregersen P, Kragelund BB, Skriver K (2011) Senescenceassociated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. J Biol Chem 286:35418–35429PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664PubMedCrossRefGoogle Scholar
  113. Kobayashi F, Ishibashi M, Takumi S (2008) Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Res 17(5):755–767PubMedCrossRefGoogle Scholar
  114. Kovalchuk N, Jia W, Eini O, Morran S, Pyvovarenko T, Fletcher S, Bazanova N, Harris J, BeckOldach K, Shavrukov Y, Langridge P, Lopato S (2013) Optimization of TaDREB3 gene expression in transgenic barley using cold inducible promoters. Plant Biotechnol J 11:659–670PubMedCrossRefGoogle Scholar
  115. Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471PubMedCrossRefGoogle Scholar
  116. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748PubMedCrossRefGoogle Scholar
  117. Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lee SC, Huh KW, An K, An G, Kim SR (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.) Mol Cell 18:107–114Google Scholar
  119. Lee HE, Shin D, Park SR, Han SE, Jeong MJ, Kwon TR, Lee SK, Park SC, Yi BY, Kwon HB, Byun MO (2007) Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochem Biophys Res Commun 353:863–868PubMedCrossRefGoogle Scholar
  120. Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim JK (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15:754–764PubMedPubMedCentralCrossRefGoogle Scholar
  121. Li X, Cheng X, Liu J, Zeng H, Han L, Tang W (2011) Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnol Rep 5(1):61–69CrossRefGoogle Scholar
  122. Li JT, Wang N, Xin HP, Li SH (2013) Overexpression of VaCBF4, a transcription factor from Vitis amurensis, improves cold tolerance accompanying increased resistance to drought and salinity in Arabidopsis. Plant Mol Biol Report 31:1518–1528CrossRefGoogle Scholar
  123. Li X, Zhang D, Li H, Wang Y, Zhang Y, Wood AJ (2014) EsDREB2B, a novel truncated DREB2 type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 14:44–59PubMedPubMedCentralCrossRefGoogle Scholar
  124. Li H, Zhang Y, Guo Q, Yao W (2017) Molecular characterization of a DREB gene from Sophora moorcroftiana, an endemic species of plateau. Protoplasma 254(4):1735–1741PubMedCrossRefGoogle Scholar
  125. Liao X, Guo X, Wang Q, Wang Y, Zhao D, Yao L, Wang S, Liu G, Li T (2017) Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89(3):510–526PubMedCrossRefGoogle Scholar
  126. Lim CJ, Hwang JE, Chen H, Hong JK, Yang KA, Choi MS, Lee KO, Chung WS, Lee SY, Lim CO (2007) Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermo-tolerance. Biochem Biophys Res Commun 362:431–436PubMedCrossRefGoogle Scholar
  127. Lina X, Ming C, Dong-hong M, Lu F, Zhao-shi X, Yongbin Z, Dong-bei X, Lian-cheng L, You-zhi M, Xiao-hong Z (2016) The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. J Integr Agric 15:60345–60347Google Scholar
  128. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Goda H, Shimada Y, Yoshida S, Shinozaki K, Kazuko Y (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:391–406Google Scholar
  129. Liu N, Zhong N, Wang G, Li L, Liu X, He Y, Xia G (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE binding transcription factor from Physcomitrella patens. Planta 226:827–838PubMedCrossRefGoogle Scholar
  130. Liu X, Hong L, Li XY, Yao Y, Hu B, Li L (2011a) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem 75:443–450PubMedCrossRefGoogle Scholar
  131. Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Yang J, Li HY (2011b) Cloning of a vacuolar H+ pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53:731–742PubMedGoogle Scholar
  132. Liu QL, Xu KD, Zhao LJ, Pan YZ, Jiang BB, Zhang HQ, Liu GL (2011c) Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett 33:2073–2082PubMedCrossRefGoogle Scholar
  133. Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63:3899–3911PubMedPubMedCentralCrossRefGoogle Scholar
  134. Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y (2013) Overexpression of Arachis hypogea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359PubMedCrossRefGoogle Scholar
  135. Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wg XC (2007) A novel drought inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289–305PubMedCrossRefGoogle Scholar
  137. Lu M, Ying S, Zhang DF, Shi YS, Song YC, Wang TY (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep 31:1701–1711PubMedCrossRefGoogle Scholar
  138. Lv Z, Wang S, Zhang F, Chen L, Hao X, Pan Q, Fu X, Li L, Sun X, Tang K (2016) Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant Cell Physiol 57(9):1961–1971PubMedCrossRefGoogle Scholar
  139. Magnani E, Sjolander K, Hake S (2004) From endonuclease to transcription factors: Evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277PubMedPubMedCentralCrossRefGoogle Scholar
  140. Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.) Biotechnol Lett 33:1689–1697PubMedCrossRefGoogle Scholar
  141. Manavalan LP, Guttikonda SK, Tran L-SP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276PubMedCrossRefGoogle Scholar
  142. Mao X, Zhang H, Qian X, Zhao AG, Jing R (2012) TaNAC2, a NAC type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63(8):2933–2946PubMedPubMedCentralCrossRefGoogle Scholar
  143. Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9(1):e84359PubMedPubMedCentralCrossRefGoogle Scholar
  144. Mao H, Yu L, Han R, Li Z, Liu H (2016) ZmNAC55, a maize stress responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiol Biochem 105:55–66PubMedCrossRefGoogle Scholar
  145. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Kazuko Y (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. The. Plant J 38:982–993PubMedCrossRefGoogle Scholar
  146. Maruyama K, Takeda M, Kidokoro S (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980PubMedPubMedCentralCrossRefGoogle Scholar
  147. Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Maiko EN, Kawashima MN, Nakajima SMM, Kim MJ, Kobayashi N, Toyoda T, Shinozaki S, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49(8):1135–1149PubMedCrossRefGoogle Scholar
  148. Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Gen Genomics 283:185–196CrossRefGoogle Scholar
  149. Meiru L, Yan L, Hongqing L, Guojiang W (2012) Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. Tree Physiol 32(1):104–113CrossRefGoogle Scholar
  150. Meng C, Cai C, Zhang T, Guo W (2009) Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci 176(3):352–359CrossRefGoogle Scholar
  151. Mishra S, Phukan UJ, Tripathi V, Singh DK, Luqman S, Shukla RK (2015) PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco. Plant Mol Biol 89:173–186PubMedCrossRefGoogle Scholar
  152. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2011) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96PubMedCrossRefGoogle Scholar
  153. Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozaki K, Kazuko Y (2013) GmDREB2A: a canonical DREB2-type transcription factor in soybean is post-translationally regulated and mediates DRE-dependent gene expression. Plant Physiol 161(1):346–361PubMedCrossRefGoogle Scholar
  154. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9(2):230–249PubMedCrossRefGoogle Scholar
  155. Movahedi S, Tabatabaei BES, Alizade H, Ghobadi C, Yamchi A, Khaksar G (2012) Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. Biol Plant 56:37–42CrossRefGoogle Scholar
  156. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630PubMedCrossRefGoogle Scholar
  157. Negi S, Tak H, Ganapathi TR (2016) Expression analysis of MusaNAC68 transcription factor and its functional analysis by overexpression in transgenic banana plants. Plant Cell Tissue Organ Cult 125(1):59–70CrossRefGoogle Scholar
  158. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44PubMedCrossRefGoogle Scholar
  159. Nuruzzaman M, Sharoni AM, Satoh K, Kondoh H, Hosaka A, Kikuchi S (2012) A genome-wide survey of the NAC transcription factor family in monocots and eudicots. In: Introduction to genetics–DNA methylation, histone modification and gene regulation. iConcept Press, Hong Kong. isbn:ISBN, 978- 14775549-4-4Google Scholar
  160. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:1–15CrossRefGoogle Scholar
  161. Oakenfull RJ, Baxter R, Knight MR (2013) A Crepeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana. PLoS One 8(1):e54119PubMedPubMedCentralCrossRefGoogle Scholar
  162. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–335PubMedPubMedCentralCrossRefGoogle Scholar
  163. Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656PubMedCrossRefGoogle Scholar
  164. Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80:135–139PubMedCrossRefGoogle Scholar
  165. Olsen AN, Ernst HA, Lo Leggio L, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:1360–1385CrossRefGoogle Scholar
  166. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247PubMedCrossRefGoogle Scholar
  167. Pandurangaiah M, Lokanadha Rao G, Sudhakarbabu O, Nareshkumar A, Kiranmai K, Lokesh U, Thapa G, Sudhakar C (2017) Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol 56(8):758–769CrossRefGoogle Scholar
  168. Paul A, Muoki RC, Singh K, Kumar S (2012) CsNAM-like protein encodes a nuclear localized protein and responds to varied cues in tea (Camellia sinensis L. O. Kuntze). Gene 502:69–74PubMedCrossRefGoogle Scholar
  169. Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500PubMedCrossRefGoogle Scholar
  170. Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H (2009) Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally and stress-regulated. Plant Physiol Biochem 47:1037–1045PubMedCrossRefGoogle Scholar
  171. Peng T, Guo C, Yang J, Xu M, Zuo J, Bao M, Zhang J (2016) Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell Tissue Organ Cult 126(3):373–385CrossRefGoogle Scholar
  172. Polizel AM, Medri ME, Nakashima K, Yamanaka N, Farias JR, de Oliveira MC, Marin SR, Abdelnoor RV, Marcelino-Guimaraes FC, Fuganti R, Rodrigues FA, StolfMoreira R, Beneventi MA, Rolla AA, Neumaier N, YamaguchiShinozaki K, Carvalho JF, Nepomuceno AL (2011) Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genet Mol Res 10(4):3641–3656PubMedCrossRefGoogle Scholar
  173. Puranik S, Bahadur RP, Srivastava PS, Prasad M (2011) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.] Mol Biotechnol 49:138–150PubMedCrossRefGoogle Scholar
  174. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Kazuko Y (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold responsive gene expression in maize (Zea mays L.) Plant Cell Physiol 45:1042–1052PubMedCrossRefGoogle Scholar
  175. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stress in Zea mays L. Plant J 50:54–59PubMedCrossRefGoogle Scholar
  176. Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 5:1569–1582CrossRefGoogle Scholar
  177. Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Over-expression of a NAC67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16(1):35PubMedPubMedCentralCrossRefGoogle Scholar
  178. Ramegowda V, Senthil-Kumar M, Nataraja KN, Reddy MK, Mysore KS, Udayakumar M (2012) Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance. PLoS One 7:e40397PubMedPubMedCentralCrossRefGoogle Scholar
  179. Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, Viraktamath BC, Balachandran SM (2014) Stress inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23(3):421–439PubMedPubMedCentralCrossRefGoogle Scholar
  180. Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805PubMedCrossRefGoogle Scholar
  181. Reis RR, Cunha BADB, Martins PK, Martins MTB, Alekcevetch JC Júnior AC, Andradec AC Ribeiroa AP, Qin F, Mizoie J, Kazuko YS, Nakashima K, Carvalho JFC, Sousaa CAF, Nepomuceno AL, Kobayashia AK, Molinaria HBC (2014) Induced overexpression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci, 221 & 222:59–68Google Scholar
  182. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedGoogle Scholar
  183. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110PubMedCrossRefGoogle Scholar
  184. Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479PubMedCrossRefGoogle Scholar
  185. Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae. Plant Physiol 147:280–295PubMedPubMedCentralCrossRefGoogle Scholar
  186. Saad AS, Li X, Li HP, Huang T, Gao CS. Guo MW (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203 & 204:33–40Google Scholar
  187. Sadhukhan A, Kobayashi Y, Kobayashi Y, Tokizawa M, Yamamoto YY, Iuchi S, Koyama H, Panda SK, Sahoo L (2014) VuDREB2A, a novel DREB2 type transcription factor in the drought tolerant legume cowpea, mediates DRE dependent expression of stress responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta 240(3):645–664PubMedCrossRefGoogle Scholar
  188. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009PubMedCrossRefGoogle Scholar
  189. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Kazuko Y (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Kazuko Y (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress responsive and heat-stress-responsive gene expression. PNAS USA 103:18822–18827PubMedPubMedCentralCrossRefGoogle Scholar
  191. Samara Reddy S, Singh B, Peter AJ, Rao TV (2016) Production of transgenic local rice cultivars (Oryza sativa L.) for improved drought tolerance using agrobacterium mediated transformation. Saudi J Biol Sci.
  192. Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539PubMedCrossRefGoogle Scholar
  193. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant J 31(3):279–292PubMedCrossRefGoogle Scholar
  194. Seki M, Kamei A, Satou M, Sakurai T, Fujita M, Oono Y, Yamaguch-Shinozaki K, Shinozaki K (2003) Transcriptome analysis in abiotic stress conditions in higher plants. Topics. Curr Genet 4:271–295CrossRefGoogle Scholar
  195. Shah SH, Ali S, Hussain Z, Jan SA, Din JU, Ali GM (2016) Genetic improvement of tomato (Solanum lycopersicum) with AtDREB1A gene for cold stress tolerance using optimized Agrobacterium-mediated transformation system. Int J Agric Biol 18:471–482CrossRefGoogle Scholar
  196. Shahnejat-Bushehri S, Mueller-Roeber B, Balazadeh S (2012) Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermo-memory associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signal Behav 7:1518–1521PubMedPubMedCentralCrossRefGoogle Scholar
  197. Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81PubMedCrossRefGoogle Scholar
  198. Shao H, Wang H, Tang X (2015) NAC transcription factors in plants multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902PubMedPubMedCentralCrossRefGoogle Scholar
  199. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930PubMedCrossRefGoogle Scholar
  200. Shen J, Shen J, Lv B, Luo L, He J, Mao C, Xi D, Ming F (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641PubMedPubMedCentralCrossRefGoogle Scholar
  201. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedCrossRefGoogle Scholar
  202. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress tolerance and response. J Exp Bot 58:221–227PubMedCrossRefGoogle Scholar
  203. Shiqing G, Huijan X, Xianguo C, Ming C, Zhaosi X, Liancheng L, Xingguo Y, Lipu D, Xiaoyan H, Youzhi M (2005) Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chin Sci Bull 50:2714–2723CrossRefGoogle Scholar
  204. Shukla RK, Raha S, Tripathi V, Chattopadhyay D (2006) Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol 142:113–123PubMedPubMedCentralCrossRefGoogle Scholar
  205. Shukla RK, Tripathi V, Jain D, Yadav RK, Chattopadhyay D (2009) CAP2 enhances germination of transgenic tobacco seeds at high temperature and promotes heat stress tolerance in yeast. FEBS J 276:5252–5262PubMedCrossRefGoogle Scholar
  206. Sindhu A, Chintamanani S, Brandt AS, Zanis M, Scofield SR, Johal GS (2008) A guardian of grasses: specific origin and conservation of a unique disease-resistance gene in the grass lineage. Proc Natl Acad Sci U S A 105:1762–1767PubMedPubMedCentralCrossRefGoogle Scholar
  207. Skriver K, Podzimska-Sroka D, O’Shea C, Gregersen PL (2015) NAC transcription factors in senescence: from molecular structure to function in crops. Plants 4:412–448PubMedPubMedCentralCrossRefGoogle Scholar
  208. Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345PubMedCrossRefGoogle Scholar
  209. Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170PubMedCrossRefGoogle Scholar
  210. Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002PubMedCrossRefGoogle Scholar
  211. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040PubMedPubMedCentralCrossRefGoogle Scholar
  212. Sun J, Peng X, Fan W, Tanga M, Liua J, Shena S (2014a) Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 535(2):140–149PubMedCrossRefGoogle Scholar
  213. Sun ZM, Zhou ML, Xiao XG, Tang YX, Wu YM (2014b) Overexpression of a Lotus corniculatus AP2/ERF transcription factor gene, LcERF080, enhances tolerance to salt stress in transgenic Arabidopsis. Plant Biotechnol Report 8(4):315–324CrossRefGoogle Scholar
  214. Tak H, Negi S, Ganapathi TR (2017) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254(2):803–816PubMedCrossRefGoogle Scholar
  215. Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Gen Genomics 284:173–183CrossRefGoogle Scholar
  216. Tan DX, Tuong HM, Thuy VTT, Son LV, Mau CH (2015) Cloning and overexpression of gmDREB2 gene from a Vietnamese drought resistant soybean variety. Braz Arch Biol Technol 58(5):651–657CrossRefGoogle Scholar
  217. Tang M, Liu X, Deng H, Shena S (2011) Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Sci 181:623–631PubMedCrossRefGoogle Scholar
  218. Tang Y, Liu M, Gao S, Zhang Z, Zhao X, Zhao C (2012) Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant 144:210–224PubMedCrossRefGoogle Scholar
  219. Tang GY, Shao FX, Xu PL, Shan L, Liu ZJ (2017a) Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Russ J Plant Physiol 64(4):525–535CrossRefGoogle Scholar
  220. Tang Y, Liu K, Zhang J, Li X, Xu K, Zhang Y, Qi J, Yu D, Wang J, Li C (2017b) JcDREB2, a physic nut AP2/ERF gene, alters plant growth and salinity stress responses in transgenic rice. Front Plant Sci 8:306PubMedPubMedCentralGoogle Scholar
  221. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498PubMedPubMedCentralCrossRefGoogle Scholar
  222. Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S (2017) NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J:1–13Google Scholar
  223. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599PubMedCrossRefGoogle Scholar
  224. Tian Z, He Q, Wang H, Liu Y, Zhang Y, Shao F, Xie C (2015) The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. Plant Cell Physiol 56:992–1005PubMedCrossRefGoogle Scholar
  225. Tian Q, Chen J, Wang D, Wang H, Liu C, Wang S, Xia X, Yin W (2017) Over expression of a Populus euphratica CBF4 gene in poplar confers tolerance to multiple stresses. Plant Cell Tissue Organ Cult 128(2):391–407CrossRefGoogle Scholar
  226. Tong Z, Hong B, Yang Y, Li Q, Ma N, Ma C (2009) Overexpression of two Chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol Biol 71:115–129PubMedCrossRefGoogle Scholar
  227. Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JMI, Chueng F (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549PubMedPubMedCentralCrossRefGoogle Scholar
  228. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Plant Biotechnol 17(2):113–122CrossRefGoogle Scholar
  229. Wang CT, Dong YM (2009) Overexpression of maize ZmDBP3 enhances tolerance to drought and cold stress in transgenic Arabidopsis plants. Biologia 64(6):1108–1114Google Scholar
  230. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602PubMedCrossRefGoogle Scholar
  231. Wang X, Dong J, Liu Y, Gao H (2010) A novel dehydration responsive element binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Report 28(4):664–675CrossRefGoogle Scholar
  232. Wang X, Chen X, Liu Y, Gao H, Wang Z, Sun G (2011a) CkDREB gene in Caragana korshinskii is involved in the regulation of stress response to multiple abiotic stresses as an AP2/EREBP transcription factor. Mol Biol Rep 38:2801–2811PubMedCrossRefGoogle Scholar
  233. Wang CT, Yang Q, Wang CT (2011b) Isolation and functional characterization of ZmDBP2 encoding a dehydration responsive element-binding protein in Zea mays. Plant Mol Biol Report 29(1):60–68CrossRefGoogle Scholar
  234. Wang CT, Yang Q, Yang YM (2011c) Characterization of the ZmDBP4 gene encoding a CRT/DRE binding protein responsive to drought and cold stress in maize. Acta Physiol Plant 33(2):575–583CrossRefGoogle Scholar
  235. Wang K, Zhong M, Wu Y, Bai Z, Liang Q, Liu Q, Pan Y, Zhang L, Jiang B, Jia Y, Liu G (2017a) Overexpression of a Chrysanthemum transcription factor gene DgNAC1 improves the salinity tolerance in Chrysanthemum. Plant Cell Rep 36(4):571–581PubMedCrossRefGoogle Scholar
  236. Wang L, Hu Z, Zhu M, Zhu Z, Hu J, Qanmber G, Chen G (2017b) The abiotic stress responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.) Plant Cell Tissue Organ Cult 129(1):161–174CrossRefGoogle Scholar
  237. Wang L, Li Z, Lu M, Wang Y (2017c) ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci 8:635PubMedPubMedCentralCrossRefGoogle Scholar
  238. Waterer D, Benning NT, Wu G, Luo X, Liu X, Gusta M, McHughen A, Gusta LV (2010) Evaluation of abiotic stress tolerance of genetically modified potatoes (Solanum tuberosum cv. Desiree). Mol Breed 25(3):527–540CrossRefGoogle Scholar
  239. Wei T, Deng K, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y (2016a) Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth. Plant Physiol Biochem 104:1728CrossRefGoogle Scholar
  240. Wei T, Deng K, Liu D, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y (2016b) Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant Cell Physiol 57(8):1593–1609PubMedCrossRefGoogle Scholar
  241. Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Liu Z, Chen C, Zhang Y (2017) Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza. Front Plant Sci 8:52PubMedPubMedCentralGoogle Scholar
  242. Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290PubMedCrossRefGoogle Scholar
  243. Wu J, Folta KM, Xie Y, Jiang W, Lu J, Zhang Y (2017) Overexpression of Muscadinia rotundifolia CBF2 gene enhances biotic and abiotic stress tolerance in Arabidopsis. Protoplasma 254(1):239–251PubMedCrossRefGoogle Scholar
  244. Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37:3703–3712PubMedCrossRefGoogle Scholar
  245. Xianjun P, Xingyong M, Weihong F, Man S, Liqin C, Alam I (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1493–1502PubMedCrossRefGoogle Scholar
  246. Xie Q, Frugis G, Colgan D, Chua N (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036PubMedPubMedCentralCrossRefGoogle Scholar
  247. Xiong L, Fang Y, Liao K, Du H, Xu Y, Song H, Li X (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66(21):6803–6817PubMedPubMedCentralCrossRefGoogle Scholar
  248. Xiu Y, Iqbal A, Zhu C, Wu G, Chang Y, Li N, Cao Y, Zhang W, Zeng H, Chen S, Wang H (2016) Improvement and transcriptome analysis of root architecture by overexpression of Fraxinus pennsylvanica DREB2A transcription factor in Robinia pseudoacacia L. ‘Idaho’. Plant Biotechnol J 14(6):1456–1469PubMedPubMedCentralCrossRefGoogle Scholar
  249. Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732PubMedCrossRefGoogle Scholar
  250. Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY (2009) Isolation and functional characterization of HvDREB1, a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res 122:121–130PubMedCrossRefGoogle Scholar
  251. Xu M, Li L, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa L.) without yield penalty. Plant Cell Rep 30:1949–1957PubMedCrossRefGoogle Scholar
  252. Xu Z, Gongbuzhaxi CW, Xue F, Zhang H, Ji W (2015) Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol Biochem 96:356–363PubMedCrossRefGoogle Scholar
  253. Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4(4):697–712PubMedCrossRefGoogle Scholar
  254. Xue Y, Wang YY, Peng RH, Zhen JL, Gao B, Zhu JJ, Zhao W, Han HJ, Yao QH (2014) Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana. Biol Plant 58:499–506CrossRefGoogle Scholar
  255. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264PubMedPubMedCentralCrossRefGoogle Scholar
  256. Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA dependent and ABA independent pathways. Planta 233(2):219–229PubMedCrossRefGoogle Scholar
  257. Yang X, Wang X, Lu J, Yi Z, Fu C, Ran J (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34:943–958PubMedCrossRefGoogle Scholar
  258. Yin Y, Ma Q, Zhu Z, Cui Q, Chen C, Chen X, Fang W, Li X (2016) Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regul 80(3):335–343CrossRefGoogle Scholar
  259. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075PubMedCrossRefGoogle Scholar
  260. You J, Zong W, Li X, Ning J, Hu H, Li X (2013) The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot 64:569–583PubMedCrossRefGoogle Scholar
  261. Yu CL, Abu S, Xu L, He-Ping L, Tao H, Chun-Sheng G, Mao-Wei G, Wei C, Guang-Yao Z (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203 & 204:33–40Google Scholar
  262. Yu X, Liu Y, Wang S, Tao Y, Wang Z, Mijiti A, Wang Z, Zhang H, Ma H (2016) A chickpea stress responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis. Plant Growth Regul 79(2):187–197CrossRefGoogle Scholar
  263. Zhai Y, Wang Y, Li Y, Lei T, Yan F, Su L, Li X, Zhao Y, Sun X, Li J, Wang Q (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183PubMedCrossRefGoogle Scholar
  264. Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field: Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621PubMedPubMedCentralCrossRefGoogle Scholar
  265. Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH (2009) Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high salt tolerance in transgenic Arabidopsis. Biochem Mol Biol Rep 42:486–492Google Scholar
  266. Zhang X, Tang Y, Ma Q, Yang C, Mu Y, Suo H (2013) OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One 8(12):83011–83020CrossRefGoogle Scholar
  267. Zhang X, Liu X, Wu L, Yu G, Wang X, Ma H (2015) The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genomics (15):1–13Google Scholar
  268. Zhang W, Yang G, Mu D, Li H, Zang D, Xu H, Zou X, Wang Y (2016a) An ethylene-responsive factor BpERF11 negatively modulates salt and osmotic tolerance in Betula platyphylla. Sci Rep 6:23085PubMedPubMedCentralCrossRefGoogle Scholar
  269. Zhang L, Zhang L, Xia C, Zhao G, Jia J, Kong X (2016b) the novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci 6:1174PubMedPubMedCentralGoogle Scholar
  270. Zhao JS, Ren W, Zhi DY, Wang L, Xia GM (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26(9):1521–1528PubMedCrossRefGoogle Scholar
  271. Zhao XJ, Lei HJ, Zhao K, Yuan HZ, Li TH (2012) Isolation and characterization of a dehydration responsive element binding factor MsDREBA5 in Malus sieversii Roem. Sci Hortic 142:212–220CrossRefGoogle Scholar
  272. Zhao K, Shen X, Yuan H, Liu Y, Liao X, Wang Q, Liu L, Li F, Li T (2013) Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem. Plant Cell Physiol 54(9):1415–1430PubMedCrossRefGoogle Scholar
  273. Zhao X, Yang X, Pei S, He G, Wang X, Tang Q, Jia C, Lud Y, Hu R, Zhou G (2016) The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene 586(1):158–169PubMedCrossRefGoogle Scholar
  274. Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989PubMedCrossRefGoogle Scholar
  275. Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y (2012) Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Rep 31:1991–2003PubMedCrossRefGoogle Scholar
  276. Zhou M, Maa J, Zhao Y, Wei Y, Tanga Y, Wua Y (2012) Improvement of drought and salt tolerance in Arabidopsis thaliana and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506(1):10–17PubMedCrossRefGoogle Scholar
  277. Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014) The Abiotic stress responsive NAC type transcription factor SlNAC4 regulates salt and drought tolerance and stress related genes in tomato S. Lycopersicum. Plant Cell Rep 33(11):1851–1863PubMedCrossRefGoogle Scholar
  278. Zhuang J, Wang F, Xu ZS, Xiong AS (2015) Microarray analysis of different expression profiles between wild type and transgenic rice seedlings over expressing OsDREB1BI gene. Biologia 70(6):760–770CrossRefGoogle Scholar
  279. Zong JM, Li XW, Zhou YH, Wang FW, Wang N, Dong YY, Yuan YX, Chen H, Liu XM, Yao N, Li HY (2016) The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int J Mol Sci 17:611–625PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Manoj K. Sharma
    • 1
  • Ashu Singh
    • 1
  • Rakesh Singh Sengar
    • 1
  1. 1.Department of Agricultural Biotechnology, College of AgricultureS.V.P University of Agriculture & TechnologyMeerutIndia

Personalised recommendations