Skip to main content

Alginate Processing Routes to Fabricate Bioinspired Platforms for Tissue Engineering and Drug Delivery

  • Chapter
  • First Online:
Alginates and Their Biomedical Applications

Abstract

Alginate is a water-soluble polymer which has gained much attention in the last 20 years as suitable biomaterial for numerous applications in biomedical science and engineering. The strong biocompatibility in cell microenvironment and the possibility to process alginate solution by safe conditions to reach a stable form after polymer gelation – via ionic, chemical, or thermal route – make them useful to design different types of devices (i.e., injectable gels, porous scaffolds, micro-/nanoparticles) which are attractive for wound healing, cell transplantation, drug delivery, and three-dimensional scaffolds for tissue engineering applications.

In this chapter, current potential applications of alginates in biomedical science, tissue engineering, and drug delivery will be discussed. After a brief overview of general properties of polymer and its hydrogels, we will focus on the processing techniques mainly used for their manufacturing, also suggesting, in the last part, potential uses and future perspectives for their novel applications in biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285

    Article  Google Scholar 

  2. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430

    Article  Google Scholar 

  3. Fischer FG, Dörfel H (1955) Die polyuronsauren der braunalgen–(kohlenhydrate der algen–I). Z Physiol Chem 302:186–203

    Article  Google Scholar 

  4. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs. J Control Release 114:1–14

    Article  Google Scholar 

  5. SE S–E, Hubbell JA (2001) Functional biomaterials: design of novel biomaterials. Ann Rev Mater Res 31:183–201

    Article  Google Scholar 

  6. Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  Google Scholar 

  7. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521

    Article  Google Scholar 

  8. Florczyk SJ, Kim DJ, Wood DL et al (2011) Influence of processing parameters on pore structure of 3D porous chitosan–alginate polyelectrolyte complex scaffolds. J Biomed Mater Res A 98:614–620

    Article  Google Scholar 

  9. Kong HJ, Smith MK, Mooney DJ (2003) Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24:4023–4029

    Article  Google Scholar 

  10. Hay ID, Rehman ZU, Ghafoor A et al (2010) Bacterial biosynthesis of alginates. J Chem Technol Biotechnol 85:752–759

    Article  Google Scholar 

  11. Varghese S, Elisseeff JH (2006) Hydrogels for musculoskeletal tissue engineering. Adv Polym Sci 203:95–144

    Article  Google Scholar 

  12. Guarino V, D’Albore M, Altobelli R (2016) Polymer bioprocessing to fabricate 3D scaffolds for tissue engineering. Int Polym Process. https://doi.org/10.3139/217.3239

  13. Hollister SJ (2009) Scaffold design and manufacturing: from concept to clinic. Adv Mater 21:3330–3342

    Article  Google Scholar 

  14. Manferdini C, Guarino V, Zini N (2010) Mineralization occurs faster on a new biomimetic hyaluronic acid–based scaffold. Biomaterials 14:3986–3996

    Article  Google Scholar 

  15. Chen CY, Ke CJ, Yen KC et al (2015) 3D porous calcium–alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy. Theranostics 5:643–655

    Article  Google Scholar 

  16. Rodríguez–Vázquez M, Vega–Ruiz B, Ramos–Zúñiga R et al (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279

    Google Scholar 

  17. Guarino V, Lewandowska M, Bil M, Polak B, Ambrosio L (2010) Morphology and degradation properties of pcl/hyaff11-based composite scaffolds with multiscale degradation rate. Comp Sc Tech 70(2010):1826–1837

    Article  Google Scholar 

  18. Novotna K, Havelka P, Sopuch T et al (2013) Cellulose–based materials as scaffolds for tissue engineering. Cellulose 20:2263–2278

    Article  Google Scholar 

  19. Su J, Tan H (2013) Alginate–based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    Article  Google Scholar 

  20. Nam YS, Guarino V, Causa F, Salerno A, Ambrosio L, Netti PA (2008) Design and manufacture of microporous polymeric materials with hierarchal complex structure for biomedical application. Mat Sci Tech 24(9):1111–1117

    Article  Google Scholar 

  21. Schugens C, Maquet V, Grandfils C et al (1996) Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res A 30:449–461

    Article  Google Scholar 

  22. Loh QL, Choong C (2013) Three–dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502

    Article  Google Scholar 

  23. Ikada Y (2011) Tissue engineering: fundamentals and applications Vol. 8 in Interface Science and Technology. Academic Press, Cambridge, Elsevier, Uk

    Google Scholar 

  24. Yuan NY, Lin YA, Ho MH et al (2009) Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze–gelation method. Carbohydr Polym 78:349–356

    Article  Google Scholar 

  25. Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell–matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 3:1838–1847

    Article  Google Scholar 

  26. Kim G, Ahn S, Kim Y et al (2011) Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J Mater Chem 21:6165–6172

    Article  Google Scholar 

  27. Petrenko YA, Ivanov RV, Petrenko AY et al (2011) Coupling of gelatin to inner surfaces of pore walls in spongy alginate–based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. J Mater Sci Mater Med 22:1529–1540

    Article  Google Scholar 

  28. Han J, Zhou Z, Yin R et al (2010) Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Int J Biol Macromol 46:199–205

    Article  Google Scholar 

  29. Shachar M, Tsur–Gang O, Dvir T et al (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7:152–162

    Article  Google Scholar 

  30. Zhou H, HH X (2011) The fast release of stem cells from alginate–fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 32:7503–7513

    Article  Google Scholar 

  31. Guarino V, Cirillo V, Ambrosio L (2016) Bicomponent electrospun scaffolds to design ECM tissue analogues. Exp Rev Med Dev 13:83–102

    Article  Google Scholar 

  32. Guarino V, Cirillo V, Altobelli R et al (2015) Polymer based platforms by electric field assisted techniques for tissue engineering and cancer therapy. Exp Rev Med Dev 12:113–129

    Article  Google Scholar 

  33. Oliveira MB, Mano JF (2011) Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog 27:897–912

    Article  Google Scholar 

  34. Luciani A, Guarino V, Ambrosio L, Netti A Solvent and melting induced microsphere sintering techniques: a comparative study of morphology and mechanical properties. J Mater Sci Mater Med 22:2019–2028

    Google Scholar 

  35. Altobelli R, Guarino V, Ambrosio L (2016) Micro- and nanocarriers by electrofludodynamic technologies for cell and molecular therapies. Process Biochem https://doi.org/10.1016/j.procbio.2016.09.002

  36. Tabata Y, Horiguchi I, Lutolf MP et al (2014) Development of bioactive hydrogels capsules for the 3D expansion of pluripotent stem cells in bioreactors. Biomater Sci 2:176–183

    Article  Google Scholar 

  37. De Koker S, Richard H, de Geest BG (2012) Polymeric multilayer capsules for drug delivery. Chem Soc Rev 41:2867–2884

    Article  Google Scholar 

  38. Guarino V, Gloria A, Raucci MG et al (2012) Hydrogel–based platforms for the regeneration of osteochondral tissue and intervertebral disc. Polymers 4:1590–1612

    Article  Google Scholar 

  39. Guarino V, Galizia M, al APMA (2015) Improving surface and transport properties of macroporous hydrogels for bone regeneration. J Biomed Mat Res A 103:1095–1105

    Article  Google Scholar 

  40. Leferink A, Schipper D, Arts E et al (2014) Engineered micro-objects as scaffolding elements in cellular building blocks for bottom-up tissue engineering approaches. Adv Mat 26:2592–2599

    Article  Google Scholar 

  41. Kelm JM, Djonov V, Ittner LM et al (2006) Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Eng 12:2151–2160

    Article  Google Scholar 

  42. Rivron NC, Rouwkema J, Truckenmüller R et al (2009) Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Biomaterials 30:4851–4858

    Article  Google Scholar 

  43. Causa F, Netti PA, Ambrosio L (2007) A multi–functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099

    Article  Google Scholar 

  44. Fukui Y, Maruyama T, Iwamatsu Y et al (2010) Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids Surf A Physicochem Eng Asp 370:28–34

    Article  Google Scholar 

  45. Pankongadisak P, Ruktanonchai UR, Supaphol P et al (2014) Preparation and characterization of silver nanoparticles–loaded calcium alginate beads embedded in gelatin scaffolds. AAPS PharmSciTech 15:1105–1115

    Article  Google Scholar 

  46. Kang AR, Park JS, Ju J et al (2014) Cell encapsulation via microtechnologies. Biomaterials 35:2651–2663

    Article  Google Scholar 

  47. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11:20140817

    Article  Google Scholar 

  48. Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32:733–742

    Article  Google Scholar 

  49. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165

    Article  Google Scholar 

  50. Leung A, Nielsen LK, Trau M et al (2010) Tissue transplantation by stealth coherent alginate microcapsules for immunoisolation. Biochem Eng J 48:337–347

    Article  Google Scholar 

  51. Malda J, Frondoza CG (2006) Microcarriers in the engineering of cartilage and bone. Trends Biotechnol 24:299–304

    Article  Google Scholar 

  52. Naqvi SM, Vedicherla S, Gansau J et al (2016) Living cell factories-electrosprayed microcapsules and microcarriers for minimally invasive delivery. Adv Mater 28:5662–5671

    Article  Google Scholar 

  53. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  Google Scholar 

  54. Wu H, Liao C, Jiao Q, Wang Z, Cheng W, Wan Y (2012) Fabrication of core-shell microspheres using alginate and chitosan-polycaprolactone for controlled release of vascular endothelial growth factor. React Funct Polym 72:427–437

    Article  Google Scholar 

  55. Vasir JK, Tambwekar K, Garg S (2003) Bioadhesive microspheres as a controlled drug delivery systems. Int J Pharm 255:13–32

    Article  Google Scholar 

  56. Tanaka H, Matsumura M, Veliky IA (1984) Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol Bioeng 26(1):53–58. PubMed PMID:18551586

    Article  Google Scholar 

  57. Smith TJ (1994) Calcium algiante hydrogel as a matrix for enteric delivery of nucleic acids. Biopharm 4:54–55

    Google Scholar 

  58. Mestecky J (1987) The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol 7:265–276

    Article  Google Scholar 

  59. Putta S, Kumar A, Kumar A (2010) Formulation and in-vitro evaluation of mucoadhesive microcapsules of glipizide with gum kondagogu. J Chem Pharm Res 2(5):356–364

    Google Scholar 

  60. Sailaja R, Amareshwar P, Chakravarty P (2010) Chitosan nanoparticles as a drug delivery systems. J Pharm Biol Chem Sci Res 1:476

    Google Scholar 

  61. Jaiswal D, Bhattacharya A, Yadav I, Singh H, Chandra D, Jain D (2009) Formulation and evaluation of oil entrapped floating alginate beads of ranitidine hydrochloride. Int J Pharm Pharm Sci 1:129–141

    Google Scholar 

  62. Singhal P, Kumar K, Pandey M, Shubhini A (2010) Evaluation of acyclovir loaded oil entrapped calcium alginate beads prepared by ionotropic gelation method. Int J ChemTech Res 2:2076–2085

    Google Scholar 

  63. Lemoine D, Wauters F, Bouchend’homme S, Pre´at V (1998) Preparation and characterization of alginate microspheres containing a model antigen. Int J Pharm 176:9–19

    Article  Google Scholar 

  64. Silva C, Ribeiro A, Figueiredo I, Alves A, Veiga F (2006) Alginate microspheres prepared by internal gelation: development and effect on insulin stability. Int J Pharm 311:1–10

    Article  Google Scholar 

  65. Pradeep KN, Vidyasagar G (2010) Preparation and evaluation of floating calsium alginate beads of clarithromycin. Der Pharmacia Sinica 1(1):29–35

    Google Scholar 

  66. Khanna O, Moya ML, Opara EC et al (2010) Synthesis of multilayered alginate microcapsules for the sustained release of fi broblast growth factor-1. J Biomed Mater Res A 95:632–640

    Article  Google Scholar 

  67. Gao W, Li T, Yu M, Hu X, Duan D, Lin T (2014) Preparation of sustained-release composite coating formed by dexamethasone and oxidated sodium alginate. Int J Clin Exp Med 7(9):3053–3061. PubMed PMID: 25356181; PubMed Central PMCID: PMC4211831

    Google Scholar 

  68. Moya ML, Cheng M-H, Huang J-J et al (2010) The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials 31:28162826

    Article  Google Scholar 

  69. Mori S, Takada Y (2013) Crosstalk between fibroblast growth factor (FGF) receptor and integrin through direct integrin binding to FGF and resulting integrin-FGF-FGFR ternary complex formation med. Science 1(1):20–36. https://doi.org/10.3390/medsci1010020

    Google Scholar 

  70. Somo SI, Khanna O, Brey EM (2017) Alginate microbeads for cell and protein delivery. Methods Mol Biol 1479:217–224. PubMed PMID: 27738939.

    Article  Google Scholar 

  71. Li J, Jiang C, Lang X, Kong M, Cheng X, Liu Y, Feng C, Chen X (2016) Multilayer sodium alginate beads with porous core containing chitosan based nanoparticles for oral delivery of anticancer drug. Int J Biol Macromol 85:1–8. https://doi.org/10.1016/j.ijbiomac.2015.12.064. PubMed PMID: 26724684

    Article  Google Scholar 

  72. Feng C, Li J, Mu Y, Kong M, Li Y, Raja MA, Cheng XJ, Liu Y, Chen XG (2016) Multilayer micro-dispersing system as oral carriers for co-delivery of doxorubicin hydrochloride and P-gp inhibitor. Int J Biol Macromol 94(Pt A):170–180. https://doi.org/10.1016/j.ijbiomac.2016.10.012. [Epub ahead of print] PubMed PMID: 27720963

    Google Scholar 

  73. Feng C, Song R, Sun G, Kong M, Bao Z, Li Y, Cheng X, Cha D, Park H, Chen X (2014) Immobilization of coacervate microcapsules in multilayer sodium alginate beads for efficient oral anticancer drug delivery. Biomacromolecules 15(3):985–996. https://doi.org/10.1021/bm401890x. PubMed PMID: 24502683

    Article  Google Scholar 

  74. Murua A, Portero A, Oriv G et al (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132:76–83

    Article  Google Scholar 

  75. Xie J, Wang CH (2007) Electrospray in the dripping mode for cell microencapsulation. J Colloid Interface Sci 312:247–255

    Article  Google Scholar 

  76. Yao R, Zhang R, Luan J et al (2012) Alginate and alginate/gelatin microspheres for human adipose–derived stem cell encapsulation and differentiation. Biofabrication 4:025007

    Article  Google Scholar 

  77. Fonseca KB, Bidarra SJ, Oliveira MJ et al (2011) Molecularly designed alginate hydrogels susceptible to local proteolysis as three–dimensional cellular microenvironments. Acta Biomater 7:1674–1682

    Article  Google Scholar 

  78. Guarino V, Ambrosio L (2016) Electrofluidodynamics: exploring new toolbox to design biomaterials for tissue regeneration and degeneration. Nanomed 11:1515–1518

    Article  Google Scholar 

  79. Jaworek A (2007) Micro– and nanoparticle production by electrospraying. Powder Technol 176:18–35

    Article  Google Scholar 

  80. Guarino V, Altobelli R, Ambrosio L (2016) Chitosan microgels and nanoparticles via electrofluidodynamic techniques for biomedical applications. Gels 2:2

    Article  Google Scholar 

  81. Guarino V, Wan Abdul Khodir WK, Ambrosio L (2012) Biodegradable micro and nanoparticles by electrospraying techniques. J Appl Biomat Funct Mat 10:191–196

    Google Scholar 

  82. Draget KI, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll 25:251–256

    Article  Google Scholar 

  83. Maiti S, Singha K, Ray S et al (2009) Adipic acid dihydrazide treated partially oxidized alginate beads for sustained oral delivery of flurbiprofen. Pharm Dev Technol 14:461–470

    Article  Google Scholar 

  84. Huebsch N, Kearney CJ, Zhao X et al (2014) Ultrasound–triggered disruption and self–healing of reversibly cross–linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci U S A 111:9762–9767

    Article  Google Scholar 

  85. Wang Y, Zhou J, Qiu L et al (2014) Cisplatin–alginate conjugate liposomes for targeted delivery to EGFR–positive ovarian cancer cells. Biomaterials 35:4297–4309

    Article  Google Scholar 

  86. Boekhoven J, Zha RH, Tantakitti F et al (2015) Alginate–peptide amphiphile core–shell microparticles as a targeted drug delivery system. RSC Adv 5:8753–8756

    Article  Google Scholar 

  87. Wu JL, Wang CQ, Zhuo RX (2014) Multi–drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloid Surf B 123:498–505

    Article  Google Scholar 

  88. Lucinda–Silva RM, Salgado HRN, Evangelista RC (2010) Alginate–chitosan systems: in vitro controlled release of triamcinolone and in vivo gastrointestinal transit. Carbohydr Polym 81:260–268

    Article  Google Scholar 

  89. Jeon O, Powell C, Ahmed SM et al (2010) Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity. Tissue Eng Part A 16:2915–2925

    Article  Google Scholar 

  90. Degala S, Zipfel WR, Bonassar LJ (2011) Chondrocyte calcium signaling in response to fluid flow is regulated by matrix adhesion in 3–D alginate scaffolds. Arch Biochem Biophys 505:112–117

    Article  Google Scholar 

  91. Lee JW, Park YJ, Lee SJ et al (2010) The effect of spacer arm length of an adhesion ligand coupled to an alginate gel on the control of fibroblast phenotype. Biomaterials 31:5545–5551

    Article  Google Scholar 

  92. Huebsch N, Arany PR, Mao AS et al (2010) Harnessing traction–mediated manipulation of the cell/matrix interface to control stem–cell fate. Nat Mater 9:518–526

    Article  Google Scholar 

  93. Jin HH, Kim DH, Kim TW et al (2012) In vitro evaluation of porous hydroxyapatite/chitosan–alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol 51:1079–1085

    Article  Google Scholar 

  94. Rubert M, Monjo M, Lyngstadaas SP et al (2012) Effect of alginate hydrogel containing polyproline–rich peptides on osteoblast differentiation. Biomed Mater 7:055003

    Article  Google Scholar 

  95. Florczyk SJ, Leung M, Jana S et al (2012) Enhanced bone tissue formation by alginate gel–assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J Biomed Mater Res A 100:3408–3415

    Article  Google Scholar 

  96. Tang M, Chen W, Weir MD et al (2012) Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater 8:3436–3445

    Article  Google Scholar 

  97. Lee KY, Peters MC, Anderson KW et al (2000) Controlled growth factor release from synthetic extracellular matrices. Nature 408:998–1000

    Article  Google Scholar 

  98. Zhao XH, Kim J, Cezar CA et al (2011) Active scaffolds for on–demand drug and cell delivery. Proc Natl Acad Sci U S A 108:67–72

    Article  Google Scholar 

  99. MacKay JA, Chen MN, McDaniel JR et al (2009) Self–assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 8:993–999

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Ministero dell’Universita’ e della Ricerca through the funds of POLIFARMA (PON02 3203241) and the National Operative Program REPAIR (PON01-02342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Guarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guarino, V., Altobelli, R., della Sala, F., Borzacchiello, A., Ambrosio, L. (2018). Alginate Processing Routes to Fabricate Bioinspired Platforms for Tissue Engineering and Drug Delivery. In: Rehm, B., Moradali, M. (eds) Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-6910-9_4

Download citation

Publish with us

Policies and ethics