Skip to main content

Automatic Lung Field Segmentation Based on Non Negative Matrix Factorization and Fuzzy Clustering

  • Conference paper
  • First Online:
Smart Trends in Systems, Security and Sustainability

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 18))

  • 603 Accesses

Abstract

Obtaining accurate and automated lung field segmentation is a challenging step in the development of Computer-Aided Diagnosis (CAD) system. In this paper fully automatic lung field segmentation is proposed. Initially, a visual appearance model is constructed by considering spatial interaction of the neighbouring pixels. Then constrained non-negative matrix factorization (CNMF) factorized the data matrix obtained from the visual appearance model into basis and coefficient matrices. Initial lung segmentation is achieved by applying fuzzy c-means clustering on the obtained coefficient matrix. Trachea and bronchi appearing in the initial lung segmentation are removed by 2-D region growing operation. Finally, the lung contour is smooth by using boundary smoothing step. The experimental results on different database shows that the proposed method produces significant DSC 0.987 as compared to the existing lung segmentation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate quantitation of volumetric x-ray CT images. IEEE Trans. Med. Imaging 20, 490–498 (2001)

    Article  Google Scholar 

  2. Kuhnigk, J.-M., Hahn, H., Hindennach, M., Dicken, V., Krass, S., Peitgen, H.-O.: Lung lobe segmentation by anatomy-guided 3D watershed transform. In: Sonka, M., Fitzpatrick, J. M. (eds.) Medical Imaging 2003: Image Processing of Procspie, vol. 5032, pp. 1482–1490, May 2003

    Google Scholar 

  3. Ali, A.M., Farag, A.A.: Automatic Lung Segmentation Of Volumetric Low-dose CT Scans Using Graph Cuts, pp. 258–267. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  4. Itai, Y., Kim, H., Ishikawa, S., Yamamoto, A., Nakamura, K.: A segmentation method of lung areas by using snakes and automatic detection of abnormal shadow on the areas

    Google Scholar 

  5. Silveira, M., Nascimento, J., Marques, J.: Automatic segmentation of the lungs using robust level sets. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4414–4417. IEEE (2007)

    Google Scholar 

  6. Sluimer, I.C., Niemeijer, M., Van Ginneken, B.: Lung field segmentation from thin-slice CT scans in presence of severe pathology. In: Medical Imaging 2004, pp. 1447–1455. International Society for Optics and Photonics (2004)

    Google Scholar 

  7. El-Ba, A., Gimel’farb, G., Falk, R., Holland, T., Shaffer, T.: A New Stochastic Framework for Accurate Lung Segmentation, pp. 322–330. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  8. El-Baz, A., Farag, A., Ali, A., Gimel’farb, G., Casanova, M.: A Framework for Unsupervised Segmentation of Multi-modal Medical Images, pp. 120–131. Springer, Berlin Heidelberg (2006)

    Google Scholar 

  9. Brown, M.S., Goldin, J.G., McNitt-Gray, M.F., Greaser, L.E., Sapra, A., Li, K.-T., Sayre, J.W., Martin, K., Aberle, D.R.: Knowledge-based segmentation of thoracic computed tomography images for assessment of split lung function. Med. Phy. 27(3), 592–598 (2000)

    Article  Google Scholar 

  10. Prasad, M.N., Brown, M.S., Ahmad, S., Abtin, F., Allen, J., da Costa, I., Kim, H.J., McNitt-Gray, M.F., Goldin, J.G.: Automatic segmentation of lung parenchyma in the presence of diseases based on curvature of ribs. Acad. Radiol. 15(9), 1173–1180 (2008)

    Article  Google Scholar 

  11. Mansoor, A., Bagci, U., Xu, Z., Foster, B., Olivier, K.N., Elinoff, J.M., Suffredini, A.F., Udupa, J.K., Mollura, D.J.: A generic approach to pathological lung segmentation. IEEE Trans. Med. Imaging 33(12), 2293–2310 (2014)

    Article  Google Scholar 

  12. Hosseini-Asl, E., Zurada, J.M., El-Baz, A.: Lung segmentation based on nonnegative matrix factorization. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 877–881. IEEE (2014)

    Google Scholar 

  13. Ahuja, N., Rosenfeld, A., Haralick, R.M.: Neighbor gray levels as features in pixel classification. Pattern Recognit. 12(4), 251–260 (1980)

    Article  Google Scholar 

  14. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  MATH  Google Scholar 

  15. Lin, C.-J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, H., Park, H.: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J. Matrix Anal. Appl. 30(2), 713–730 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis, and machine vision. Cengage Learning (2014)

    Google Scholar 

  19. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  20. Abdollahi, B., Soliman, A., Civelek, A., Li, X.-F., Gimel’farb, G., El-Baz, A.: A novel gaussian scale space-based joint MGRF framework for precise lung segmentation. In: 2012 19th IEEE International Conference on Image Processing, pp. 2029–2032. IEEE (2012)

    Google Scholar 

  21. Sluimer, I., Prokop, M., Van Ginneken, B.: Toward automated segmentation of the pathological lung in CT. IEEE Trans. Med. Imaging 24(8), 1025–1038 (2005)

    Article  Google Scholar 

  22. Dubuisson, M.-P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing, vol. 1, pp. 566–568. IEEE (1994)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the assistance and support provided by Center of Excellence in Signal and Image Processing, SSGS Institute of Engineering and Technology, Nanded, India and Dr. Jankharia’s Imaging Centre, Mumbai for providing the CT image database with the ground truth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh Singadkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singadkar, G., Talbar, S., Sanghavi, P., Jankharia, B., Talbar, S. (2018). Automatic Lung Field Segmentation Based on Non Negative Matrix Factorization and Fuzzy Clustering. In: Yang, XS., Nagar, A., Joshi, A. (eds) Smart Trends in Systems, Security and Sustainability. Lecture Notes in Networks and Systems, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-10-6916-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6916-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6915-4

  • Online ISBN: 978-981-10-6916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics